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Abstract: A glider flight strategy design problem can be effectively solved within the 
framework of optimal control. Optimality relates to glider characteristics and environmental 
conditions. One is often interested in determining an initial glider altitude position guaranteeing 
that a required destination point is achievable. Another way of posing such a control problem is 
linked with a maximal glider range resulting from given initial and environmental conditions. 
In fact, in practical applications, trying to determine a best flying strategy with the use of 
optimal approaches, we are usually faced with the problem of a large degree of freedom, which 
makes the classical analytical and numerical optimization methods ineffective. In this paper we 
introduce a simple method utilizing a search graph algorithm for the purpose of finding an 
optimal flight trajectory. We discuss the characteristics of this approach and present results of 
optimization performed for a glider manufactured by the PZL Swidnik. Copyright@2008IFAC 
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1. INTRODUCTION 

The issue of optimal glider flight strategy is fairly 
universal when considering all the applications of 
optimization results for soaring competitions. In such 
cases our main goal is to minimize a flight time or to 
maximize a cross-country cruise speed. To achieve 
the goal a pilot has to choose a flight path using 
thermals (rising masses of air) when it is necessary to 
increase its cruise altitude. An important soaring 
parameter is a glide ratio, which should be chosen 
according to the tail winds, head winds and 
horizontal movements of the air. One more task 
concerns course corrections necessary to minimize 
the effect of drifts caused by crosswinds. The most 
familiar flight optimization method is ascribed to 
MacCready. It is so popular that almost every 
guidebook on soaring techniques contains a 
description of this theorem, see e.g. (FAA, 2003). 
However, the MacCready method is used to perform 
rather a local optimization of the flight because it 
answers the questions concerning the problem of 
selecting a glide ratio to assure a best cruise speed 
between thermals in the presence of tail/head and 
lift/sink winds. It is clear that global flight 
optimization requires a more complex approach.  

The nature of the question makes it attractive to be 
applied as an instance for the usage of optimization 
algorithms solving problems with perfect or 
uncertain knowledge about atmospheric conditions. 
A concise survey of such approaches applied to 

optimal soaring has been given by Almgren and 
Tourin (2004). Nevertheless, most of the analytical 
methods (like Pontryiagn’s, Bellman’s, Hamilton-
Jacobi-Bellman, or other methods based on the 
calculus of variation) cannot be directly applied to 
dynamical processes that are described by models 
containing hard nonlinearities (Lewis, 1992) 
characterized by lack of derivatives in some points of 
their functional domains. Another disadvantage of 
the analytical approach is the complexity of symbolic 
transformations necessary to be performed. Even 
though there are a variety of numerical algorithms, 
most of them have disadvantages lying in either local 
convergence (Bertsekas, 2000) or even numerical 
instability (Asher and Petrold, 1997), especially 
when dealing with the so-called stiff ODEs. 

In this paper we concentrate on a deterministic 
problem with a well-defined, time-invariant 
atmospheric model. Such a restrictive assumption 
certainly constrains the potential applicability of the 
presented method. Nevertheless, it appears to be an 
interesting and useful search study. Our principal 
goal is to find a glider flight trajectory in a 3D work 
space that minimizes the total flight time between 
given initial and terminal points.  

Our method is based on the following simple rule. 
First we construct a 3D mesh or graph image of the 
work space using a suitable set of nodes. The sought 
trajectory is represented as a piecewise linear path 
consisted of adjacent line segments (edges), which 
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connect two ‘neighboring’ vertices, being nodes of 
the mesh. The optimal flight trajectory is determined 
by means of the Dijkstra algorithm (Siena, 1997), 
which treats nodes of the graph structure as potential 
vertices. The flow value between selected two nodes 
is proportional to the flight time between the two 
corresponding work points. The graph representation 
has an extra advantage of giving the possibility of 
defining certain zones forbidden for the considered 
flight. They can be applied to portray regions of 
dangerous atmospheric conditions or ground 
obstacles (like mountains), which should be omitted 
during the flight.  

The paper is organized as follows. Section 2 
describes a glider and an environment model. Section 
3 is devoted to a formal description of our method. 
Results of three simulated cases are given in Section 
4. The last section presents the paper conclusions.  
 

2. MODEL DESCRIPTION 

This section presents a model of the assumed shape 
of the ground as well as an atmospheric and a glider 
model. For the sake of clarity, the optimal flight 
trajectory will be sought within a restricted 3D work 
space of the size of (30 km ×  10 km ×  1 km) as 
depicted in Fig.1.  

 
Fig. 1. Work space of the size of (30km ×  10km 

× 1 km) with ground obstacles (gray boxes). 
 

2.1  Ground shape model 

As shown in Fig. 1, we assume that each ground 
obstacle is represented within the ground shape 
model by a cubic box.  

2.2  Atmospheric model 

We presuppose a pretty simple atmospheric model 
with vertically and horizontally moving masses of air. 
The horizontal winds are modeled by the following 
functions: 
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where (.)wxv , (.)wyv  represent the horizontal speeds 
of wind along the respective axes, α , β  are scaling 
coefficients, and h denotes the altitude. The arrows 
shown in Fig. 2 represent the horizontal winds at 

1000=h m. The heights of ground shaping boxes are 
given in square brackets.  
The vertical winds are represented by means of the 
areas of constant speeds of the air mass flow. In Fig. 
2 such air streams for the rising air masses are 
denoted by rectangles filled with ☼, and for the 
descending ones – with . The fixed speeds of the 
vertical winds (in m/s) are given in round brackets.  

 
Fig. 2. Wind representation at km1=h  against the 

ground shape: horizontal winds (arrows) and 
vertical winds (rectangles of a constant 
speed given in round brackets). 

2.3  Glider model 

A major simplification is applied to the model of a 
glider of the type PW-5 “Smyk” (WZL, 1994) whose 
total mass equals 250 kg. In fact, to select its glide 
ratio we analyze only on its pole curve shown in Fig. 
3. This means that no transient effects associated 
with maneuvers, and resulting in actual changes of 
the glide ratio, are taken into account. 

 
Fig. 3. Pole curve for the glider mass of 250kg.  
 

The glider model allows us to determine the flight 
time between two points in the space. In this study 
we recognize two modes of the flight: cruise flight 
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and climbing. Before introducing a flight-time 
calculation procedure let us define three basic 
reference frames: (i) an earth-fixed frame, (ii) a 
heading frame, and (iii) a body frame. With a flat 
flight, assumed for simplicity, the direction h is 
common for all the frames. The superscripts in the 
notation used in Fig. 4 symbolize particular frames.  

 
Fig. 4. Earth-fix, heading and body frames. 
 

The proposed flight-time calculation procedure is 
based on linear approximation of the weather 
conditions between two consecutive points. This 
means that in order to determine the time of the flight 
from a point a to a point b, first we calculate the 
mean values of the horizontal and vertical winds: 
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In the case of climbing we assume that 
0>−= ab

h
ab hhd  and 0>− MINwh sv  for a given 

minimum sinking speed MINs . The flight time from 
a to b is then simply  

                     τ+−= )/( MINwh
h
abab svdt                  (3) 

The constant τ  stands for the time interval of 
changing a cruise flight into climbing, which is 
necessary for the glider to gain the required attitude 
and the minimum sinking speed (Almgren and 
Tourin, 2004).  

Flight time determination for the cruise-flight mode 
is more complex. First, we have to functionally 
approximate the pole curve. By following Almgren 
and Tourin (2004) we have: 
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where (.)s  denotes the glider sink rate (sinking 

speed) function, B
gxv  stands for the absolute value of 

the longitudinal projection of the glider cruise 
velocity E

gv  relative to the earth-frame, 0r  is the 
maximum value of the glide ratio being the ratio of 

0s  to 0v , which are certain parameters relating to the 
sinking speed and the cruise speed, respectively. 
These values can be found in the operation manual of 
aircrafts (see (WZL, 1994) for the PW-5 glider, for 
instance).  

Next, we consider the necessary course correction 
required to take account of the effect of crosswinds.  

Let us introduce the notions of path distance and 
elevation: 
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If there are no crosswinds, the components B
gxv  and 

H
gxv  are equal. In the other cases the crosswind 

component H
wyv . should be compensated, resulting in  
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Considering only positive values of B
gxv  in (4), and 

then in (6), and next sorting w.r.t. H
gxv , we obtain the 

following:  
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subject to:  

        MAX
H
gxMIN

H
gx vvvv ≤≤∧= 0)Im(             (9) 

where whvv += 2
0ηρ  and 00 2 vr η−=λ , whereas 

MINv  and MAXv  stand for the minimum and the 
maximum allowed cruise speed, respectively. 

Once the maximal root H
gxv  of (8) satisfying (9) is 

found, the flight time can be calculated as 

                     H
gx

xy
abab vdt /=                            (10) 

If there is no solution H
gxv  satisfying (9) we simply 

assume that ∞=abt . 
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3. ALGORITHM DESCRIPTION 

While constructing the 3D mesh representation of the 
work space one has to observe specific process 
feasibility constraints. In particular, the distance 
between the mesh nodes in particular directions 
should be consistent with the glide ratio for a given 
glider type.  

Fig. 5 presents an exemplary set of mesh nodes that 
will be used in the illustrative example discussed in 
Section 4. This is a regular structure whose 
horizontal (in the x-y plane) grids of the size 1000 
× 1000 m are placed each 30 m along the axis h. The 
applied ‘safe’ dimensions of the segments were 
chosen according to the optimal glide ratios resulting 
from Fig. 3, which are suitable for the crosswinds ±5 
m/s vertically and ±30 m/s horizontally. 

 
Fig. 5. Exemplary mesh representing a flight 

workspace. 
 

On the basis of the flight workspace mesh, we can 
attempt to seek for an optimal flight trajectory. The 
presented algorithm consists in searching for a piece-
wise linear flight trajectory founded on the mesh. 
Consequently, the vertices of the trajectory found 
represent a sequence of neighboring nodes of the 3D 
workspace. 

For physical reasons, the vertices of the prospective 
trajectory (nodes of the mesh), say a and b, have to 
satisfy the following neighboring restriction: 

21000≤xy
abd m )( ab hh <∧   for cruise flight  (11) 

 

  300 =−∧= ab
xy
ab hhd m  for climb flight     (12) 

There are also other feasibility restrictions 
concerning the existence of possible obstacles. 
Namely, none of the edges connecting any pair of 
trajectory vertices can pass through the areas 
earmarked for obstacles or extremely bad weather 
conditions.  

Definition 1. Optimal flight trajectory 

A piece-wise linear trajectory comprised of the line 
segments (edges) connecting a sequence of the 
trajectory vertices e= },...,,{ 10 naaa  is said to be 
optimal if it satisfies the following condition: 
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where OPTt  is an optimal flight time between 0a  and 

na  points, ),( 1+ii aat  denotes the flight time between 
two consecutive points (vertices), and Θ  denotes the 
set of all possible sequences of neighboring nodes 
(points) having 0a  and na  as the initial and the 
terminal vertex, respectively. 

The arrangement of the workspace points is 
represented in a graph structure, by associating each 
mesh node with a graph vertex, and connecting each 
pair of neighboring vertices by means of an edge, 
whose flow value is proportional to the flight time 
between the points portrayed by these vertices, which 
can be determined by the model prescriptions given 
in Section 2.  

The next step consists in using a graph search 
algorithm, the purpose of which is to find a cheapest 
path between two vertices representing the initial and 
terminal workspace points (and the starting and goal 
positions of the glider). In our design we applied the 
Dijsktra algorithm (Siena, 1997). 

If the optimal flight trajectory does not exist, we 
simply consider that such a terminal point is not 
reachable.  

Clearly, there are applications of the presented 
approach, which may call for some innovations in the 
presented algorithm. For instance, with slight 
modifications this algorithm can be utilized to 
determine the maximum range of the glider for a 
given initial position. In such a case with no terminal 
node being defined the graph search procedure is 
performed until the whole graph is explored. 
Moreover, for the sake of efficiency certain 
simplifications concerning the method of cost 
calculation can be introduced. Nevertheless, such 
deliberations are not considered here due to the 
limited size of this presentation. 
 

4. EXAMPLES 

In this section three examples are presented. The first 
one concerns seeking for the optimal flight trajectory 
based on the atmospheric and glider modeling 
introduced in Section 2. The other two examples 
illustrate the idea of using the presented method to 
determine the area of reachability for the glider 
starting at a given initial position.  
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4.1  Example 1 

Let us consider the problem of finding an optimal 
flight trajectory for the glider PW-5 originated at the 
initial position }270,0,0{0 =a  and landing at the 
required terminal position }0,10000,30000{=na . 
The optimal solution obtained is characterized in 
Figs. 6, 7 and 8.  

 
Fig. 6. Optimal flight trajectory (black solid line) in 

2D for initial (Δ) and terminal points (∇). 
 

 
Fig. 7. Plot of the glider altitude along the route. 
 

Note that the glider starts in the area surrounded by 
the ground obstacles of the height of 800 m. 
Therefore, the nearest thermal is we utilized to 
increase the glider altitude. 

4.2  Example 2 

Let us analyze the issue of determining the maximum 
range of the glider starting from the initial position at 

}1000,0,0{0 =a . This time we assume that there are 
no thermals (see Fig. 9). The results are presented in 
Fig. 10. 

 

Fig. 8. Optimal flight trajectory (shaded solid line) 
in 3D. 

 

 
Fig. 9. Atmospheric conditions for Example 2. 
 

 
Fig. 10. Maximum glider range characterized by 

means of a set of reachable nodes of the 
workspace mesh of Example 1. 

4.3  Example 3 
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Let us reassess the problem of Example 2. This time 
the assumed atmospheric conditions are presented in 
Fig. 11, whereas and the obtained solution is 
portrayed by Fig. 12. 

 
Fig. 11. Atmospheric conditions in Example 3. 
 

 
Fig. 12. Maximum glider range in Example 3 as a 

set of reachable nodes of the workspace. 
 

5. CONCLUSIONS 

This paper presents a research framework and an 
algorithm for optimal flight trajectory planning. 
However, the primary goal of this paper was not to 
present a complex solution for a particular problem 
but to outline the idea of this method. In fact, we are 
concerned about a general problem of utilizing the 
autonomous dynamics of processes to design a safe 
and optimal control strategy. Such a kind of study is 
reported in our recent presentations (Kowalczuk et 
al., 2007; Kowalczuk and Olinski, 2007).  

Since, generally, in the real world, there are no exact 
atmospheric maps, we have assumed a relatively 
straightforward atmospheric model. Even if we were 
able to construct an approximated weather condition 
map, it would be valid practically only for some 

limited time interval. To make the atmospheric 
model more reliable it would also be necessary to 
take into consideration some additional phenomena, 
like reflected winds near the ground obstacles or 
other shapes of thermals imitating the vertical winds.  

Due to the limited capacity of the paper, we have 
omitted the discussion about the efficiency of the 
presented method, which principally depends on the 
applied search graph algorithm. The Dijkstra 
algorithm imposes the complexity of the presented 
approach (which is thus in our case of square order). 
Some clues concerning the possibilities of improving 
the search graph process can be found, for instance, 
in Bertsekas, (1995) and Fredman and Petzold (1987).  
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