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Abstract: In this paper, we propose a new design of spatial-based repetitive control for rotational motion 
systems required to operate at varying speeds and subject to spatially periodic disturbances. The system 
has known model structure with uncertain parameters. To synthesize a repetitive controller in spatial 
domain, a linear time-invariant system is reformulated with respect to a spatial coordinate (e.g., angular 
displacement), which results in a nonlinear system. A nonlinear state observer is then established for the 
system. Adaptive feedback linearization is applied to the system with the state observer so as to minimize 
the tacking error. Moreover, a spatial-based repetitive controller is added and operates in parallel with the 
adaptively feedback linearized system, which not only further reduces the tracking error but also improves 
parameter adaptation. The overall output feedback adaptive feedback linearization repetitive control 
system is robust to structured parameter uncertainty, capable of rejecting spatially periodic disturbances 
under varying process speeds, and can be proved to be stable and produce bounded tracking error. Finally, 
feasibility and effectiveness of the proposed scheme is verified by simulation. 

 

1. INTRODUCTION 

Rotational motion systems have found their application in 
many industry products. For most application, the systems 
are required to operate at varying speeds while following 
repetitive trajectories and/or rejecting disturbances with 
sinusoidal/periodic components. For example, the brushless 
dc motor in a typical laser printer may need to operate at 
different speed when driving the photosensitive drum for 
printing tasks of different media or resolution. Also, laser 
printing systems often suffer from a type of print artifacts 
(known as banding), which is mostly due to periodic 
disturbances affecting the angular velocity of the 
photosensitive drum (see e.g., Chen et al., 2003). Repetitive 
control systems have been shown to work well for tracking 
periodic reference commands or for rejecting periodic 
disturbances in regulation applications. Typical repetitive 
controllers are time-based controllers since they are 
synthesized and operate in temporal or time domain. For 
example, to synthesize the repetitive controller proposed by 
Hara et al. (1988), one of the key steps is to determine the 
temporal period or frequency of the tracking or disturbance 
signal. To ensure effectiveness of the design, an underlying 
assumption is that the tracking or disturbance signal is 
stationary, i.e., the frequency/period of the tracking or 
disturbance signal does not vary with time. This assumption 
can easily be satisfied for many cases where the objective of 
the design is to track pre-specified repetitive trajectory.  
However, it might be violated for disturbance rejection 
problems where periods or frequencies of the disturbances 
are mostly time-varying. 

Recent researches started studying control problems of 
rejecting/tracking spatially periodic disturbances/references 
for rotational motion systems using spatial-based repetitive 
controllers. A spatial-based repetitive controller has its 
repetitive kernel (i.e. Lse−  with positive feedback) 
synthesized and operate with respect to a spatial coordinate, 
e.g., angular position or displacement. Hence its capability 
for rejecting or tracking spatially periodic disturbances or 
references will not degrade when the controlled system 
operates at varying speed. Note that a typical repetitive 
controller consists of repetitive (i.e., a repetitive kernel) and 
non-repetitive (e.g., a stabilizing controller) portions. With 
the repetitive kernel synthesized in spatial domain and given 
a time-domain open-loop system, design of the non-repetitive 
portion that properly interfaces the repetitive kernel and the 
open-loop system actually poses a challenge. For rejection of 
spatially periodic disturbances, Nakano et al. (1996) 
reformulated a given open-loop linear time-invariant (LTI)  
system with respect to angular position, and linearized the 
resulting nonlinear system with respect to a constant 
operating speed. A stabilizing controller with built-in 
repetitive kernel was then synthesized for the obtained linear 
model using coprime factorization. A more recent and 
advanced design based on linearization using   robust control 
was proposed in (Chen et al., 2006). Although design 
methods for the linearized system are simple and 
straightforward, it is unclear whether the overall control 
system (which is nonlinear) will operate at varying speed or 
could sustain large velocity fluctuation without stability 
concern. For tracking of spatially periodic references, 
Mahawan and Luo (2000) proposed and proved the feasibility 
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of operating the repetitive kernel in spatial domain and the 
stabilizing controller in time domain. Thus, no reformulation 
of the open-loop system is required. For practical 
implementation, however, the proposed method requires 
solving an optimization problem in real-time to synchronize 
the hardware and software interrupts corresponding to time 
and angular position, respectively. Also, the function between 
time and angular position needs to be known a priori, which 
further limits the applicability of the proposed method. Both 
Nakano (1996) and Mahawan (2000) assumed the simplest 
scenario when making problem formulation. Namely, the 
open-loop system was assumed to be free of modeling 
uncertainty and nonlinearity. Chen and Chiu (2007) showed 
that the nonlinear plant model can be formulated into a quasi-
linear parameter varying (quasi-LPV) system. Then, an LPV 
gain-scheduling controller was obtained which addresses 
unstructured/bounded modeling uncertainties, actuator 
saturation and spatially periodic disturbances. The proposed 
approach, however, could lead to conservative design if the 
number of varying parameters increases, the varying 
parameter space is nonconvex, or the size of the modeling 
uncertainties becomes significant. To relieve the constraint 
and conservatism of modeling uncertainties imposed on 
controller design and control performance, Chen and Yang 
(2007) formulated a spatial-based repetitive control system 
which combines adaptive feedback linearization (Sastry and 
Bodson, 1989) and repetitive control. However, this method 
requires full-state feedback and is thus not applicable to 
systems of which measurements of states are not available in 
real-time. 

In this paper, we propose a new design of spatial-based 
repetitive control system which evolves from our previous 
work (Chen and Yang, 2007). The proposed design resolves 
the major shortcoming in our former design, i.e., which 
requires full-state feedback, by incorporation of a nonlinear 
state observer known as the K-filters (Kreisselmeier, 1977; 
Kanellakopoulos, 1991; Krstic et al., 1994; Krstic et al., 1995; 
Yang et al., 2004; Yao and Xu, 2006). The proposed output 
feedback adaptive feedback linearization repetitive control 
(AFLRC) system is robust to structured uncertainty of system 
parameters and capable of rejecting spatially periodic 
disturbances under variable process speed. Also, the overall 
system can be proved to be stable under bounded disturbance 
and parameter uncertainty. Furthermore, addition of the 
repetitive controller not only improves the tracking error but 
also reduces the dead zone in the parameter update law.  A 
brushless dc motor of second-order is used for demonstration 
and derivation of the control algorithm. Simulation is 
performed to verify the feasibility and effectiveness of the 
proposed scheme. 

This paper is organized as follows: Reformulation of an LTI 
rotational motion system with respect to angular 
displacement will be presented in Section 2. Design of the 
state estimator is described in Section 3. Section 4 will cover 
derivation and stability analysis of the proposed output 
feedback AFLRC scheme. Simulation verification for the 
proposed scheme will be presented in Section 5. Conclusion 
and future work are given in Section 6. 

2. PROBLEM STATEMENT 

Suppose that a 2nd order LTI model for a rotational motion 
system is expressed as 

 1 0
2

1 0
( ) ( ) ( )

b s b
Y s U s d s

s a s a
+

= +
+ +

 (1) 

where 1a , 0a , 1b  and 0b  are coefficients whose values 
depend on system parameters and are unknown (but might 
have known upper/lower bounds). ( )U s  and ( )Y s  
correspond to control input and measured output angular 
velocity of the system, respectively. ( )d s  represents a class 
of bounded output disturbances which are spatially periodic. 
The only available information of the disturbances is the 
number of distinctive spatial frequencies which need to be 
rejected. ( )Y s  is the motor rotational velocity, and ( )U s  is 
the motor input voltage. If no pole/zero cancellation occurs, a 
possible state space realization of (1) is 

 ( ) ( ) ( ),  ( ) ( ) ( ),dx t Ax t Bu t y t x t d t
dt

= + = Ψ +  (2) 

where  

[ ]1 2( ) ( ) ( ) Tx t x t x t= , [ ] 1 1

0 0

1
0

a b
A B

a b
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, [ ]1 0Ψ = . 

Following the same procedure as described in our previous 
work (Chen and Yang, 2007), we may rewrite (2) as 

 
ˆ( )ˆ ˆ ˆ( ) ( ) ( ),

ˆˆ ˆ( ) ( ) ( ).

dx Ax Bu
d

y x d

θω θ θ θ
θ

θ θ θ

= +

= Ψ +
 (3) 

Equation (3) can be viewed as a nonlinear position-invariant 
(as opposed to the definition of time-invariant) system with 
the angular displacement θ  as the independent variable. Note 
that the concept of transfer function is still valid for linear 
position-invariant systems if we define the Laplace transform 
of a signal ˆ ( )g θ   in the angular displacement domain as 

 
0

ˆ ˆ( ) ( ) sG s g e dθθ θ
∞ −= ∫ . 

3. NONLINEAR STATE OBSERVER 

In this section, we will establish a state estimator for (3). To 
allow us to present the proposed design in a simpler context, 
we will focus on the case in which (2) has relative degree 
equal to two, i.e., 1 0b = . 

As first step, drop the θ  notation and rewrite (3) in the form 

 1 1 2 1 2 0 0 1 1
ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  x a x x x a b u x y d x dω= − + = − + = + = +  (4) 

where the state variables have been specified such that the 
angular velocity ω̂  is equal to 1̂x , i.e., the undisturbed output. 
Suppose that both states in (4) cannot be measured in real 
time. To design a state estimator or the K-filters (Krstic et al., 
1995), we proceed as follows. First, rewrite the state 
equations in (4) as 

 ( ) ( ) [ ] ( )0 1 1 1 0 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 Tx A x kx x a x b x uη ϕ σ= + + + + , (5) 
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where 

 

( )

( ) ( ) ( )

1 11 1
0 1

2 22

1 1 1
1 1

0 1

ˆ ˆ1 0ˆ ˆ, , , ,
ˆ 0 0 1

ˆ ˆ 11ˆ ˆ, , .
ˆ0

k kx x
x A k x

k kx

a x xa x x
a x

η

ϕ σ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ − += = =⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

By properly choosing 1k  and 2k , the matrix 0A , which 
determines the properties of the K-filters, can be made 
Hurwitz. Next, we decide on the following observer structure: 

 ( ) ( ) [ ] ( )0 0ˆ ˆ ˆ ˆ ˆ0 Tx A x ky y a y b y uη ϕ σ= + + + + , (6) 

where [ ]1 2
Tx x x=  is the state estimates of x̂ ,  

 ( ) ( ) ( ) ( )
ˆ 0 ˆ ˆ 11ˆ ˆ ˆ, ,

ˆ0 1 0
y y yy y y

y
η ϕ σ

⎡ ⎤−⎡ ⎤ − += = =⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦
. 

Equation (6) can be further expressed as 

 ( )0 ˆ ˆ ˆ ˆ( , )Tx A x ky y F y uϕ= + + + Θ , (7) 

where 3
0

TTb a⎡ ⎤Θ = ∈⎣ ⎦  is a parameter vector and  

 ( ) ( ) 2 30
ˆ ˆ ˆ( , ) ˆ ˆ

TF y u y
y u

η
σ

×⎡ ⎤
= ∈⎢ ⎥

⎣ ⎦
. 

Define the state estimated error as 
1 2ˆ ˆ ˆ

T

x x x xε ε ε⎡ ⎤ −⎣ ⎦ . 

Then the state space description of the estimated error can be 
obtained by subtracting (7) from (5), i.e., 

 0Aε ε= + Δ , (8) 

where 

( )
( )0

ˆ ˆ ˆ ˆ ˆˆ ˆ 00ˆ ˆ
ˆ0 0 ˆ ˆ0

dd dd dy ddkd a ud
b y y d

θ
⎡ ⎤⎡ ⎤ − − + ⎡ ⎤⎢ ⎥Δ = − + + +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Define the state estimate Tx ξ + Ω Θ  such that 

[ ] 2
11 12

Tξ ξ ξ= ∈  and 2 3×Ω ∈ . Substituting this 
definition into (7) gives 

 ( ) ( )0 0ˆ ˆ ˆ ˆ( , )T T TA ky y A F y uξ ξ ϕ+ Ω Θ = + + + Ω + Θ  

Thus the following two filters may be employed 

 ( )0 0ˆ ˆ ˆ ˆ,  ( , )T T TA ky y A F y uξ ξ ϕ= + + Ω = Ω +  (9) 

Define [ ]0
T vΩ = Ξ , i.e., the first column 

[ ] 2
0 01 02

Tv v v ∈  and the rest as 2 2×Ξ ∈ . The second 
equation in (9) can be split into two filters: 

 ( ) ( )0 0 0 2 0ˆ ˆ ˆ,  v A v e y u A yσ η= + Ξ = Ξ +  (10) 

where [ ]2 0 1 Te =  denotes one of the basis vector for 2 . 

Expressing [ ]1 2
T

Ξ = Ξ Ξ , where 2
1Ξ ∈  and 2

2Ξ ∈ , 
and with the definition of the state estimates, we obtain 

 1 11 01 0 1 2 12 02 0 2,  T Tx v b a x v b aξ ξ= + + Ξ = + + Ξ  (11) 

Equation (10) and (11) will be used in the subsequent design. 

4. OUTPUT FEEDBACK ADAPTIVE FEEDBACK 
LINEARIZATION REPETITIVE CONTROL SYSTEM 

With the definition of the state estimated error ε , the output 
equation in (4) can be expressed as 

 
1̂1 1

ˆ ˆˆ ˆ xy x d x dε= + = + +  (12) 

Substituting the first equation of (11) into (12), we have 

 
1̂11 01 0 1

ˆˆ T
xy v b a dξ ε= + + Ξ + + . 

To apply adaptive feedback linearization, differentiate the 
output ŷ  until the term involving the input û  appears, 

 ( ) ( )
1̂11 1 01 2 01 0 0 1

ˆˆ ˆ ˆ T
xy k v k v b b y u a dξ σ ε= − + + + Ξ + +  (13) 

Define [ ]1 0
Ta a a= , where 1a  and 0a  are the estimates of 

1a  and 0a , and 0b  is the estimate of 0b . The control law 
using the estimated parameters and states can be specified as 

  
( )

( )( )ˆ11 1 01 2 01 0 1
0

1ˆ ˆ ˆ
ˆ

T
d R

u k v k v b a v u
b y

ξ
σ

= − + + − Ξ + + , (14) 

where ˆdv  is the estimate of a designable input ˆdv , ˆˆ
R

u  is 
another designable input which will be used to target 
rejection of the periodic disturbances. Choose ˆdv  as 

 1 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )d m m mv y y y y yα α= + − + − , (15) 

where 1α  and 2α  are adjustable parameters, ˆmy  is the 

reference command, and ŷ  is the estimates of ŷ . Note that 

ŷ  cannot be measured directly because of parameter 

uncertainties. Let 0
TTb a⎡ ⎤Θ = ⎣ ⎦  and define the parameter 

error vector as 
0

T

b a⎡ ⎤Φ Θ − Θ = Φ Φ⎣ ⎦ , 

where
0 0 0b b bΦ = −  and [ ]1 1 0 0

T
a a a a aΦ = − − . 

Substituting (14) into (13) , we obtain 

 
1ˆ ˆ1

ˆˆ ˆ ˆT
d xR

y W v u dε= Φ + + + +  (16) 

where  ( ) ( ) 3
1 1 01 2 01 0 1.

TTW k v k v P b⎡ ⎤= − + + Ξ ∈⎣ ⎦  with 

 ( ) ( ) ˆ11 1 01 2 01 0 1 ˆ ˆ. T
d R

P k v k v b a v uξ= − + + − Ξ + + . 

Defining the tracking error ˆ ˆ ˆme y y−  and calculating the 

mismatch between ˆdv  and ˆdv , we may arrive at the error 
equation, i.e., 

 
1 1ˆ ˆ ˆ1 2 1

ˆ ˆˆ ˆ ˆ ˆT
x xR

e e e W u d dα α α ε ε⎛ ⎞+ + = Φ + + + + +⎜ ⎟
⎝ ⎠

, (17) 

where 
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( ) ( ) ( )
1 01 2 01 1 1 01 02 1 1 1

0

.
T

T TP
W k v k v k v v

b
α α

⎡ ⎤
= − + + − + + Ξ + Ξ⎢ ⎥

⎢ ⎥⎣ ⎦
. 

If we denote 2
1 2( ) 1 ( )M s s sα α= + + , (17) implies that 

 ( )( )1

2
ˆ ˆ1

ˆˆ ˆ( ) ( ) ( )T
xR

E s M s W U s s s dα ε= Φ + + + + . (18) 

The designable input ˆˆ
R

u  provides additional degree of 
freedom of control for the system to deal with spatially 
periodic disturbances, i.e., d̂  in (18). A control loop is 
connected between ˆ ( )E s  and ˆ

ˆ ( )
R

U s . As shown in Figure 1, 

the tracking error ˆ ( )E s  and the control input ˆ
ˆ ( )

R
U s  is 

related by 

 ˆ
ˆˆ ˆ ˆ( ) ( ) ( ) ( )

R
U s R s C s E s= − , (19) 

where we have chosen ˆ( )R s  as a low-order and attenuated-
type repetitive controller (Lee and Smith, 1998), i.e., 

 
2 2

2 2
1

2ˆ( )
2

k
i ni ni

i i ni ni

s s
R s

s s
ζ ω ω
ξ ω ω=

+ +
=

+ +Π , 

where k is the number of periodic frequencies to be 
rejected, niω  is determined based on the ith disturbance 
frequency in rad/rev, and iξ  and iζ  are two damping ratios 
that satisfy 0 1.i iξ ζ< < <  Substituting (19) into (18) gives 

 ( )( )1

2
ˆ1

ˆˆˆ ˆ1 ( ) ( ) ( ) ( ) T
xM s R s C s E s W s s dα ε⎡ ⎤+ = Φ + + +⎣ ⎦ . (20) 

Define 

 
1ˆˆ( ) 1 ( ) ( ) ( )M s M s R s C s

−
⎡ ⎤+⎣ ⎦ . (21) 

Equation (20) becomes 

 ˆˆ ( ) T
Me M s W d= Φ + , (22) 

where ( )( )1

2
ˆ1

ˆ ˆ( ) xMd M s s s dα ε+ + . Since ê  can not be 

measured directly, the so-called augmented error scheme will 
be used. The augmented error is defined as 

 ( )1̂ ˆ ( ) ( ) .T Te e M s W M s W= + Φ − Φ  (23) 

Substituting (22) into (23) gives  1
ˆˆ T

Me dς= Φ + , where 

( )M s Wς = . The parameter update law to be used is a 
modified version (French and Rogers, 2000) based on the 
normalized gradient method proposed in (Sastry and Isidori, 
1989). In our case, the update law can be described by 

 0

0

1
1

1

ˆ ˆˆif ,
1

ˆˆ0 if .

R MT

M

e
P e d

e d

ρ ς
ς ς

⎧ ⎛ ⎞
>⎪ ⎜ ⎟⎪ ⎜ ⎟+Θ = −Φ = ⎝ ⎠⎨

⎪ ≤⎪⎩

 (24) 

where 

 

1
0 0 _ min

1 1
0 0 _ max

1

ˆ
0 if  and 0,

1
ˆ ˆ

( ) 0 if  and 0,
1 1

ˆ
otherwise.

1

T

R T T

T

e
b b

e e
P b b

e

ρ ς
ς ς

ρ ς ρ ς
ς ς ς ς

ρ ς
ς ς

⎧
= <⎪

+⎪
⎪⎪= = >⎨

+ +⎪
⎪
⎪

+⎪⎩

 

where 
0

ˆ
Md  is an upper bound for ˆ

Md , and ρ  is the 

adaptation rate which affects the convergence property. The 
following theorem summarizes the main result of this paper: 
Theorem Consider the control law of (14), (15) and (19) 
applied to a nonlinear system with a state observer as given 
by (4) and (6), respectively. Assume that ˆ ˆ, m my y  are bounded, 
ˆ

Md  is bounded with an upper bound 
0

ˆ
Md , 0b  is bounded 

away from zero, and W  has bounded derivative with respect 
to x̂  and Θ . Furthermore, suppose that a stable and proper 
controller ˆ ( )C s  is designed such that ( )M s  is stable. Then 
the modified parameter adaptation law as given by (24) 
yields the bounded tracking error, namely 

0

ˆˆ ˆ( ) ( )m My y dθ θ− <  as θ → ∞ . 

Proof: Omit for brevity. Note that the theorem can be 
extended so that it is applicable for nth order system. 

5. SIMULATION RESULTS 

The proposed output feedback AFLRC scheme is applied to 
brushless dc motor system. The actual system is a 2nd order 
system as described in (1) with 0 5155a = , 1 1138a = , 

0 140368b = , and 1 0b = . The parameters are specified in 
accordance with the system identification results for an actual 
motor system from Shinano Kenshi Corp. The parameters of 
the K-filters are set to 1 2000k =  and 2 2500k =  for fast 
convergence. For verification purpose, the output disturbance 
is assumed to be a rectangular periodic signal (with 
amplitude switching between -0.05 and 0.05) plus some 
white noise, i.e., 

( ) ( )

2 2

0
1 1ˆ 0.08 1 1

1 1
20 200

l

l

d l N
s s

θ
∞

=−∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎡ ⎤

= − Π − − +⎜ ⎟ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎜ ⎟⎣ ⎦+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ , 

where 

 
1 1,

( ) 0.5 1,
0 otherwise,

θ
θ θ

⎧ <
⎪Π = =⎨
⎪
⎩

 

and 0N  is white noise with zero mean and variance equal to 
-610 . Note that both disturbances have been low-pass filtered 

so that they are continuously differentiable. Parameters of 
repetitive controller are specified to target the fundamental 
frequency and the first three harmonic frequencies of the 
periodic disturbance, i.e., 
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2 24

2 2
1

2ˆ( )
2

i ni ni

i i ni ni

s s
R s

s s
ζ ω ω
ξ ω ω=

+ +
=

+ +Π , 

where 

 
1 2 3 4

0.2,  0.0002,
, 3 , 5 , 7 .

i i

n n n n

ς ξ
ω π ω π ω π ω π

= =

= = × = × = ×
 

A simple lead compensator  

 ( ) ( )ˆ ( ) 150000 /50+1 /1000+1 C s s s=  

is sufficient to stabilize the overall output feedback AFLRC 
system. Suppose a motion control task demands the system to 
initially run at 60 rev/s and then speed up to 65 rev/s and 
finally speed down to 55 rev/s. To avoid getting infinite value 
when taking derivative, the reference command is specified 
to have smooth (instead of instant) change. Figure 2 
compares the frequency responses of 2

1( )( )M s s sα+  or 
2

1( )( )M s s sα+  corresponding to three different designs. The 
dashed line labeled ‘w/o RC#1’ is the design with ˆˆ 0Ru =  

and ( )2( ) 1 1200 90000M s s s= + +  (i.e., without repetitive 
control); the solid line labeled ‘with RC’ is the proposed 
output feedback AFLRC design; the dash-dot line labeled 
‘w/o RC#2’ is the design with ˆˆ 0Ru =  but having a different 

( )2 9( ) 1 108000 8.1 10M s s s= + + ×  to produce 
approximately the same magnitude reduction at the four 
frequencies as specified in the case with repetitive control 
(the solid line). Figure 3 compares the tracking performance 
and control input for the three designs. The tracking error and 
the dead zone for the parameter update law, i.e., 

0

ˆ
Md  in (24), 

are significantly reduced for the output feedback AFLRC 
design when compared to those for the design labeled ‘w/o 
RC#1’. The design labeled ‘w/o RC#2’ has even better 
tracking performance, but the corresponding control input 
becomes large and goes negative most of the time, which will 
cause problems if the actuator has saturation limits. 

6. CONCLUSION AND FUTURE WORK 

This paper presents the design of a new spatial-based 
repetitive control system, which can be applied to rotational 
motion systems with uncertain parameters operating at 
varying speeds and subject to spatially periodic disturbances. 
The proposed design combines two control paradigms, i.e., 
adaptive feedback linearization and repetitive control. The 
overall output feedback AFLRC system can be proved to be 
stable and have bounded tracking error. Feasibility and 
effectiveness of the proposed design are further justified by 
simulation. Although this paper only presents the design 
method for a 2nd order system, the proposed design may be 
extended to higher order systems, which is currently under 
our investigation. 
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Figure 1: The control structure for the proposed adaptive robust repetitive control system. 
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Figure 2: Frequency response from disturbance to tracking error. 
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Figure 3: Comparison of tracking performance and control input for three different designs. 
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