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Abstract: In this paper is presented a contribution for development and implementation of nonlinear 
predictive control based on Hammerstein models as well as to make properties evaluation. In this work, 
nonlinear predictive control development has been used the time-step linearity method and a compensation 
term is used with an objective to make better the controller performance. An example demonstrating the 
viability of the proposed methodology is presented. 

 

1. INTRODUCTION 

The industrials processes have been affected for some 
changes in the last decade, mainly due to search for quality 
and efficiency in its productive processes. The industrial 
competition including (chemicals areas, food processing 
automotive, aerospace and metallurgy), and environmental 
factors make that looked for quality in the automation process 
(Al-Duwaish. & Naeem 2000). It is looked for processes that 
minimize costs, losses and action (simplicity in control 
actions) and increase the production rate. 

In this context, the predictive controllers appear in the end of 
the 70 decade (Model Based Predictive Controllers - MBPC). 
The MBPC is not only indicated for a specific control 
strategy, but, for a series of control methods that make 
explicit use of a processes model, with the purpose to get a 
signal control that minimizes an objective function (Camacho 
& Bordons, 1999). 

The use of linear models in predictive control applications is 
very common, therefore, beyond the popularity of the MBPC, 
usually the use of a simplified model becomes necessary. 
Although the linear model is in the most part of the industrial 
processes that presents some nonlinearity degree. It has 
happened then, in few years, a great increasing in the 
industrial applications of nonlinear predictive control, being a 
promising strategy of control for some engineering areas. 

When the process presents a very high nonlinearity degree, a 
possible solution is to work with nonlinear models. These 
should associate simplicity with a good capacity of process 
representation, besides a lot of studies related for nonlinear 
predictors. The Hammerstein models are given by a static 
nonlinearity and a linear dynamic system. The static 
nonlinearity gives when the time dependence is not 
quantified between the system variable. In this case, the 
model has static character, being represented for an algebraic 
equation. 

In this work the properties of the Hammerstein model are 
presented, as well is considered a new algorithm for 
nonlinear Generalized Predictive Controller - GPC based on 
the approach to time-step linearity, single input single output 
(SISO), being considered the problem of nonlinear control of 
finite prediction horizon. A compensation term is added to 
the model with the objective to improve the performance of 
the considered algorithm. 

An implementation result (simulation) of the considered 
algorithm is presented in this work. 

2. HAMMERSTEIN MODEL  

The Hammerstein Model appears as one of the 
representations of nonlinear models based on the use of 
interconnected blocks, which characterize the dynamics of 
the system through a static nonlinear preceding the block that 
contains the linear dynamics system (Boutayeb & Darouach 
1995), as shows Fig.1. 

 

Fig. 1. Hammerstein Model 

The Hammerstein model can be represented in a polynomial 
form, in other words, in a polynomial model NARX 
equivalent to the Hammerstein representation. Observe that 
the intermediate sign, ( )x k , is obtained by the multiplication 
between the input sign, ( )u k , and the function lN , it is given 
that: 

( ) ( ( ))lx k N u k=  (1) 

Then,            ( ) ( ( ))lx k i N u k i− = − ,      for 1, , ui n= "  (2) 
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The ARX model is obtained using the input and output, ( )x k  
and ( )y k , respectively, of the linear dynamic block, such that: 

1 1
( ) ( ) ( )

y un n

j i
j i

y k y k j x k iθ σ
= =

= − + −∑ ∑  (3) 

Where,   

yn  and un  - maximum delay output and input of the ARX 
model respectively;   

jθ  and iσ  - related parameters to each output and input 
regressor of the ARX model, respectively; 

In practice, the intermediate signal ( )x k , it is not available. 
Therefore, it is desirable to express the Hammerstein model in 
the polynomial form in relation to the input and output system 
information, ( )u k  and ( )y k , respectively. Then, substituting 
the equation (2) in (3), it is 

1 1
( ) ( ) ( ( ))

y un n
l

j i
j i

y k y k j N u k iθ σ
= =

= − + −∑ ∑  (4) 

The equation (4) shows that Hammerstein model is a 
particular case of the NARX polynomial model with 
nonlinearity degree l. Each term of the ARX model with m  
order, such what 0 1m≤ ≤ , contains a order factor 1 in 

( )y k j−  and an order factor m  in ( )u k i− . In brief, the 
NARX polynomial representation is equivalent to a 
Hammerstein model when:     

• The nonlinearity to act only in the input regressors; 

• There is not the presence of terms of the type 
1( ) ( )m q mn k i u k i−− − , with 1i i≠ , 0 q m≤ ≤  and 

1)( ≤− qm , in other words, the nonlinearity doesn't 
act in terms with different delay. 

The static nonlinearity representation for a polynomial 
happens when it doesn’t have information regarding of 
nonlinearity nature. The representation is obtained by a finite 
polynomial approximating expansion of the type 

2
1 2( ) ( ) ( ) ( )l

lx k u k u k u kγ γ γ= + + +"  (5) 

In that, k it is the instant of time, ( )x k  is the output of the 
nonlinear block, ( )u k  is it the input variable and 

( 1, , )i i lγ = "  represents the polynomial coefficients and l  it 
is the nonlinearity degree of the Hammerstein model. 

    The Hammerstein model in it’s parametric form can be 
written as: 

1 1 1 ( )( ) ( ) ( ) ( 1) ( )d e kA q y k q B q x k C q− − − −= − +
∆

 (6) 

The popularity of Hammerstein model is due to it’s simplicity 
in relation to representations as, for instance, of Volterra 
(Doyle et. al., 2002) among another, allied the representation 

capacity of the nonlinearity of most of the practical processes, 
being able to represent processes with nonlinear actuators and 
variables gain.     

3. MONOVARIABLE GPC BASED ON THE 
HAMMERSTEIN MODEL (APPROACH TO TIME-STEP 

QUASILINEAR) 

In the last years there was a large growth in the industrial 
applications of Nonlinear Model Predictive Control - NMPC, 
which comes as a quite promising control strategy for several 
engineering areas (Qin and Badgwell, 2003). The main causes 
of this growth are the low performance of linear controllers in 
processes with high degrees of nonlinearity or in processes 
that works in a wide operation band.     

So that can obtain a control law that minimizes a quadratic 
criterion for the nonlinear model and obtain an analytic 
solution for the problem, then it was adopted the linearization 
techniques to make possible the solution for the nonlinear 
predictive control. 

Fig. 2 shows the blocks diagram of the process model 
represented by a Hammerstein model. 

 

Fig. 2. Blocks diagram of the process model based on the 
Hammerstein Model 

The static nonlinearity can be written as: 

1

1
( 1) ( 1) ( 1)

l
j

j
j

x k u k u kγ −

=

 
− = − − 

 
∑  (7) 

substituting the equation (7) in the equation (6): 

1 1 1 1

1

( )( ) ( ) ( ) ( 1) ( 1) ( )
l

d j
j

j

e kA q y k q B q u k u k C qγ− − − − −

=

 
= − − + 

∆ 
∑

 (8) 

The time-step quasi-linear approach consists of rewrite the 
model in the form: 

1
1

0 1 1

( ) ( ) ( 1)
nb l l

d i j i v
i j

i v j

A q y k q b q u kγ
−

− − − − −

= =− =

  
= −     

∑ ∑ ∑  

                              1 ( )( 1) ( ) e ku k C q−− +
∆

                            (9) 

where: 

nb =  polynomial degree 1( )B q−  
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Defining: 

1

1 1
( , ) ( 1)

l l
i i j i v

i i j
v j

b q u b q u kγ
−

− − − −

=− =

  
= −     

∑ ∑  (10) 

and 

1 1

0

( , ) ( )
nb

i
i

B q u b q u− −

=

= ∑  (11) 

the model becomes: 

1 1 1( ) ( ) ( , ) ( 1) ( ) ( )dA q y k q B q u u k C q e k− − − −∆ = ∆ − +  (12) 

where,            1 1 1( ) ( ) (1 )A q A q q A− − −∆ = = −�  (13) 

the following model is obtained: 

1 1 1( ) ( ) ( , ) ( 1) ( ) ( )dA q y k q B q u u k C q e k− − − −= ∆ − +�  (14) 

This model is denominated timestep quasilinear NARIMAX. 
In this model, the polynomial coefficients 1( , )B q u−  depends 
of the last values of the ( )u k  that are known, considered 
constant until the following instant, after updating of its 
values. 

4. NEW NONLINEAR PREDICTIVE CONTROL 
APPROACH USING THE HAMMERSTEIN MODEL 

This approach uses a nonlinear model (Hammerstein model) 
with a compensation term, whose objective is to correct the 
prediction error due to approach to time-step quasi-linear 
model, NARIMAX, used in the predictive controller presented 
for (Goodhart et. al. 1994).  

 The prediction error is obtained through the predictions i-
step-ahead of the nonlinear model (Hammerstein model) and 
model quasilinear, being applied an aleatory sequence of 
inputs signs. With the prediction error, it is possible to obtain 
a term that compensates the generated error in this approach 
when it increases the prediction horizon. The compensation 
term is added to each prediction horizon, improving 
controller's performance. 

It is important to observe that the presented approach has 
importance and interest degree, due to the fact that analytic 
solution doesn't exist for the problem. So, the effort to find a 
better solution, although sub-optimal, it is justified. 

4.1  Compensation Term and Properties 

The compensation term consists if finding a linear, moving 
average model, whose order and parameters depend on the 
prediction error and of the prediction horizon (Fontes, 2002). 

Consider the term 1( )iL q− , that corresponds to the linearized 
compensation term of the relationship of existent nonlinearity 
between ( )x i  and ( )ie i , where, ( )x i  is the nonlinear input 
sequence and ( )ie i  is the prediction error vector for the 
horizon i . The Fig. 3 shows the linearized model diagram 

1( )iL q− . 

 

Fig. 3. Representation diagram of the compensation term 

The term 1( )iL q−  has two interesting properties (Fontes, 
2002, to follow summarized). It is a polynomial in the way: 

1 1 2
0, 1, 2, ,( ) nl

i i i i nl iL q l l q l q l q− − − −= + + + +"  (15) 

The order and the parameters of the compensation term 
depend on the prediction error and of the prediction horizon 
and the parameters are determined in way to minimize the 
prediction error variance. Therefore, it is used the following 
linear moving average model:     

1( ) ( )i iL q x kε −=  (16) 

The parameters ,j il  with 1, ,j l= "  are determined using the 
last square algorithm.     

The prediction error in the instant k , regarding the horizon i  
is given for: 

ˆ( ) ( ) ( )i k y k i y k iε = + − +  (17) 

Where: 

( )y k i+  it is the output of the nonlinear system; 

ˆ( )y k i+  it is the i-steps-ahead prediction obtained of the 
quasilinear model, with information until the instant k . 

The polynomial 1( )iL q−  is the dynamic compensation term, in 
that way, it is had that (1) 0iL = , that won't modify the static 
gain of the compensated model. So, it is possible to conclude 
that: 

,
0

0
nl

j i
j

l
=

=∑ ,   i∀  (18) 

It must be chosen an order for the compensation term that 
satisfies the Akaike1 criterion. Taken into the fact of the 
polynomial degree 1( )A q−�  to be ( 1)na + , it is had, in 
agreement with Fontes (2002), the following structure of the 
compensation term: 

    1 ( 1) ( 1 )
0, 1, 2, ( 1 ),( ) i i na i

i i i i na i iL q l l q l q l q− − − + − − +
− += + + + +"    (19) 

Considering the model presented on (14), it is had that the i-
step-ahead dynamic representation, for 1i ≥ , based on the 
compensated time-step quasilinear model is follow: 

                                                 
1 The Akaike criterion is one of the best known technical for 
choice of the best order, in that the model is tested for a 
determined set of data in an identification process of a 
dynamic system. 
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1 1 1( ) ( 1) ( , ) ( ) ( 1)d
iA q y k q B q u L q u k i− − − − + = + ∆ + − 

�  

                                 1( ) ( )C q e k i−+ +                                  (20) 

The polynomial 1( )iL q−  corresponds to a dynamic 
compensation term, which it compensates the prediction error, 
and the degree of this polynomial depends on the prediction 
horizon. 

4.2  GPC Hammerstein SISO Quasilinear with Compensation 
Term 

Generalized Predictive Control Nonlinear Compensated, 
(GPCNC) such as the GPC algorithm, calculates a sequence 
of control actions to minimize an objective function, multi-
step, defined on a prediction horizon, with consideration of 
the control action. This is obtained minimizing the objective 
function: 

[ ]
1

2 2

1

ˆ( ) ( ) ( ) ( ) ( 1)
NY NU

i N i
J i y k i r k i i u k iδ λ

= =

= + − + + ∆ + −  ∑ ∑   (21) 

Where: 

1N  and NY  represents the minimum and maximum horizon 
of prediction; 

NU  represents the control horizon; 

( )r k i+  is the reference trajectory for the predicted output; 

( )iδ  and ( )iλ  are the weight factor on the error sign and 
control sign respectively. 

It is important to observe that the output i-step-ahead 
prediction, ˆ( )y k i+  obtained by the process of quasilinear 
compensated prediction, it continues being a sub-optimal 
prediction, once this prediction is an approach of the exact 
prediction that would be obtained by the Hammerstein model. 
However, the quasilinear prediction with compensation term 
presents a smaller error in comparison with Hammerstein 
GPC. In the same way how shown previously, to minimize the 
objective function, it should be obtained the output sub-
optimal prediction, i-step-ahead, in the interval 1N i NY≤ ≤ . 
Although the plant model is nonlinear, the used approach 
allows the same procedure to be used by GPC. With this, the 
concept of free response and forced response is also used for 
this case. 

Starting from the exposed can be determined the output 
predicted i-step-ahead, defining: 

1 1 1( , ) ( , ) ( )C iB q u B q u L q− − −= +  (22) 

It is given: 

1 1

1 1

( , ) ( )( ) ( 1) ( )
( ) ( )

CB q u C qy k i u k i d e k i
A q A q

− −

− −
+ = ∆ + − − + +� �    (23) 

In order to separate the dependence of ( )y k i+  of the last and 
future information, the Diophantine equation was introduced 
and the following predictor equation is obtained: 

1 1ˆ( ) ( , ) ( 1) ( ) ( )i iy k i H q u u k i d F q y k− −′+ = ∆ + − − +  (24) 

The objective function shown in the equation (21) it will be 
minimized by a future control actions sequence and 
considering that the system has an equal dead time to d  
sampling periods, consequently, the system output will be 
influenced by the input ( )u k  after 1d +  periods. Therefore, 
the prediction minimum horizon will be: 

1 1N d= + , NY d N= +  e NU N= . 

The set of predictions can be written in the matricial form as: 

y = ( )H u u + ' 1( , )−H q u ( 1)u k∆ − + 1"( )−F q ( )y k  (25) 

Where: 

=y
ˆ( 1)
ˆ( 2)

ˆ( )

y k d
y k d

y k d N

+ + 
 + + 
 
 + + 

#

   ( ) =H u
0

1 0

1 2 0

( ) 0 0
( ) ( ) 0

( ) ( ) ( )− −

 
 
 
 
 
 

"
"

# # % #
"N N

h u
h u h u

h u h u h u

  

=u
( )

( 1)

( 1)

u k
u k

u k N

∆ 
 ∆ + 
 
 ∆ + − 

#

    1( )−′′ =F q

1
1

1
2

1

( )
( )

( )

d

d

d N

F q
F q

F q

−
+

−
+

−
+

′ 
 ′ 
 
 

′  

#
                  (26) 

1( , )−′ =H q u

1
1 0

1 1 2
2 0 1

1 1 ( 1)
0 1 1

( )

( )

( )

d

d

N N
d N N

H q h q

H q h h q q

H q h h q h q q

−
+

− − −
+

− − − −
+ −

  −  
  − −  
 
 
 − − − −   

#

"

 

The matrix elements ( )H u depend on ( )u k . 

In similar way to the previous case, the Free Response 
Vector  ( )ly  is given by: 

ly = 1( )−′′F q ( )y k + 1( , )−′H q u ( 1)u k∆ −  (27) 

The predictor equation will be observed that the Forced 
Response ( )fy  is given by: 

0

1 0

1 2 0

( ) 0 0 ( )
( ) ( ) 0 ( 1)

( )

( ) ( ) ( ) ( 1)

f

N N

h u u k
h u h u u k

y H u u

h u h u h u u k N− −

∆   
   ∆ +   = =
   
   ∆ + −  

"
"

# # % # #
"

 
(28) 

This way, we can say that the system complete response is 
given for: 

y = ( )H u u + ly  (29) 
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The control law is obtained likely GPC. It must be observed 
that this is a sub-optimal solution, on way that the predictor is 
sub-optimal. Thus, the control law is given for:  

( )( ) ( ) ( ) ( )λ= + −
TT T

lu H u H u I H u r y  (30) 

The control signal that is really sent to the process is the first 
element of the vector u , due to control strategy of moving 
horizon, then: 

( )u k∆ = K ( r − ly )  (31) 

being, K  the first row of matrix 1( ( ) ( ) ) ( )T TH u H u I H uλ −+  

5.  SIMULATION RESULTS 

Consider the plant of 2nd order described by the following 
model: 

1

1 2

0.207 0.1464( ) ( 1)
1 0.8 0.2385

qy k x k
q q

−

− −

−
= −

− +
 

with the static nonlinearity given by: 

2( 1) 1.549 ( 1) 1.732 ( 1)x k u k u k− = − + −  

the control sign was obtained, considering 0d = , 
3NY NU= =  and 5λ = . 

The predictive control based on the Hammerstein model, with 
compensation term, in this case, uses the following model: 

1 1

1 1

( , ) ( )( ) ( 1) ( )
( ) ( )

CB q u C qy k u k d e k
A q A q

− −

− −= ∆ − − +� �
 

Using these parameters and the compensation term structure 
presented in (19) is given that the additional estimated terms 
of compensation, for 1,2,3i =  obtained through the 
minimization of the prediction error variance by the method of 
the least square, are: 

0.1179 0.1179 0 0
0.1061 0 0.1061 0
0.0865 0 0 0.0865

L
− 

 = − 
 − 

 

Using these results, as well as the results of the same 
controller's simulation without the compensation term and 
with the same fittings parameters, it is verified through the 
Fig. 4 that Hammerstein GPC controller with the 
compensation term presents a better performance in 
comparison with GPC based on the Hammerstein model 
without the compensation term. 

 

Fig. 4. Comparison between output Hammerstein's GPC  and 
the output of Compensated Hammerstein GPC 

Also, are shown in the  Fig. 5 the control signals generated by 
the controller based on the quasilinear model and by the 
controller based on the compensated quasilinear model. 

 

Fig. 5. Comparative graph between the control sign generated 
by the GPC quasilinear and GPC compensated quasilinear 

5.1  Prediction Error Analysis 

 A form of analyzing the predictive capacity of the predictor 
models, is using the relationship that compares the k-steps-
ahead predictor performance ˆ()y , with the performance k-
steps-ahead quasilinear predictor ˆ( )quasilineary k , that is to say, 
computing the prediction error with the measured data until 
the instant k . 

rquasilineakykyke )(ˆ)(ˆ)( −=  (32) 

Considering the previous example, the output model results: 
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2
0 1( ) 0.8 ( 1) 0.2385 ( 2) ( 1) ( 1)y k y k y k b u k b u k= − − − + − + −  

The prediction was implemented with an input 0.5u =  
varying 5% , as shows the Fig. 6. 

 

Fig. 6. Comparison between the input sign and prediction 
output for a horizon of 200 iterations. 

The Fig. 7 shows a comparison between the original 
prediction, quasilinear and quasilinear with compensated 
term: 

 

Fig. 7. – Comparative graph between original prediction, 
quasilinear and compensated quasilinear 

It can be verified that there was an improvement with 
relationship to the quasilinear prediction with compensation 
term. It is observed that the error prediction between GPC 
compensated quasilinear and the original prediction is smaller 
than in comparison with GPC quasilinear and the original 
prediction. 

Also we can do an analysis through the variance, that is given 
for: 

{ } { }2 2 2e eσ = Ε − Ε  (33) 

where, { }2E e  is the expectation of the quadratic medium 
error, then: 

{ }2 2

1

1 N

i
i

e e
N =

Ε = ∑  (34) 

and                       { }
1

1 N

i
i

e e
N =

Ε = ∑  (35) 

by the previous example, for a prediction with 30N =  
iterations, the variance between the predictor and the 
quasilinear predictor is given for: 

2 0.0273quasilinearσ =  

Now, in relation to the variance between the predictor and the 
compensated quasilinear predictor, is given: 

0230.02 =dCompensateσ  

It is noticed that the variance decreased, showing that the 
quasilinear prediction with compensation term is more exact 
than the prediction without the referring term, what proves a 
better performance of the controller. 

6. CONCLUSIONS 

In this work, it was introduced an analytical solution for the 
Nonlinear Predictive Control applied to the Hammerstein 
model. Due to model nonlinearity, it was necessary the use of 
linearization techniques for the obtaining of the explicit 
control law. The linearization method was approached by the 
approximation time-step quasilinear method, that was shown 
quite efficient. Based on the results, it can be ended that in 
spite of the approaches be sub-optimal, the results were 
satisfactory. 
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