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Abstract: Liquid State Machine (LSM) is a newly developed computational model with many 
interesting properties. It has great advantages of dealing with biologic computing when compared to the 
traditional computational model. In this paper, the LSM was used to deal with the direction 
classification problem of the spike series which were distilled from the neurons in motor cortex of a 
monkey. In the output layer, a linear regression and back-propagation are employed as the training 
algorithms. Compare to outcomes of the two algorithms, it is showed that ideal classification results 
were derived when using BP as the training algorithm. 

1. INTRODUCTION 

We may have some ideas that the paralyzed people can 
move as they will by artificial limbs which are controlled 
directly by their minds. It’s a gospel for all the people in 
need around the world. As we know, the neurons deal with 
the biologic information processing in terms of spikes 
(pulse) (Gerstner, 2002), so we may think, can we find the 
relationship between the man’s intention and the spikes of 
the neurons in their brains? Truly, there is a successful trial 
with an owl monkey: several micro-electrodes were inserted 
into the monkey’s motor cortex and about one hundred 
neurons were noted. We can note the spikes while the 
monkey does some arm movements. So, we can distill the 
spikes when monkey do the experiment we order. The 
subsequent work is to analyze the time series of spikes and 
find the relationship of them and the movement direction or 
trajectory. The biologic information is inherently temporal. 
That is to say, we don’t concern the spikes or their numbers, 
but the specific sequence and precise occurrence in time. A 
proper computing tool must be adopted if we want to do a 
more accurate analyzing. 

However, most computational models don’t take the 
temporal aspect into account. The time-dependent temporal 
input must be transform to static numerical input, for 
example, five spikes of a time series is turned to a numeral 
five. Undoubtedly, there is a lot of information lost. 
However, the Liquid State Machine (Maass, 2002a) avoids 
this problem by its computational theory and particular 
structure. What the Liquid State Machine really is? Before 
introducing the LSM, we suppose that one people throw  

 

stones randomly into a pond and another one must judge 
how many stones are dropped and when. If he is 
experienced enough, he can do it because the ripples will 
tell him. And perhaps that’s where the name of LSM comes 
from. When touch the liquid, some information will be left.  

Maass developed the concept of Liquid State Machine and 
claim that it allows for universal real-time computation by 
feeding the input streams into a complex enough recurrent 
neural network. The core of the LSM is the recurrent neural 
network, and the parameters in the network are never being 
trained. Due to its dynamics and short-term memory 
property, it contains enough information of the input 
streams currently and formerly. That is to say, the influence 
of the input fed into the microcircuits last for a while before 
dying out (Maass, 2002b), and this property is called 
‘temporal integration’. What the randomly-made and never-
be-trained networks do is to transform the irregular low-
dimensional temporal input streams into high-dimensional 
‘liquid’ state, which are regular and contain all the 
information of the low-dimensional (Häusler et al.,2003) 
temporal input streams. Then we apply some algorithms to 
transform the ‘liquid’ state to what we need in the output 
layer. This idea is similar to the support vector machine, 
which uses a kernel to project the input data to very high-
dimensional space, in which data can be separated much 
more easily than in original input data space. The 
microcircuit is just the kernel of the LSM, but is not exactly 
the same due to the high-dynamics and short-term memory 
properties of the microcircuit. It can be used in real-time 
computing and most important of all, temporal series 
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computing. So, it is the proper computational tool we adopt 
to do the neural spikes analyzing. 

The LSM is not just a computational powerful model but 
also a biological most plausible model so far. Thus, it 
provides a hypothesis for computing in neural system. 
Some anatomical discovery find that in the cortex of many 
different creatures, from low-grade to high-grade, some 
recurrent neural structure exists which resembles the 
structure of microcircuit in LSM. From the evolutional 
point of view, this may imply that this kind of microcircuit 
has powerful computational ability, because after millions 
year of evolution, this kind of structure remains.  

The whole paper is arranged as follow. After the 
introduction, we give the definition and structure of the 
LSM. Section 4 details the experiment setup and Section 5 
contains the results. After this, we draw some conclusions. 

 

2. DEFINITION OF THE LSM 

The reservoir or the microcircuit, which we call to the core 
of the LSM, can be any type of network that has enough 
internal dynamics. If we use a recurrent analog neural 
network, it is called echo state machine (Matthias et al., 
2005) and it can deal with the continuous input streams. It 
also can be a bucket filling with water, which has been 
applied to a XOR (Fernando, 2003) problem because the 
ripples can also note the dynamics. The most commonly is, 
which will be using in this article, the Spiking Neural 
Network (Maass, 1997) whose neurons are set in a spacial 
array as a recurrent neural network. It can deal with the 
spikes of time series and is the most biologically alike. A 
schematic structure of LSM is shown in Fig.1 .We assume 
that, in order for the microcircuit to map the input stream 

( )u i  to the output stream ( )y i , the microcircuit generates 
the internal liquid state ( )Mx t which is generated by u(s) for 
s t≤ , and it consists of analogue values and may change 
continuously over time. The liquid state is not designed for 
a specific task. The internal state ( )Mx t  is the output of the 
liquid circuit ML  fed by the input stream ( )u i . In 
mathematical term as: 

( ) ( )( )M Mx t L u t=                                         (1) 
In this experiment, the circuit composes of spiking neurons. 
And we need another memory-less readout Mf map the 

( )Mx t  to the ( )y t we need. 

( ) ( ( ))M My t f x t=                                        (2) 

Different from the liquid circuit ML , the readout filter Mf  
is design for a specific task we order. Formally, there are 
many kind of readout units or algorithms can be applied. 
Perceptrons with threshold gates, linear regression, back-
propagation, P-delta rules and many others. Another 
obvious virtue of the LSM is that it allows multi-task in the 
same time (Harald et al., 2007), that is to say, for the same 
microcircuit, different readout units with different 

algorithms will map the internal state ( )Mx t  to different 
output y(t) we need. 

 

 

Fig. 1  Schematic structure of the LSM 

Figure 1 gives a schematic structure of the LSM. Where, the 
neural input ( )u i is fed into the ML , and the ( )Mx t defines 
the internal state and the output layer Mf generates the 
output ( )y t we need (Harald et al., 2007). 

 

3. STRUCTURE OF THE LSM 

In this paper, spiking neurons are used to construct the 
microcircuit. The internal states ( )Mx t  which is driven by 
the spike trains from the motor cortex of the monkey is 
defined as the membrane potentials of the neurons within 
the microcircuit, and it is determined by all the current and 
former input series. The basic guideline of the LSM for 
solving problems is that we don’t try to train the internal 
weights of the microcircuit but only train the weights of 
readout neurons. This makes the process of training much 
easier. In most cases, just simple algorithms can be used to 
adjust the weights of readout neurons. 

The structure of a LSM can be organized as input layer, 
microcircuits and output layer. Formally, the liquid circuit 
is set in a 3D space. The number of neurons in x , y  and z  
axis is xn , yn zn , and they are chosen as we will, decided 
by the scale of the task we deal with. With the biologic 
resemblance some neurons of the liquid circuit are chosen 
as inhibitory. The probability of a connection between two 
neurons i and j within the microcircuit is decided by 
(Schwartz et al., 1997): 

2( , )/( , ) eD i jp i j c λ= ⋅                             (3) 

Where, ( , )D i j  is the Euclidean distance between the two 
neurons in the microcircuit, λ  is an important parameter 
that determines the number and range of the connections in 
the microcircuit. c  is a parameter depending on the type of 
the connecting of the two neurons (excitatory or inhibitory), 
so there are four possible values for c  in a liquid circuit 
(II,IE,EI,EE where E denotes excitatory neuron and I 
denotes inhibitory neuron). 
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In the liquid circuit the neuron commonly is chosen as 
standard Leaky Integrate-and-Fire model which connect 
each other with dynamic synapses. The spikes are changed 
to currents by a filter when pass a synapse to another 
neuron approximated by the equation as follow: 

syn- /τ( ) e ti t ω= ⋅                                      (4) 

Where, ω  is a synaptic weight and synτ  is synaptic time 
constant. The neuron accepts currents from all synapses    
(Abbot and Nelson, 2000) connected to it and the 
membrane potential alters after this equation: 

( ) ( )m
u u t RI t
t

τ ∂
= − +

∂
                                 (5) 

The mτ  is the membrane time constant which defines the 
speed that the voltage ‘leaky’ away. The neuron fires once 
the voltage cross the determinate threshold θ .The R is 
resistance constant typically set to be 1 MΩ .The membrane 
potential as internal state is what we need. 

 

4. EXPERIMENTAL SETUP 

The spiking data for this experiment are noted from about 
324 trials in one day with a monkey. The monkey was 
trained to move its right arm to the eight targets labeled as 1 
to 8 in a 3D imaginary cube after some signals, see Fig.3. 
When it finished the trail and reached the target 
successfully, it would get some award. We got 43 spike 
trains of neurons in 324 trails all together (with some trails 
failed). What we need to do is to predict the target the 
monkey reaches by analyzing the spike trains we noted 
from the 43 motor cortex neurons. 43 neurons’ spike trains 
are treated as inputs and the back-propagation and linear 
regression algorithm are employed to train the readout layer. 
For the simulation of training and testing we use the neural 
circuit simulator CSIM .The liquid circuit is composed of 
Leaky Integrate-and-Fire neurons, which is shown in Fig. 2, 
and the parameters are shown in Table 1 and Table 2. 

 

Table 1. parameters of the dynamic spiking synapse 

 

Table 2. parameters of the Leaky integrate-and-Fire neuron 

 

 

Fig. 2. Schematic diagram of leaky-integrate-and fire model  

In Figure 2, a spike is transformed to I (t) first then is sent 
to the neuron. The model is the RC circuit. The current I (t) 
charges the mC with a delay time, whose initial voltage is 

initV , if the voltage exceeds the threshV  then a spike sent out. 
After this the voltage comes back to resetV . 

The monkey moves a cursor from the center to one of eight 
targets in a 3D imaginary cube. It is shown as figure 3. The 
3D position of the cursor is determined by the position 
sensor taped to the monkeys’ wrist. The cursor and targets 
are shown with dotted outlines in the monkey's workspace, 
but do not physically exist. 

 

Fig.3. the eight directions adopted in this experiment. 

The result is shown as figure 4. They are nine randomly 
chosen neurons of the liquid circuit in one training process. 
Formally, the membrane potential of one neuron change 
when a spike comes, the neurons interact within themselves. 
When the membrane potential crosses the threshold, it fires 
a spike. The membrane potentials can be chosen as the 
internal liquid state ( )Mx t . 

5. RESULT 

Three neurons exist in readout layer because we just need to 
know the one of eight directions numbered as 1 to 8 
(defined as 000-111). And the readout neurons just need to 
export an analog number to define the direction. If the  

Wmean Umean Fmean Dmean U0 R0 Delay

0.5 0.2 0.3 1.0 0.2 1.0 0.001

Cm/mF Rm
/ MΩ  threshV /V resetV /V restingV /V

0.03 1 0.015 0.005 0 

initV /V injectI /mA noiseI /mA refractT /s 

0.001 0.002 0 0.003 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9598



 
 

     

 

 

 

 

 

 

 

 

 

 
. 
 
 

Fig.4: schematic membrane potentials changing as experiment going on 

analog number is just in the threshold (we set it as 0.1) of  
the right direction the test data come from, we say it is a 
successful direction. The training algorithms are back-
propagation with a hidden layer and linear regression. Due 
to the convergence rate and other consideration, we just 
distill membrane potentials of eight neurons in the liquid 
pool and eight potential data of each neuron as the liquid 
state in the processing of simulation. So one spike trains set 
of the 43 neurons is projected in the microcircuit to a high-
dimension of 64 numerical data.  

When all of the parameters are set already, simulations were 
carried out with the CSIM tool. Apart from the unsuccessful 
trials, there are 295 groups of spike trains available distilled 
from the monkey. Some of them are used to train the LSM 
and the left to test. In the microcircuit, the membrane 
potentials were chosen as the liquid state (see as Fig.4). As 
the number of training set gets larger, the error rate gets 
smaller. At last error rate can be less than 10% using back-
propagation, (see as Fig.5), that is to say, more than 90% of 
testing data are successful. Before apply the LSM as the 
computation model, we have been trying all kinds of 
algorithms and computation model to this classification  
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(b) error of linear regression 

Fig.5: the testing error rate of the two algorithms as the 
training set get larger. 

problem, except for the support vector machine, the effect 
of other algorithms are not so ideal. The accuracies of the 
classification are all around 40% to 50% (Fang, 2006). It 
also can be seen that the linear regression is not suitable for 
the biological problem for the error rate is around 70%. 
That is because the biologic prototype is a nonlinear model 
and when the spike train are projected to the high-
dimensional space, they are still nonlinear, so it can’t be 
described by the linear model. 

6. CONCLUSION 

In this paper we introduced a new computational model: the 
Liquid State Machine, and apply it to a classification 
problem of spike trains that recorded from the motor cortex 
of the monkey. The advantage of the LSM is that it can 
project the input data into a high-dimensional space of data 
so just very simple algorithms can absorb the temporal 
information of the input data, so it can easily classify the 
input information. There is a randomly-made and never-
trained circuit called liquid circuit. It is the core of the LSM. 
It can store the nonlinear and temporal information of the 
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input data. If there are enough neurons in the liquid circuit, 
no nonlinearity can hide in the input sequence. 

Another virtue is that the LSM allow parallel computing 
with the same circuit, since the microcircuit is not task-
specific. With the same input data, we can distill different 
information with different readout in the same time. It is 
also  

powerful for its real-time computing ability. The liquid 
circuit is a recurrent neural network and is a memory-fading 
circuit. The liquid state ( )Mx t  reflects the input data 
currently and historically. In all, the Liquid State Machine 
is a promising real-time and nonlinear computational model, 
and it will be applied to all kinds of field comprehensively 
in the near future. 

The next work will be the trajectory simulation of the 
monkey’s right wrist. Finally, our goal is to distill the 
spiking data from our motor cortex with safe equipment and 
find the relation between the spiking data and the trajectory 
of our arms or legs. So, thousands of people in the world 
who are in need will get help by artificial limb because they 
can control the artificial limb by their mind, just like the 
artificial limb is part of their body. We strongly think that 
this day will come in near future. 

ACKNOWLEGMENTS 

This work is supported in part by National Nature Science 
Foundation of China under Grant 60674105, Doctor 
Foundation of Ministry of Education of China under Grant 
20050487013 and Nature Science Foundation of Hubei 
Province of China under Grant 2007ABA027. Authors also 
want to express their appreciation to Prof. Jiping He and the 
Center for Neural Interface Design of the Biodesign 
Institute at Arizona State University of USA for the data 
provided from their experiments. 

 

REFERENCE 

Abbot L.F.,Nelson S.B. (2000), Synaptic plasticity: taming 
the beast, Nature Neuroscience, Vol. 3:1178-1183  

C.Fernando (2003). Pattern recognition in a bucket: a real 
liquid brain. Lecture Notes on Computeing Science, 
2801, pp. 588-593 

D.Verstraeten,B.schrauven, Stroobandt, J. Van. 
Campenhout (2005), Isolated word recognition with 
the Liquid State Machine: A case study, Information 
Processing, Vol. 95, No. 6, pp.521-528 

Fang huijuan, Wang Yongji, Huang J. and He J.P.(2006) 
Multi-class support vector machines for brain neural 
signals recognition, Proc. of 6th World Congress on 
Intelligent Control and Automation, Vol. 2, pp. 9940-
9944 

Gerstner W (2002). Spiking Neuron Models, pp. 23-25, 
Cambridge University Press, Cambridge 

Harald B., Mark K., Alexander Leopold (2007), Movement 
prediction from real-world images using a liquid state 

machine Applied, Intelligence, Vol. 26, No. 2, pp.99-
109 

Häusler S.,Markram H.,Maass W(2003). Perspectives of the 
High Dimensional Dynamics of Neural Microcircuits 
from the Point of View of Low Dimensional 
Readouts, complexity, Vol. 8, No. 4, pp. 9-50 

Maass W (1997), Networks of Spiking Neurons: The Third 
Generation of Neural Network Models, Neural 
Networks , No. 10, pp. 1659-1671  

Maass W., Natschlager, H.Markram (2002a), Real-time 
computing without stable states: A new framework 
for   neural computation based on perturbation, 
Neural Computing, Vol.14, No.11, pp.  2531-2560 

Maass (2002b), Liquid Computing, Neural Computation, 
Graz University Press, Graz, Austria 

Matthias S, Paul G. Ploger. (2005) Echo State Network 
used for motor control, Proceedings of the 2005 IEEE 
International Conference on Robotics and 
Automation Barcelona, Vol.1, pp.  1953-1958 

Miguel A.L. Nicolelis and John K. Chapin (2002). 
Controlling Robots with the Mind in: Scientific 
American Magazine, Vol. 287,  pp.  46-53 

Schwartz Doron Tal, Eric L (1997).Computing with the 
leaky integrate and fire neuron: logarithmic 
computation and multiplication, Neural Computation, 
Vol. 9, pp.  305 – 318 

Vreeken J. (2004) On real-world temporal pattern 
recognition using Liquid State Machines, Utrecht 
University Press, Utrecht  

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9600


