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Abstract: The output feedback stabilizability problem of a class of uncertain switched systems
is investigated using sliding mode control and a synthesis design solution derived. Firstly, a
common sliding surface is constructed such that the system restricted to the sliding surface is
asymptotically stable and completely invariant to matched and mismatched uncertainties under
arbitrary switching. Secondly, static and dynamic output feedback variable structure controllers
are designed that can drive the state of the switched system to reach the common sliding surface
in finite time and remain them thereafter. A illustrative example is given to demonstrate the
effectiveness of the proposed method.

1. INTRODUCTION

Switched systems represent one of the most active topics
research recently. For, these are an important class of
hybrid systems that are consist of a family of subsystems
and a switching law specifying at each instant of time
which of the subsystems is activated along the system tra-
jectory. Switched systems are an appealing class of systems
for both theoretical investigation as well as development
of practical applications. To switching between different
internal or external system structures appears an essential
feature of many systems, for instance, power systems and
power electronics (Williams, Hoft [1991]).

A great deal of the research carried out recently has
been devoted to stability analysis and synthesis design of
switched systems (Mancilla-Aguilar, Garcia [1999], Zhao,
Dimirovski [2004]) with the goal to achieve either asymp-
totic or quadratic stability. Asymptotic stability of a
switched system under arbitrary switching law is a most
desirable property, which may be guaranteed by a common
Lyapunov function shared by subsystems (Liberson, Morse
[1999]). There exist a number of ways to have a common
Lyapunov function. For example, when two stable matrices
are commutative, it was proved in Narendra, Balakrish-
nan [1994] that they share a common Lyapunov function.
Existence conditions for a common Lyapunov function
were also studied in Cheng, Gao, Huang [2003], Liberson,
Hespanhan, Morse [1999], Vu, Liberzon [2005].
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On the other hand, handling uncertainties is one of the key
issues too in the study of switched systems. Robust control
and stabilization of uncertain switched linear systems
are addressed on the grounds of the multiple Lyapunov
function approach in Ji, Wang, Xie [2006]. Sun [2004]
addressed robustness issues for a class of switched linear
systems with perturbations, and proposed a state feedback
switching law with a non-zero level set.

Over the years, much attention has been pain to investi-
gate sliding mode control of uncertain systems without
switching in the essential meaning work (Choi [2003],
Shyu, Tsai, Lai [2001], Choi [2002], Goncalves [2001],
Goncalves [2003]). However, due to of the complexity of
the systems themselves and the excess burden of design,
there are no results for output feedback sliding mode
control of switched systems in the current literature.

In this paper, we consider the output feedback sliding
mode control problem for a class of uncertain switched
systems. A co-ordinate transformation matrix is defined
to change the system into the regular form. Using the
output information, we construct a common sliding surface
in terms of constrained LMIs, such that the equivalent
sliding mode dynamics restricted to the common sliding
surface is asymptotically stable and completely invariant
to matched and mismatched uncertainties under arbitrary
switching. Static and dynamic output feedback variable
structure controllers are given that can drive the state of
the switched system to reach the common sliding surface
in finite time and maintain it thereafter. A numerical ex-
ample shows the effectiveness of proposed design method.
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Throughout this paper, ‖ · ‖ denotes the Euclidean norm
for a vector or the matrix induced norm for a matrix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following uncertain switched system
ẋ(t) = Aσx(t) + ∆Aσx(t) + B[uσ(t)

+ Zσ(t)uσ(t) + fσ(x, t)],
y(t) = Cx(t),

(1)

where x(t) ∈ Rn is the system state, σ : [0,∞) → Ξ =
{1, 2, . . . , l} is the piecewise constant switching signal that
might depend on time t or state x, ui ∈ Rm is the control
input of the i−th subsystem, y(t) ∈ Rp is the measurement
output, Ai, B, C are constant matrices with appropriate
dimensions, 4Ai, Zi(t), fi(x) represent the system param-
eter uncertainty, input matrix uncertainty and nonlinear-
ity of the system, respectively. The following assumptions
are introduced.
Assumption 1. rank(B) = m and rank(C) = p with
m ≤ p < n.
Assumption 2. The parameter uncertainties can be com-
posed as follows

4Ai = DΣi(t)E, i ∈ Ξ,

where D and E are known constant matrices with appro-
priate dimensions, Σi is unknown matrices with Lebesgue
measurable elements and satisfy ΣT

i Σi ≤ I.
Assumption 3. There exist known nonnegative constants
ϕi, i ∈ Ξ such that ‖Zi(t)‖ ≤ ϕi < 1 for all t.
Assumption 4. There exist known nonnegative constants
bi, i ∈ Ξ and known nonnegative scalar-valued functions
ρi(y, t), i ∈ Ξ such that ‖fi(x, t)‖ ≤ ‖bi‖+ ρi(y, t).

Remark 1. Assumptions 1∼4 are standard assumptions
in the study of variable structure control.

The common sliding surface is defined as follows
ζ(t) = Fy(t) = FCx(t) = Sx(t) = 0. (2)

The object of design is to determine matrices F, S and vari-
able structure controllers ui, i ∈ Ξ for arbitrary switching
signal such that:
1). the equivalent sliding mode dynamics restricted to
the common sliding surface (2) is asymptotically stable
and completely invariant to any uncertainties satisfying
Assumptions 2-4;
2). the common sliding surface (2) can be reached in finite
time.

In the derivations that follow, the following presented
lemmas will be needed.
Lemma 1. Let real-valued matrices Ā, H̄, F̄ (t), and Ē of
appropriate dimensions be given and suppose F̄T (t)F̄ (t) ≤
I. Then
(i) (Petersen [1987]). For any positive scalar ϑ, it holds

H̄F̄ (t)Ē + ĒT F̄T (t)H̄T ≤ ϑH̄H̄T +
1
ϑ

ĒT Ē.

(ii) (Wang, Xie, Souza [1992]). For any matrix P0 > 0 and
scalar γ0 > 0 such that P0 − γ0H̄H̄T > 0, it holds

(Ā + H̄F̄ (t)Ē)T P0(Ā + H̄F̄ (t)Ē) ≤
ĀT (P0 − γ0H̄H̄T )−1Ā + γ−1

0 ĒT Ē.

Lemma 2 (Iwasaki, Skelton [1994]). Let matrices
B̄ ∈ Rn×m and Q̄ ∈ Rn×n be given. Suppose rank(B̄) < n

and Q̄ = Q̄T . Let (B̄R, B̄L) be any full rank factor of B̄,
i.e. B̄ = B̄LB̄R, and define D̄ := (B̄RB̄T

R)−1/2B+
L . Then

φB̄B̄T − Q̄ > 0
holds for some φ ∈ R if and only if

P̄ := B̄⊥Q̄B̄⊥T < 0
holds, in which case, all such φ are given by

φ > φmin := λmax{D̄(Q̄− Q̄B̄⊥T P̄−1B̄⊥Q̄)D̄T }.

Lemma 3. Assume C ′ ≥ 0, r(t), h(t) and g(t) nonnegative-
valued continuous functions of time. If

r(t) ≤ C ′ +

t∫
t0

h(τ)r(τ)dτ +

t∫
t0

g(τ)dτ ,

then

r(t) ≤ C ′ exp(f(t)) +

t∫
t0

g(τ) exp{f(t)− f(τ)}dτ ,

where f(t) =
∫ t

t0
h(τ)dτ .

Proof of Lemma 3 is similar to that of Lemma in Shyu,
Tsai, Lai [2001], and therefore omitted.

3. MAIN RESULTS

In this section, we give the design method. The design
procedure is divided into two phases. First, the sliding
surface is designed, so that the controlled system will yield
the desired dynamic performance in the sliding surface.
The second phase is to design the variable structure
controllers such that the trajectory of the system arrive
and remain on the sliding surface for all subsequent time.

3.1 Design of a common sliding surface

Refer to paper Choi [2003], we define an symmetric matrix
Γ satisfying

Γ =
{

I, ifB̃T D = 0,

I − EgE, ifB̃T D 6= 0,
(3)

where B̃ is an orthogonal complement of the matrix B ,
Eg is the Moore-Penrose inverse of the matrix E.
We design the common sliding surface for the system (1)
as

ζ(t) = Sx(t)
= BT (ΓXΓ + BY BT )−1x(t) = 0,

(4)

where X and Y are symmetric matrices which will be
determined later.

Theorem 1. If there exist matrix F and symmetric
matrices X and Y satisfying the following constrained
LMIs

ΓXΓ + BY BT > 0,

B̃T (AiΓXΓ + ΓXΓAT
i )B̃ < 0, i ∈ Ξ,

BT (ΓXΓ + BY BT )−1 = FC.

(5)

Then the system (1) is asymptotically stable and com-
pletely invariant to matched and mismatched uncertain-
ties for arbitrary switching signal on the common sliding
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surface (4).
Proof. To get a regular form of the system (1), we define a
nonsingular matrix G and an associated vector ξ as follows:

G =
[

B̃T

S

]
=

[
B̃T

BT P−1

]
(6)

and

ξ(t) =
[

ξ1

ξ2

]
= Gx(t) =

[
B̃T

BT P−1

]
x(t), (7)

where ξ1 ∈ Rn−m, ξ2 ∈ Rm and P = ΓXΓ + BY BT . It is
easy to see that the matrix G is invertible with

G−1 =
[
PB̃(B̃T PB̃)−1 B(SB)−1

]
. (8)

Via the state transformation (7), the system (1) is trans-
formed into the following regular form[

ξ̇1

ζ̇

]
=

[
Āσ11 Āσ12

Āσ21 Āσ22

] [
ξ1

ζ

]
+

[
0

SB

]
(uσ(t)

+ Zσuσ(t) + fσ(x, t)),
(9)

where
Āσ11 = B̃T [Aσ + DΣσ(t)E]PB̃(B̃T PB̃)−1,
Āσ12 = B̃T [Aσ + DΣσ(t)E]B(SB)−1,
Āσ21 = S[Aσ + DΣσ(t)E]PB̃(B̃T PB̃)−1,
Āσ22 = S[Aσ + DΣσ(t)E]B(SB)−1.
The system (9) implies that if ζ = ζ̇ = 0 then the dynamics
restricted to the sliding surface (4) can be described by the
following (n−m) dimensional switched system

ξ̇1 = B̃T AσPB̃(B̃T PB̃)−1ξ1

+ B̃T DΣσ(t)EPB̃(B̃T PB̃)−1ξ1.
(10)

For the case when B̃T D = 0 , i.e., the uncertain DΣiE
satisfy the matched condition, we have

Γ = I, P = X + BY BT > 0.

There B̃T PB̃ = B̃T XB̃ > 0. Then the system (10) can be
reduced to the following form

ξ̇1 = B̃T AσPB̃(B̃T PB̃)−1ξ1

= B̃T AσXB̃(B̃T XB̃)−1ξ1.
(11)

Hence the LMIs (5) imply that there exists a common Lya-
punov function V1 = ξT

1 (B̃T XB̃)−1ξ1 for all subsystems
of system (11). Therefore the system (1) is asymptotically
stable and completely invariant to matched uncertainties
for arbitrary switching signal on the sliding surface (4).
On the other hand, if B̃T D 6= 0 , i.e., the uncertain DΣiE
does not satisfy the matching condition, we have

Γ = I − EgE,
P = (I − EgE)X(I − EgE) + BY BT > 0.

(12)

There EPB̃ = E[(I −EgE)X(I −EgE) + BY BT ]B̃ = 0.
Then the system (10) can be represented by means of
equation

ξ̇1 = B̃T AσPB̃(B̃T PB̃)−1ξ1

= B̃T Aσ(I − EgE)X(I − EgE)B̃
× [B̃T (I − EgE)X(I − EgE)B̃]−1ξ1.

(13)

Hence the LMIs (5) imply that there exists a common Lya-
punov function V2 = ξT

1 (B̃T (I −EgE)X(I −EgE)B̃)−1ξ1

for all subsystems of system (13). Therefore the sys-
tem (1) is asymptotically stable and completely invariant
to matched and mismatched uncertainties for arbitrary
switching signal on the sliding surface (4). This completes
the proof.

Remark 2. The solvability of (5) can be checked by the
method in Galimidi, Barmish [1986].
Remark 3. We can see that by using the sliding mode
control method, uncertainties 4Ai and fi disappear in the
sliding motion (11), (13) and the order of the considered
system (1) is reduced. Therefore we only need to study
stability of the (n − m) switched system (11) and (13)
without uncertainties.

3.2 Design of static output feedback variable structure
controllers

We now turn to the design of variable structure controllers
of subsystems by using reachability condition of sliding
surface. We assume that only the measurement output y
rather than the state x is available for our design.
Theorem 2. Suppose (5) have solutions X , Y , F and the
common sliding surface is given by (4). Then the state of
the system (1) can enter the sliding surface in finite time,
and subsequently remain on it by employing the following
static output feedback controllers

ui = −γiζ −
1

1− ϕi
(ρi(y, t) + η)sign(ζ), i ∈ Ξ, (14)

where η is a positive scalar, γi = 1
2(1−ϕi)

( b2i
εi

+ βi), εi are
positive constants such that

εiB̃
T P 2B̃ < −B̃T (AiP + PAT

i )B̃, (15)

βi are positive constants such that

βi =



λmax[(BT B)−1BT (Wi + DDT + PET EP

−WiB̃(B̃T WiB̃ + τiB̃
T PET EPB̃)−1B̃T Wi

+
1
τi

DDT )B(BT B)−1], ifB̃T D = 0

λmax[(BT B)−1BT (Wi + DDT + PET EP

−WiB̃(B̃T WiB̃ + τiB̃
T DDT B̃)−1B̃T Wi,

+
1
τi

PET EP )B(BT B)−1], ifB̃T D 6= 0

(16)

τi are small positive constants such that B̃T WiB̃ +
τiB̃

T PET EPB̃ < 0, ifB̃T D = 0, and B̃T WiB̃ +
τiB̃

T DDT B̃ < 0, ifB̃T D 6= 0, where Wi = AiP + PAT
i +

εiP
2.

Proof. If (5) is feasible, then there always exist positive
constants εi satisfying (15). Consider the following Lya-
punov function

V = xT P−1x. (17)

Then the derivative of the Lyapunov function (17) along
the trajectory of the system (1) is

V̇ = 2xT P−1(Aix(t) + ∆Aix(t) + Bui(t)
+ BZiui(t) + Bfi(x, t)). (18)

Substituting (14) into (18), one can get
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V̇ = xT P−1(AiP + PAT
i )P−1x− 2γix

T P−1BBT P−1

× x− 2
1− ϕi

(ρi(y, t) + η) ‖ζ‖+ 2xT P−1DΣiEx

+ 2xT P−1BZiui + 2xT P−1Bfi.

(19)

Using (14) and ζ = BT P−1 , we obtain

2xT P−1BZiui ≤ 2ϕi(γi ‖ζ‖+
ρi + η

1− ϕi
) ‖ζ‖ (20)

and
2xT P−1Bfi

≤ b2
i

εi
xT P−1BBT P−1x + εix

T x + 2 ‖ζ‖ ρi(y, t)

≤ b2
i

εi
‖ζ‖2 + εix

T x + 2 ‖ζ‖ ρi(y, t).

(21)

Let it be denoted
Ŵi = AiP + PAT

i + DΣiEP + PET ΣT
i DT + εiP

2.

Then we have
V̇ ≤ xT P−1(Ŵi − βiBBT )P−1x− 2η ‖ζ‖ . (22)

It can be shown fairly easy that

B̃T ŴiB̃ = B̃T (AiP + PAT
i + DΣiEP

+ PET ΣT
i DT + εiP

2)B̃
= B̃T (AiP + PAT

i + εiP
2)B̃

= B̃T WiB̃.

(23)

From Lemma 1, condition (i) we find

Ŵi = AiP + PAT
i + DΣiEP + PET ΣT

i DT + εiP
2

≤ AiP + PAT
i + DDT + PET EP + εiP

2.
(24)

Using Lemma 1, condition (ii), if B̃T D = 0 , then one can
finds

−ŴiB̃(B̃T WiB̃)−1B̃T Ŵi

= −(WiB̃ + DΣiEPB̃)(B̃T WiB̃)−1(B̃T Wi

+ B̃T PET ΣT
i DT )

≤ −WiB̃(B̃T WiB̃ + τiB̃
T PET EPB̃)−1B̃T Wi

+
1
τi

DDT ,

(25)

and if B̃T D 6= 0 , then one finds

−ŴiB̃(B̃T WiB̃)−1B̃T Ŵi

= −(WiB̃ + PET ΣT
i DT B̃)(B̃T WiB̃)−1

× (B̃T Wi + B̃T DΣiEP )
≤ −WiB̃(B̃T WiB̃ + τiB̃

T DDT B̃)−1B̃T Wi

+
1
τi

PET EP.

(26)

It follows from Lemma 2 that Ŵi − βiBBT < 0 holds,
which in turn yields V̇ < 0.
Now we introduce another Lyapunov function as follows

Vs = ζT (BTP−1B)−1ζ. (27)

Then its time derivative along the trajectory of the system
(1) is

V̇s ≤ ‖ζ‖ {2(
∥∥(BT P−1B)−1BT P−1Ai

∥∥
+

∥∥(BT P−1B)−1 BT P−1D
∥∥ ‖E‖+ bi) ‖x‖ − η}. (28)

Next we define the set
Θs = min{x ∈ Rn : 2(

∥∥(BT P−1B)−1BT P−1Ai

∥∥
+

∥∥(BT P−1B)−1 BT P−1D
∥∥ ‖E‖+ bi) ‖x‖

− η < −η̄, i ∈ Ξ}
(29)

with 0 < η̄ < η . Notice that V̇ < 0 implies the system (1)
with the controllers (14) is asymptotically stable under
arbitrary switching, thus, the state of the system (1) in
finite time will come into the domain in which the following
inequality holds

V̇s ≤ −η̄‖ζ‖. (30)

Therefore, the state of the system (1) will enter the
common sliding surface (4), and remain on it subsequently.
This completes the proof.

3.3 Design of dynamic output feedback variable structure
controllers

The static output feedback variable structure controllers
(14) are simple in structure yet imply high control efforts
thus may not be acceptable or be costly. For this reason, we
also introduce dynamic output feedback which are complex
in structure but imply lower control efforts Choi [2002],
Shyu, Tsai, Lai [2001].
The following lemma is important to develop results of
dynamic output feedback variable structure control.
Lemma 4. Consider the first equation of system (9)

ξ̇1 = Āσ11ξ1 + Āσ12ζ

= B̃T [Aσ + DΣσ(t)E]PB̃(B̃TPB̃)−1ξ1

+ B̃T [Aσ + DΣσ(t)E]B(SB)−1ζ.

(31)

Then, for all time ‖ξ1‖ is bounded by w(t) which is the
solution of

ẇ(t) = λw(t) + (GM +
∥∥∥B̃T D

∥∥∥∥∥EB(SB)−1
∥∥) ‖ζ‖ (32)

with λ = λ̄ +
∥∥∥B̃T D

∥∥∥∥∥∥PB̃(B̃T PB̃)−1
∥∥∥ < 0, GM =

max{
∥∥∥B̃T AiB (SB)−1

∥∥ , i ∈ Ξ}, where λ̄ = max{λimax, i

∈ Ξ}, λimax is the maximum eigenvalue of B̃T AiPB̃(B̃T P

× B̃)−1.
Proof. Denote Ĝ1 = PB̃(B̃T PB̃)−1, Ĝ2 = B(SB)−1. We
have exp(B̃T AiĜ1t) < exp(λ̄t). Suppose i− th subsystem
is active for the j− th time in the interval [tij , t

i
j′). Solving

(31) yields

‖ξ1‖ ≤
∥∥∥eB̃T AiĜ1(t−ti

j)
∥∥∥∥∥ξ1(tij)

∥∥ +

t∫
ti
j

eB̃T AiĜ1(t−τ)

×
∥∥∥B̃T DΣi(t)EĜ1ξ1 + B̃T AiĜ2ζ

+B̃T DΣi(t)EĜ2ζ
∥∥∥ dτ

≤ exp(λ̄(t− tij))
∥∥ξ1(tij)

∥∥ +

t∫
ti
j

exp(λ̄(t− τ))

× (
∥∥∥B̃T D

∥∥∥∥∥∥EĜ1

∥∥∥ ‖ξ1‖+ (
∥∥∥B̃T AiĜ2

∥∥∥
+

∥∥∥B̃T D
∥∥∥∥∥∥EĜ2

∥∥∥) ‖ζ‖)dτ.

(33)
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Multiply the term exp(−λ̄(t − tij)) to both sides of (33)
gives rise to

‖ξ1‖ exp(−λ̄(t− tij))

≤
∥∥ξ1(tij)

∥∥ +

t∫
ti
j

exp(−λ̄(τ − tij))
∥∥∥B̃T D

∥∥∥
×

∥∥∥EĜ1

∥∥∥ ‖ξ1‖ dτ +

t∫
ti
j

exp(−λ̄(τ − tij))

× (
∥∥∥B̃T AiĜ2

∥∥∥ +
∥∥∥B̃T D

∥∥∥∥∥∥EĜ2

∥∥∥) ‖ζ‖ dτ

(34)

Let it be denoted:r(t) = ‖ξ1‖ exp(−λ̄(t − tij)), C ′ =∥∥ξ1(tij)
∥∥, h(t) =

∥∥∥B̃T D
∥∥∥∥∥∥EĜ1

∥∥∥, g(t) = exp(−λ̄(t −

tij))(
∥∥∥B̃T AiĜ2

∥∥∥ +
∥∥∥B̃T D

∥∥∥∥∥∥EĜ2

∥∥∥) ‖ζ‖, f(t) =
∫ t

ti
j

∥∥∥B̃T D
∥∥∥

×
∥∥∥EĜ1

∥∥∥ dτ =
∥∥∥B̃T D

∥∥∥∥∥∥EĜ1

∥∥∥ (t− tij).
By virtue of Lemma 4, we have

‖ξ1‖ exp(−λ̄(t− tij))

≤
∥∥ξ1(tij)

∥∥ exp(
∥∥∥B̃T D

∥∥∥∥∥∥EĜ1

∥∥∥ (t− tij))

+

t∫
ti
j

exp(−λ̄(τ − tij))(
∥∥∥B̃T AiĜ2

∥∥∥ +
∥∥∥B̃T D

∥∥∥
×

∥∥∥EĜ2

∥∥∥) ‖ζ‖ exp(
∥∥∥B̃T D

∥∥∥∥∥∥EĜ1

∥∥∥ (t− τ))dτ.

(35)

Thus, if w(tij) ≥
∥∥ξ1(tij)

∥∥ , then we have

‖ξ1(t)‖ ≤ w(tij) exp{λ(t− tij)}+

t∫
ti
j

exp{λ(t− τ)}

× (GM +
∥∥∥B̃T D

∥∥∥∥∥∥EĜ2

∥∥∥) ‖ζ‖ dτ.

(36)

It is that w(t) ≥ ‖ξ1(t)‖ holds in the interval [tij , t
i
j′) .

Hence ‖ξ1(t)‖ is bounded by w(t) for all the time if and
only if w(0) ≥ ‖ξ1(0)‖. This completes the proof.

Now let us focus on the design of the dynamic output
feedback variable structure controllers for the system (1)
by reaching condition of sliding surface.
Theorem 3. Suppose (5) have solutions X , Y , F and
the common sliding surface is given by (4). If the following
conditions

k1i ≥
∥∥∥SAiĜ2

∥∥∥ + ‖SD‖
∥∥∥EĜ2

∥∥∥ + bi ‖SB‖
∥∥∥Ĝ2

∥∥∥ ,

k2i ≥
∥∥∥SAiĜ1

∥∥∥ + ‖SD‖
∥∥∥EĜ1

∥∥∥ + bi ‖SB‖
∥∥∥Ĝ1

∥∥∥ (37)

are satisfied, then the state of the closed-loop system (1)
reach the common sliding surface and subsequently remain
on it by employing the following dynamic output feedback
controllers

ui = − (SB)−1

1− ϕi
k1iζ −

(SB)−1

1− ϕi
(k2iw(t)

+ ‖SB‖ ρi(y, t) + η)sign(ζ), i ∈ Ξ,
(38)

where w(t) is the solution of (32), η is a positive scalar to
adjust the convergent rate.
Proof. Since x = Ĝ1ξ1 + Ĝ2ζ , due to Lemma 4 we have

‖x‖ ≤
∥∥∥Ĝ1

∥∥∥w(t) +
∥∥∥Ĝ2

∥∥∥ ‖ζ‖ . We introduce a Lyapunov
function as follows

Vd = ζTζ.

Its time derivative along the trajectory of the system (1)
is

ζTζ̇ ≤
∥∥∥SAiĜ2

∥∥∥ ‖ζ‖2 + ‖SD‖
∥∥∥EĜ2

∥∥∥ ‖ζ‖2
+

∥∥∥SAiĜ1

∥∥∥ ‖ζ‖ ‖ξ1‖+ ‖SD‖
∥∥∥EĜ1

∥∥∥ ‖ζ‖ ‖ξ1‖

+ ζTSB(ui + Ziui) + bi ‖SB‖
∥∥∥Ĝ1

∥∥∥ ‖ζ‖ ‖ξ1‖

+ bi ‖SB‖
∥∥∥Ĝ2

∥∥∥ ‖ζ‖2 + ρi(y, t) ‖SB‖ ‖ζ‖ .

(39)

Applying the dynamic output feedback controllers (38) to
the inequality (39) results in ζTζ̇ ≤ −η ‖ζ‖. Hence the
state of the system (1) will reach the common sliding
surface (4) in finite time and subsequently remain on it.
This completes the proof.

4. EXAMPLES

In this section, we present a numerical example to illus-
trate the usage of the presented new result and to demon-
strate the effectiveness of the proposed design method.
Consider the following uncertain switched system

ẋ(t) = Aσx(t) + ∆Aσx(t) + B[uσ(t)
+ Zσuσ(t) + fσ(x, t)],

y(t) = Cx(t),
(40)

where σ ∈ Ξ = {1, 2}, A1 =

[−2 1 0
1 0 −1
0 −1 −1

]
, A2 =[−1 −1 −1

0 2 1
0 2 −1

]
, B =

[ 1
1
0

]
, C =

[
1 1 0
1 0 0

]
, uncertainties

∆Ai = DΣi(t)E, where D =

[ 1
0
−1

]
, E =

[ 0
1
0

]
, Σ1 = ν1 ∈

[−1, 1], Σ2 = ν2 ∈ [−1, 1] and Z1 = Z2 = 0, f1 = f2 = 0.

We select the following constants τ1 = τ2 = 0.1 and
ε1 = ε2 = 1. The initial state adopted is x0 = [1, 2,−1]T .
By solving LMIs (5), we obtain the following solutions:

X =

[ 0.6226 0 0.152
0 0 0

0.152 0 0.7538

]
, Y = 0.5373, F = [1.861,−1.861].

By virtue of (4), the common sliding surface is
ζ(t) = Fy = Sx(t)

= [0, 1.861, 0]x(t).

According to (14), the obtained control laws are
u1 = −3.9979ζ − 1.5sign(ζ),

u2 = −9.9946ζ − 1.5sign(ζ).
It is easy to verify that the conditions of Theorem 1,
2 are satisfied. The simulation results are depicted in
Figure 1 and Figure 2 by using Theorem 1, 2. It is
clearly seen from these simulated time histories that by
applying the proposed static output feedback controllers
(14) the closed-loop system of the switched system (40) is
asymptotically stable under arbitrary switching.
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Fig. 1. The state responses of the switched controlled
system (40)

Fig. 2. The switching signal of the system (40)

5. CONCLUSION

In this paper, the problem of robust output feedback slid-
ing mode variable structure control has been considered
for a class of uncertain switched systems. The sufficient
conditions for the existence of the common sliding surface
are derived in terms of constrained LMIs. These guarantee
that the switched system is asymptotically stable and com-
pletely invariant to matched and mismatched uncertain-
ties for arbitrary switching signal on the common sliding
surface. Furthermore, static and dynamic output feedback
variable structure controllers are designed to guarantee the
state of the switched system to reach the sliding surface in
finite time and remain on it. Thus the system is guaranteed
to reach the equilibrium state.
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