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Abstract:  In this paper, a hybrid adaptive predictive control approach (HAPC) to solve a dynamic pickup 
and delivery problem (DPDP) is presented based on a dynamic objective function that includes two 
dimensions: user and operator costs. Because these two costs are opposite components, the problem was 
formulated and solved by using an Evolutionary Multiobjective Optimization (EMO) technique. The idea 
is to minimize both, user and operator costs. At every instant, the use of genetic algorithms is proposed to 
find the optimal Pareto front associated with the DPDP, whose Pareto Optimal set is a set of solutions of 
the problem. Since only one solution has to be applied to the system every time a new request appears, 
several criteria will be utilized in order to properly use the information provided by the dynamic optimal 
Pareto front. Illustrative experiments through simulation of the process are presented to show the potential 
benefits of the new approach. Thus, by using EMO, the trade off between the two conflicting objectives 
will become clear for the dispatcher when making dynamic routing decisions. 

 

1. INTRODUCTION 
The dynamic pick up and delivery problem (DPDP) was 
formulated by a set of requests of passengers traveling from 
an origin (pick up) to a destination (delivery) served by a 
fleet of vehicles located initially at several depots (Desrosiers 
et al., 1986; Savelsbergh and Sol, 1995). The dynamic 
dimension of the problem arises when a subset of requests is 
not previously known and dispatch decisions must be 
conducted in real time. Progress in communication and 
information technologies in the last few years has allowed 
researchers to formulate this kind of dynamic problem and 
develop efficient algorithms of high computational 
complexity to optimize dispatcher decisions in real time. 
When the problem is dynamic, a well-defined objective 
function must consider the prediction of future demand and 
consequently, of the passengers’ waiting and travel times in 
the system due to potential rerouting decisions, issues 
normally not considered in the specialized literature. In 
addition, proper specification includes a prediction of the 
traffic conditions of the system, in space and time, to get 
more realistic estimations of travel time of the vehicles. This 
additional source of uncertainty has not been extensively 
treated in the specialized literature, due mainly to its 
computational complexity.  

Regarding dynamic routing decision models including 
prediction, only a few efforts have been devoted to develop 
models that use information systems about future events to 
make better real-time routing decisions (Ichoua et al., 2005; 
Topaloglu and Powell, 2005). Sáez et al. (2007) and Cortés et 
al. (2007) developed an analytical formulation for the DPDP 
problem as a hybrid adaptive predictive control problem 
(HAPC) using state space models and algorithms that come 
from the computational intelligence literature (Genetic 

Algorithms (GA) and Fuzzy Clustering). In that work, the 
authors demonstrated that GA is an effective algorithm for 
solving real-time instances of the problem. A reasonable 
definition of a predictive objective function should include 
both operator and user costs, as a function of the estimated 
travel time for vehicles and users as well as waiting time for 
passengers before they are picked up. The dynamic nature of 
the problem forces the modeller to include the effect of 
potential rerouting in actual dispatch decisions as part of the 
objective function. Such a formulation should properly 
quantify the impact on the users’ level of service affected by 
these decisions, as well as on the associated additional 
operational costs. These decisions were made within a 
context of unexpected traffic conditions which could interfere 
with the operation of the vehicles under dispatch rules 
(Cortés et al., 2007).  

These two dimensions considered in the system objective 
function are opposite objectives. On the one hand, the interest 
of the operator is in minimizing operational costs, and, on the 
other, the users want to obtain good service. In fact, offering 
a better level of service implies more direct trips, resulting in 
lower vehicle occupancy rates and consequently, higher 
operational costs to satisfy the same demand with a fixed 
fleet. More efficient routing policies from the operator’s 
standpoint will reflect higher occupation rates, longer routes, 
and consequently, longer waiting and travel time for users. 
Thus, the question is how to properly balance both 
components of the objective function to make proper 
planning and fleet dispatching decisions. The answer is not 
clear. It depends on who makes the decisions and in what 
context. To guide the dispatch process, in this paper we 
propose a multiobjective approach to give the DPDP more 
general treatment based on the formulation of the problem 
under a HAPC approach by Cortés et al. (2007). In the 
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present work Evolutionary Multiobjetive Optimization 
(EMO) was used to solve the dynamic formulation of the 
DPDP, considering both opposite dimensions (operator and 
users) in the objective function. 

Mainly the solution of static problems has been conducted in 
the EMO literature. There is an interesting work done by Tan 
et al. (2007), where a multiobjective stochastic vehicle 
routing problem is solve via EMO. Literature on dynamic 
EMO problems is scarce and it lacks clear evaluation 
methodologies (Farina et al., 2004). In the application of 
multiobjective techniques in conventional Model Predictive 
Control (MPC), some interesting contributions are Alvarez 
and Cruz (1998), Kerrigan and Maciejowski (2002), Laabidi 
and Bouani (2004) and recently Subbu et al. (2006).  

Regarding Hybrid Predictive Control (HPC) and EMO, 
Kerrigan et al. (2000) present several methods for handling a 
large class of multiobjective formulations and prioritizations 
for model predictive control of hybrid systems, using the 
Mixed Logic Dynamical (MLD) framework. The methods are 
flexible and systematic, and use propositional logic and the 
MLD modelling for prioritizing soft constraints in MPC and 
guaranteeing inclusion of the maximum number of hard 
constraints.  

In this paper, the model by Cortes et al. (2007) is 
reformulated under a dynamic EMO view. The use of EMO 
allows the decision-maker to obtain solution, which are not 
explored with the typical HAPC to solve the DPDP problem. 
This extra information is a crucial support for the decision-
maker who is searching for reasonable options of service 
policies.  

The problem is presented below, and the formulation of the 
proposed predictive objective function (mono-objective) is 
stated. In Section 3 the EMO formulation is proposed. In 
Section 4 results by simulation are shown and analyzed, and 
finally conclusions and future work are highlighted.  

2. PROBLEM FORMULATION 
2.1. HAPC  for DPDP and dynamic model formulation. 
Under a dial-a-ride operation system, where people ask for a 
door-to-door service, suppose a fleet size of F vehicles. The 
specific location of a request (which includes its pickup as 
well as its delivery) is known only after the associated call is 
received by the dispatcher. A selected vehicle is then rerouted 
at real time to insert the new request into its predefined route 
(sequence) while the vehicles are in motion. The assignment 
of the vehicle and the insertion position of the new call into 
the previous sequence of tasks associated with such a vehicle, 
are control actions decided by the dispatcher (controller) 
based on the objective function, which depends on the 
variables related to the state of the vehicles in real time. The 
fleet is in operation travelling within the influence area 
according to predefined routes. The service demand η is 
unknown, it appears in real time and it is characterized by 
two positions, pickup and delivery, and by the instant of the 
call occurrence. The modelling approach is in discrete time, 
where the steps are activated every time a relevant event 
occurs, for example when a call asking for service is 
received. k represents the kth instant in the discrete events 

sequence. The predictive model is formulated in terms of 
three state space variables: estimated time of arrival to a stop, 
vehicle load between stops, and the vehicle position. In order 
to compute these variables, we consider two sources of 
stochasticity. The first regarding the unknown future demand 
entering the system in real time, and the second coming from 
the network traffic conditions, in its spatial and temporal 
dimensions. At any instant k, every vehicle j is assigned a 
sequence of tasks, which includes several points of pickup 
and delivery. Those sequences can be represented by the 
function 

( )0 1( ) ( ) ( ) ( ) ( )j
Tw ki

j j j j jS k s k s k s k s k =  
 , 

where the ith element of the sequence represents the ith stop of 
vehicle j along its route, and ( )jw k  is the number of stops 

associated. A stop is defined by a coordinate and a user who 
requires the service. The initial condition 0 ( )js k  corresponds 
to the last satisfied request. The set of sequences 

{ }1( ) ( ),..., ( ),.., ( )j FS k S k S k S k=  associated with the fleet of 

vehicles correspond to the control (manipulated) variable 
u( k ) . The proposed HAPC dispatcher selects the optimal 
sequences based on the minimization of an ad-hoc objective 
function. Thus, a sequence of stops assigned to vehicle j at 
instant k, ( )jS k , is given by:  

( ) ( ) ( ) ( )

0 0 0 0

1 1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )j j j j

j j j j

j j j j
j

w k w k w k w k
j j j j

z k P k r k k
z k P k r k k

S k

z k P k r k k

 Ω
 Ω =  
 
 Ω 

 (1) 

where ( )i

jz k  equals 1 if the stop i is a pickup and equals 0 if 

it is a delivery, 2( )i

jP Rk ∈  is the geographic position in 

spatial coordinates of stop i assigned to vehicle j, ( )j

ir k  

identifies the passenger who is making the call and ( )i

j
kΩ  is 

the number of passengers associated with the request. Figure 
1 shows a sequence assigned to vehicle j at instant k, which 
corresponds to the tasks assigned to a vehicle.  

 
Fig. 1. Representation of sequence of vehicle j and its stops. 
 
ˆ ( )i

jT k , ˆ ( )i

jL k  and ( )jX k  represent the expected departure 
time, the expected load and the actual position of vehicle j 
from stop i, at instant k. The real distribution of speeds is 
assumed to be unknown (denoted by v(t,p,φ)) which depends 
on a stochastic source φ(t), representing the traffic conditions 
of the network, and of a p function defined by the straight 
line that joins two consecutive stops. Besides, a speed 
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distribution for the urban zone during a typical period of 
recurrent congestion, represented by a speed model ˆ( , )v t p , is 
supposed to be known, which can be obtained from historical 
speed data.  
 
The closed loop of the dynamic vehicle routing system is 
shown in Figure 2. The HAPC represented by the dispatcher 
makes the routing decisions in real time based on the 
information it has about the system (process) and in the 
values of the vehicle fleet attributes, which allow evaluating 
the model under different scenarios. Demand (ηk) and traffic 
conditions (ϕ(tk)) are disturbances in this system. An adaptive 
mechanism for the proposed control is added in Figure 2, to 
modify the objective function according to demand and 
traffic predictions, which can vary in time.  
 

Controller
(Dispatcher)

Objective
Function

Adaptive
Mechanism

Routing
Process

η ϕ

ˆ ˆ ˆ( 1), ( 1), ( 1)X k T k L k + + + 

[ ]ˆ ˆ, ( , )k v t pη +1

( )S kController
(Dispatcher)

Objective
Function

Adaptive
Mechanism

Routing
Process

η ϕ

ˆ ˆ ˆ( 1), ( 1), ( 1)X k T k L k + + + 

[ ]ˆ ˆ, ( , )k v t pη +1

( )S k

 
Fig. 2 Closed loop diagram of the HAPC for DPDP. 
 
To apply the HAPC approach, a dynamic model is proposed 
to represent the routing process.  
 
The dynamic model for the position of vehicle j is as follows, 

 ( ) ( )
( )0 1

0

0 1

2

( ) ( )ˆ ˆ1 ( ) , ( )
( ) ( )

k

k

t
j j

j j

t j j

P k P k
X k P k v t p t dt

P k P k

τ+ −
+ = +

−∫        (2) 

where tk ≤ t ≤  tk+τ. tk is a variable that links the continuous 
time with the discrete time (k) associated with the modeling 
scheme. The variable time τ is defined by the interval 
between the occurrence of the future probable call at instant 
tk+τ and the occurrence of the previous call at tk. τ is 
calculated as a tuning parameter for the HAPC.  
 
The model for the predicted departure time vector is: 

( )
0 1

1

ˆ ( 1) ( ) ( ) .... ( )
j

j

w k
s

j k j k j
s

T k T k t k t kκ κ
=

+ =
 

+ + 
 

∑     (3) 

where ( )i

j kκ  is an estimation of the time interval between 
stop i-1 and stop i for the sequence of vehicle j at instant k, 
which depends on ˆ( , )v t p .   
 
The dynamic model associated with the vehicle load vector 
depends exclusively on the current sequence and its previous 
load. Analytically, we have: 

 

0 0 1 1

( )2
0 0

1 1

ˆ ( 1) ( ) ( ) (2 ( ) 1) .... (4)

( ) (2 ( ) 1) .... ( ) (2 ( ) 1)
j

j j j j j
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s s s s

j j j j j j
s s

L k L k L k z k

L k z k L k z k
= =

+ = + − Ω


+ − Ω + − Ω 


∑ ∑

where s
jz  and s

jΩ  were defined in (1). The proposed vehicle 
sequences and state variables satisfy a set of constraints given 
by the real conditions of the DPDP problem. Specifically, we 
must consider constraints of precedence, capacity and 
consistency in the solution of the HAPC problem to generate 
only feasible sequences. 
 
2.2 Objective Function. 
The objective of the HAPC is to minimize an objective 
function from which the best routes for the vehicles will be 
selected. The proposed objective function quantifies the costs 
over the system of accepting the insertion of a new request. 
Such a function incorporates two decision dimensions, which 
normally move in opposite directions. The first component is 
the users’ cost which includes both waiting and travel time 
experienced by each passenger. The second component is the 
cost associated with the operation of vehicles. In this 
approach, the latter cost incorporates two types of expenses: 
the cost per traveled distance unit and the cost spent by 
operating the vehicles in time units. A fixed fleet size is 
considered. 
  
A reasonable prediction horizon N is defined, which depends 
on the problem in study and on the intensity of unknown 
events, which can occur in the system in real time. The 
controller will compute the decisions for the complete control 
horizon N, namely { ( ), ..., ( -1)}k N

kS S k S k N+ = + , 
considering the predictions based on historical data, and will 
apply only the sequence decided for the current instant ( )S k  
to the system according to the receding horizon method. The 
performance of the vehicle routing scheme will depend on 
how well the objective function can predict the impact of 
possible rerouting, due to insertions caused by unknown 
service requests. Analytically, a mono-objective version of 
the proposed objective function for a prediction horizon N, 
can be written as follows: 

( )1 2 1
k N
kS

Min J Jλ λ
+

+ −    (5) 

( )
( )

( ) ( )( )

( )
( )

( ) ( )( )
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1 1 1
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1 1 1

= 1

= 1
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U U
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j h

h k tN F
O O

h j j
j h

J p k J k J k

J p k J k J k

+

= = =

+

= = =
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where U
jJ  and O

jJ  denote the user and operator costs 
respectively, associated with the sequence of stops that 
vehicle j must follow at certain instant.  In equations (5)-(7), 
k +  is the instant at which the th request enters the 
system, measured from instant k. max ( )h k +  is the number 

of possible requests at instant k + , ( )hp k +  is the 
probability of occurrence of the hth request, associated with a 
trip pattern related to a specific pair of zones. The occurrence 
probabilities associated with each scenario are parameters in 
the objective function and must be calculated based on real 
time or historical data, or a combination of both. In this work, 
a zoning based on Fuzzy Clustering proposed in Sáez et al. 
(2007) was designed. Expressions (6) and (7) represent the 
operator and users cost functions related to vehicle j at instant 
k + , which depend on the previous sequence and a new 
potential request h which occurs with probability ( )hp k + , 
wj(k+l) is the number of stops estimated for vehicle j at 
instant k+l. To explain the flexibility of the formulation and 
economic consistency, the travel time is weighted by a factor 
θv, and the waiting time is weighted by θe. Similarly, we will 
assume a generic expression for the vehicle operation cost, 
with a component which depends on the total traveled 
distance, weighted by a factor cL, and another which depends 
on the total operational time, in this case at unitary cost cT. 
Thus, ( )j

i kD +  represents the distance between stops i-1 
and i in the sequence of vehicle j. Given the mono-objective 
nature of this formulation, expression (5) is generalized 
assuming an arbitrary factor λ to be defined by the decision 
maker. 
 

3. HYBRID PREDICTIVE CONTROL BASED ON 
EVOLUTIONARY MULTIOBJETIVE 

OPTIMIZATION FOR THE ROUTING PROBLEM 
 

3.1 HAPC based on Evolutionary Multiobjetive Optimization 
(HAPC-EMO). 

The HAPC-EMO strategy is a generalization of HAPC where 
the optimal control action is selected based on a criterion 
which takes solutions from the optimal Pareto region 
considering the following multiobjective problem: 

{ }1 2 ,
k N

kS
Min J J

+
                       (8) 

with J1 and J2 corresponding to the defined objective 
functions in (5). Note that this scheme does not need to 
define an arbitrary parameter λ as stated in (5). The solution 
of this problem corresponds to a set of control sequences, 
which form the optimal Pareto set. In this case, as the control 
sequences are integer and also defined within a feasible finite 
set, the resulting optimal Pareto front corresponds to a set 
with a finite number of elements. From the Optimal Pareto 
front, it is necessary to select only one control sequence 
Si={Si(k),…..,Si(k+Nu-1)} and from that, apply the control 
action Si(k) to the system according to the receding horizon 
concept. For the selection of this sequence, a criterion related 
to the importance given to both the user (J1) and operator (J2) 
costs in the final decision is needed. Note that the solutions 

obtained from the EMO problem form a set, which includes 
as a particular case, the optimum obtained from the mono-
objective problem defined in Section 2. Figure 3 shows that 
HAPC solution belongs to the set of possible solutions given 
by HAPC-EMO.  
  

 
Fig. 3 HAPC solution belongs to EMO-HPC set. 
 
A relevant application of this approach in the controller’s 
dispatching decision is the definition of criteria to select the 
best control action at each instant under the HAPC-EMO 
approach. For example, once the best Pareto front is found, 
different criteria regarding a minimum allowable level of 
service can be used dynamically to make policy dependent 
routing decisions. In this work, we will evaluate three criteria 
of level of service:  
 
Criterion 1: user cost under Ch$1000 per passenger.  
Criterion 2: user cost under Ch$1125 per passenger. 
Criterion 3:  user cost under Ch$1250 per passenger.  
 
Ch$ stands for Chilean pesos. In cases where the policy is 
accomplished for several solutions, the one that minimizes 
the operator cost will be selected. If the policy can not be 
respected (no feasible solution for such a policy exists), the 
best solution found (the closest to the policy boundaries) is 
applied. Results and analysis of these operation policies from 
simulations are reported in Section 4. Next, in Section 3.2, 
we will explain the multiobjetive optimization method based 
on Genetic Algorithms (GA) proposed for this problem. 
 
3.2 Genetic Algorithms to find Pareto Optimal set. 
Genetic Algorithms (GA) is used to solve the stated EMO 
problem. In GA, a potential solution is denoted as individual, 
and it can be represented by a set of parameters. For this 
application, an individual will represent a feasible control 
sequence Si={Si(k),..,Si(k+Nu-1)}, in which each gen or 
element of the set corresponds to a control action, and the 
length of the individual is given by the control horizon Nu. 
Using GA, the best adapted individuals will be selected with 
greater probability to ensure a good offspring. The best 
parents are then selected and recombined to produce a new 
generation. For the recombination, two fundamental 
operators are used: crossover and mutation. For the crossover 
mechanism, two portions of genes are interchanged with a 
certain crossover probability. The mutation operator 
randomly alters each portion of the individual with a certain 
mutation probability. It is worth to mention that eventually 
unfeasible individuals can be generated, and these could be 
eliminated from the population (abortive strategy) or be kept 
(pro-life) whereas fixing them or penalizing them highly.  

HAPC 
Solution 

u(t) 
Solution 

set 

HAPC-EMO

(1 )
λ
λ

−
−
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At each stage of the algorithm, to find the optimal Pareto set, 
the best individuals will be those who belong to the best 
Pareto set found until the current iteration. This, due to the 
fact that there are solutions which belong to the optimal 
Pareto region but they have not been found yet, and there are 
solutions that seem to belong to the optimal Pareto region, 
but they do not belong because at that stage of the algorithm, 
the Pareto-dominant solution has not been found.  
 
GA has demonstrated to be an efficient algorithm for this 
kind of problem (Sáez et al., 2007). The solution using GA in 
HAPC-EMO gives sub-optimal Pareto fronts, but very close 
to the global optimum. The most important computational 
effort of applying this algorithm is in computing the 
predictions, which are recursively calculated using the model 
and the control action given by the individual. However, by 
tuning the number of individuals and number of generations, 
the computational time can be bounded in order to satisfy a 
time requirement.  

 
4. SIMULATION RESULTS 

In this section we summarize the simulation tests conducted 
to show the HAPC-EMO approach application. A time of two 
representative hours of a labor day (14:00-14:59, 15:00-
15:59) are simulated, over a service urban area of 
approximately 81 km2. A fleet of four vehicles is considered, 
with a capacity of four passengers each. We assume that the 
vehicles travel through a straight line between stops and on a 
transport network that behaves according to an unknown 
speed distribution. We also assume that the future calls are 
unknown for the controller. However, we have historical data 
from where the speed distribution model and typical trip 
patterns can be extracted. The speed distribution and the 
historical data generated by simulation follow the trip 
patterns (arrows) shown in Figure 4 a) and b) respectively. 
From the historical data and the fuzzy zoning method 
proposed in Sáez et al. (2007), the pickup and delivery 
coordinates and probabilities are determined. 
 

 
Figure 4. a) Distribution of speed.  b) Demand and origin-

destiny patterns. 
 
Sixty calls were generated over the simulation period of two 
hours following the spatial and temporal distribution 
observed from the historical data. Regarding the temporal 
dimension, a negative exponential distribution for time 
intervals between calls with rate 2 [call/minute] for both 
hours of simulation was assumed. Regarding the spatial 
distribution, the pick-up and delivery coordinates were 
randomly generated within each zone. The 10 first calls at the 
beginning and the 10 last calls at the end of the experiments 

were deleted from the statistics to avoid boundary distortion 
(warm up period). 50 replications of each experiment were 
carried out to obtain the global statistics. Each replication 
took 20 minutes in average, in a Pentium® D, 2.40Ghz 
processor. The objective function is formulated at two steps 
ahead, considering parameters:  
θv=16,7[$/min], θe =50[$/min], cT=25[$/min], cL=350[$/Km].  
 
The first set of results were of the HAPC approach with 
mono-objective functions, computed for weights λ=1, 0.75, 
0.5, 0.25 and 0, in order to verify that the objectives pursued 
by users and operator are effectively opposite. Table 1 shows 
average values per user or vehicle according to the case, 
computed from the 50 replications experiment.  
 
In order to analyze and evaluate the performance of the 
HAPC-EMO strategies, simulations for two steps ahead 
prediction were performed, under the same conditions. The 
results of 50 replications with GA using 20 individuals and 
20 generations are reported in Table 2, showing the effective 
user waiting and travel time, and the average travel time and 
distance associated with vehicles, for the HAPC-EMO, with 
N=2 and the three criteria of level of service proposed in 
Section 3.1.  

 
Table  1: HAPC with different cost functions 

Weight 
factor λ 

Travel time 
[min/pax] 

Waiting 
time 

[min/pax] 

Time 
travelled 

 [min/veh] 

Distance 
travelled 
[km/veh] 

λ = 0 14.0512 25.3705 82.4936 21.8086 
λ = 0.25 16.2678 12.7871 106.2952 26.8951 
λ  = 0.5 16.4896 10.4631 111.3786 27.4946 
λ = 0.75 15.8964 9.4583 113.7029 28.6032 
λ  = 1 16.2400 8.4579 121.7460 30.8408 

 

Table  2: EMO HAPC with different criteria 
  EMO 
CRITERIA 

Travel 
Time 

[min/pax] 

Waiting 
Time 

[min/pax] 

Time 
travelled 
[min/veh] 

Distance 
travelled 
[km/veh] 

Criterion 1 15.8817 14.9941 94.4766 27.3942 
Criterion 2 15.3825 16.6497 91.7576 26.8549 
Criterion 3 14.8654 18.5962 88.5647 24.1264 

 
Figure 5 shows the global results obtained from both 
approaches: HAPC and HAPC-EMO, detailing the cost 
components to global users and operators using the different 
criteria. Note from Figure 5 that in fact the premise that the 
objectives (users and operator) are opposite is verified at least 
in these simulated examples. The HAPC-EMO approach 
generates a range of non dominated options for the decision 
maker to decide the operation policy in real time with richer 
information, not possible to be provided with a traditional 
HAPC approach. Furthermore, it is possible to add solutions 
under certain criteria (motivated by user level of service as 
well as operation savings). In this work three service level 
criteria were explored. Under criterion 1 we obtained a user 
cost equal to $1014.4 similar to the $1000 constrained by the 
service policy. Under criterion 2 we obtained a user cost 
equal to $1088.86 lower than the $1125 specified in the 
service policy. Finally, under criterion 3 we obtained a user 
cost equal to $1177.7 which is lower than $1250 so the 
service policy is also fulfilled here.  
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Figure 5. Global statistics. HAPC with different lambda 
values and solutions with EMO criteria. 
 

5.    CONCLUSIONS 
This work presents a new approach to solve the DPDP under 
a Hybrid Predictive Control scheme using Evolutionary 
Multiobjective Optimization. We propose three different 
criteria to obtain control actions over real-time routing using 
the dynamic Pareto front. The criteria allowed giving priority 
to a service policy for users, ensuring a minimization of 
operational costs under each proposed policy. The service 
policies are verified approximately in the average of the 
replications. Priorizing is different to penalizing, and under 
an implemented on-line system it is easier and transparent for 
the operator to follow service policies instead of tuning 
weighting parameters dynamically. The multiobjetive 
approach allowed to obtain solutions that are directly 
interpreted as part of the Pareto front instead of results 
obtained with mono-objective functions, which lack of direct 
physical interpretation (the weight factors are tuned but they 
do not allow to apply operational or service policies such as 
those proposed here). Thus, we searched for more generic 
solutions. As further research, provided that the most used 
controllers are not based on EMO, we expect to analyze in 
detail the relation between EMO and HAPC, to determine 
weight factors emulating the behavior of EMO. Besides, the 
sense of applying other service policies will be investigated 
like adding vehicles, and also different algorithms to solve 
the DPDP under EMO will be developed and tested. 
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