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Abstract: The paper presents the simulation toolkit in MATLAB/Simulink R© for the fractional
order discrete, state-space system education. The toolkit has been written as a set of C-MEX
S-functions which simulate several fractional order blocks - e.g. fractional order difference,
fractional order discrete state-space representation, fractional order Kalman filter. This way
the C code generation capability (using Real Time Workshop) has been provided. This allowed
to easily implement the control algorithms in the experimental setup. For analysis of fractional
order systems the ultracapacitor has been chosen. It represents the real-life system which is
inherently of fractional order. Altogether the simulation toolkit and the experimental testbed
form the basis for the advanced fractional order control lab at Institute of Control and Industrial
Electronics, Warsaw University of Technology.
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1. INTRODUCTION

The fractional order calculus and its applications at first
glance seem to be a very difficult subject. This might seem
especially so for graduate students who have gone through
traditional (integer order) calculus and basic control dur-
ing the undergraduate education e.g. in Control and Com-
puter Engineering. However, teaching the fractional order
calculus and its application in control does not have to be
prohibitive for graduate students with training in calculus
and control. What is needed is the set of tools to make the
process easier and more productive.

There are very few tools for simulation and design of
continuous time fractional order dynamic systems that
may be considered as a support in teaching activities. One
good example is the NINTEGER toolbox made by Duarte
Valério, and described in Valério [2005]. It contains a set
of MATLAB R© functions to design and simulate fractional
order systems generally in frequency domain. Another tool
for simulation of fractional order systems in time domain
written by Ivo Petraš implements Digital Fractional Order
Differentiator/integrator - FIR type and IIR type, see
Petraš [2003a,b].

In our advanced control systems lab we have prepared a set
of simulations and experiments for graduate students who
want to study the properties of fractional order systems.
This is a combination of MATLAB/Simulink R© toolkit
and an experimental setup. The students entering the
lab should have the basic knowledge of fractional order
calculus and fractional order systems. This is the subject
of one of the lectures on Advanced Control. First part of
the lab is devoted to simulation of the fractional order
systems. Students start with the simulational analysis of
fractional difference, and they get acquainted with the
discrete fractional order state-space (DFOSS) model in

deterministic and stochastic case. Then, they are ready
for designing the simple control algorithms for this model.
Every student is required to design a pole placement
regulator. Depending on the group the system can be
deterministic or stochastic and the state variables can
be fully accessible or not. In stochastic case a design of
fractional order Kalman filter may be required.

The paper is organised as follows. Basic notions of discrete,
fractional order systems are recalled in Section 2. General
features of the toolkit are described in Sections 3, the
characterstics of its components are given in Sections 3.1,
3.2, 3.3, and 3.4. The examples of students simulations are
given also there. After having completed the simulation
part the students can desing a real-life experiment with
the fractional order plant. This is the system with the
ultracapacitor described in Section 4. Student’s task is
to design a feedback pole placement controller for this
plant and to check if its performance meets the design
specifications. Examples of student’s design is given in
Section 4 too.

2. DISCRETE FRACTIONAL ORDER STATE-SPACE
SYSTEM

Let us start our exposition with some basics of the frac-
tional calculus used throughout the paper. In this paper
the following definition of the fractional order difference
will be used.

Definition 1. Fractional order difference is giving as fol-
lows:

∆nxk =
k

∑

j=0

(−1)j

(

n

j

)

xk−j

where, n ∈ R, is a fractional degree, R, is the set of real
numbers and k ∈ N (N, is the set of natural numbers) is
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a number of sample for which the approximation of the
derivative is calculated.

�

In most general case, when the orders of the system
equation are not the same, the general fractional order
states-space system can be defined as following (for more
details see Sierociuk and Dzieliński [2006]):

Definition 2. The general linear discrete fractional order
system in state-space representation is given as follows:

∆Υxk+1 = Adxk + Buk (1)

xk+1 = ∆Υxk+1 −
k+1
∑

j=1

(−1)jΥjxk−j+1. (2)

yk = Cxk (3)

where:

Υk = diag















(

n1

k

)

...
(

nN

k

)















∆Υxk+1 =







∆n1x1,k+1

...
∆nN xN,k+1







and N = [n1, ..., nN ]T is a matrix of the system equations
orders.

Solution of such a defined system and its properties are
given in Dzieliński and Sierociuk [2006, 2007b]

3. FRACTIONAL ORDER STATE SPACE TOOLKIT

The Fractional Order State Space Toolkit was written as
a set Simulink blocks of C-MEX S-Functions which are
written in C programming language. This technic was
used especially for making the use of this toolkit with
Real Time Workshop (RTW) possible. RTW is used in
order to achieve the executable code generation (e.g. for
dSPACE control cards). Functions also use work vectors
that allow to use more than one block of the same
type at one time. The toolkit is available on the Web
at http://www.ee.pw.edu.pl/ ˜ dsieroci/fsst/fsst.htm and
manual can be found in Sierociuk [2005].

The toolkit contains the following blocks :

- ”Fractional Order Difference” described in Section 3.1
- ”Fractional Order State-Space System” described in

Section 3.2
- ”Fractional Order Stochastic State-Space System”

described in Section 3.3
- ”Fractional Kalman Filter” described in Section 3.4

3.1 Fractional Order Difference Block

The code of the Fractional Order Difference Block is
implemented in fodif.c file (Figure 1.

The S-function fodif has the following parameters: N,Ts,
Nbuf , where

N is a matrix of orders

Ts is a sample time
Nbuf is a width of a circular buffer of past states
vectors (memory length L).

Fig. 1. Use of Fractional Order Difference Block

Example 1. Fractional order differences of step function

The results of obtaining fractional order differences of step
function for different orders n = 0.5, 0.7, 1.5 are presented
in Figure 2.
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Fig. 2. Differences of step signal for n = 0.5, 0.7, 1.5

3.2 Discrete Fractional Order State-Space System Block

The code of the Discrete Fractional Order State-Space
System Block is implemented in fsim x0.c file.

The S-function fsim x0 has the following parameters:
Ad,B,C,N, Ts,Nbuf, x0.

Ad,B,C,N are the system matrices, where Ad ∈
R

Nx×Nx , B ∈ R
Nx×Nu , C ∈ R

Ny×Nx , N ∈ R
Nx .

Ts is the sampling time.
Nbuf is the memory length.
x0 is the vector of initial conditions.

where Nx is the number of states, Nu is the number of
inputs, Ny is the number of outputs (see Figure 3).

Example 2. Simulation of Discrete Fractional Order State-
Space System for different orders n = 0.5, 0.8, 1

The system is given by the following matrices:

Ad =

[

0 0.1
−0.1 −0.2

]

,N =

[

n
n

]

(4)
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Fig. 3. Use of Discrete Fractional Order State-Space Sys-
tem Block

B =

[

0
1

]

, C = [ 0.1 0.3 ] (5)

The results of simulation are presented in Figure 4.
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Fig. 4. Outputs of the Discrete Fractional Order State-
Space System for n = 0.5, 0.8, 1

3.3 Discrete Stochastic Fractional Order System Block

Definition 3. The discrete linear fractional order stochas-
tic system in state-space representation is given by the
following set of equations

∆nxk+1 = Adxk + Buk + ωk (6)

xk+1 = ∆nxk+1

−
k+1
∑

j=1

(−1)j

(

n

j

)

xk+1−j (7)

yk = Cxk + νk (8)

�

The Discrete Stochastic Fractional Order State-Space Sys-
tem Block has the same properties as the Discrete Frac-
tional Order State-Space System Block. It has only one
additional input omega for the system noise ωk. The
output noise νk is easy to add outside of the block as it is
presented in Figure 5.

Example 3. Simulation of Stochastic Fractional Order
State-Space System for different values of noise variance

The system has the same matrices as in Example 2,
however the orders matrix is equal to

Fig. 5. Use of the Discrete Stochastic Fractional Order
State-Space System Block

N =

[

0.7
1.2

]

(9)

and the noise has the values:

in the first case:

E[ωkωT
k ] =

[

0.01 0
0 0.01

]

in the second case:

E[ωkωT
k ] =

[

0.001 0
0 0.001

]

The results are presented and compared with deterministic
system in Figure 6.
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Fig. 6. Outputs of the Discrete Stochastic Fractional
Order State-Space System for different values of noise
variance

3.4 Fractional Kalman Filter Block

For the system defined in Section 3.2 the Fractional
Kalman Filter is defined as follows (for more detail see
Sierociuk and Dzieliński [2006] ):
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∆Υx̃k+1 = Adx̂k + Buk

x̃k+1 = ∆Υx̃k+1 +

k+1
∑

j=1

(−1)jΥj x̂k−j+1

P̃k = (Ad + Υ1) Pk−1 (Ad + Υ1)
T

+

+Qk−1 +
k

∑

j=2

ΥjPk−jΥ
T
j

Kk = P̃kCT (CP̃kCT + Rk)−1

x̂k = x̃k + Kk(yk − Cx̃k)

Pk = (I − KkC)P̃k

where: R is a covariance matrix of output noise ν and Q is
a covariance matrix of system noise ω. Both of this noises
are assumed to be independent and with zero expected
value.

The S-function fkf.c has the following parameters appro-
priately A,B,C,N ,P,Q,R, x0, T s,Nbuf .

A,B,C,N are the system matrices.
P,Q,R, x0 are the FKF matrices where P ∈ R

Nx×Nx ,
Q ∈ R

Nx×Nx , R ∈ R
Ny×Ny , x0 ∈ R

Nx

Ts is the sampling time
Nbuf is the memory length

The number of system outputs (rows number of C matrix)
is limited to one (in future versions it will not be limited).

Fig. 7. Diagram of the state variables estimation using
Fractional Kalman Filter

Example 4. State variables estimation using Fractional
Kalman Filter

The system has the same matrices as in Example 3, the
noise variances have the values

E[νkνT
k ] = 0.01, E[ωkωT

k ] =

[

0.01 0
0 0.01

]

Fractional Kalman Filter parameters used in the example
are:

P0 =

[

100 0
0 100

]

Q =

[

0.01 0
0 0.01

]

R = [ 0.01 ] , x̂0 = [ 5 5 ]

The block diagram of the system is presented in Figure 7,
and the results of simulations are given in Figure 8
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Fig. 8. Results of estimation with FKF compared with
original state variables

3.5 State feedback control with Fractional Kalman Filter

Fig. 9. Diagram of the state feedback control with FKF as
an estimator

Example 5. State feedback control with Fractional Kal-
man Filter as a state variables estimator

The system has the same matrices as in Example 3, the
noise variances have the values

E[νkνT
k ] = 0.01, E[ωkωT

k ] =

[

0.01 0
0 0.01

]

Fractional Kalman Filter parameters used in the example
are:

P0 =

[

100 0
0 100

]

Q =

[

0.01 0
0 0.01

]

R = [ 0.01 ] , x̂0 = [ 0 0 ]

The controller matrix is given as

K = [−0.05 −0.05 ] (10)

The block diagram of the state feedback control system is
given in Figure 9 The results are presented in Figure 10.
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Fig. 10. Results of state feedback control with FKF com-
pared with output of the desired system

4. STATE FEEDBACK CONTROL OF THE SYSTEM
WITH ULTRACAPACITOR

Ultracapacitors are electrical energy storage devices which
offer high power density which was not possible to achieve
in traditional capacitors. In the papers Quintana et al.
[2006], Westerlund and Ekstam [1994] very efficient ap-
proach using fractional order calculus for continuous time
modelling was presented. The papers Dzieliński and Siero-
ciuk [2007c] and Dzieliński and Sierociuk [2007a] present
results of ultracapacitors modeling using Discrete Frac-
tional Order State Space and continuous frequency domain
model.

The experimental setup, used in modeling, estimation
and control experiments, contains the electronic circuit
with ultracapacitor connected to the DS1103 PPC Control
Card. The electronic circuit is presented in Figure 11 and
is composed of the operational amplifier OPA544, a 180Ω
resistor and an ultracapacitor of 0.22F at 5V . OPA 544 is
a high current operational amplifier and it works in voltage
follower configuration.

b

6

b

HHHHHH

������

Cudac(t) u(t)

6

b

uuc(t)

6

b

OPA 544
R−

+

-i(t)

Fig. 11. Electric diagram of ultracapacitor system

Figure 12 presents Simulink scheme of the state feedback
regulator for the system with ultracapacitor for which elec-
tronic circuit scheme is presented in Figure 11. Additional
blocks representing A/D and D/C converters available in
DS1103 PPC Control Card are shown, too. The satura-
tion block is used only for the purpose of restraining the
ultracapacitor’s voltage.

Fig. 12. State feedback regulator for the system with
ultracapacitor

By output error minimalization the following discrete
fractional order state-space system is obtained:

Ad =

[

0 1
0.035311 0.001815

]

, B =

[

0
1

]

,N =

[

0.2
0.2

]

C = [−0.018624 0.188432 ] ,D = [ 0 ] , Ts = 0.1s

Results of discrete fractional order modelling of the system
with ultracapacitor are presented in Figures 13 and 14.
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Fig. 13. Results of discrete modelling of system with
ultracapacitor, outputs
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Fig. 14. Results of discrete modelling of system with
ultracapacitor, error

For such an identified model the state feedback controller
is used. The controller matrix has the form:
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K = [0.05 0.05]

Figure 15 presents results of state feedback control of the
system with ultracapacitor.

Parameters of the Fractional Kalman Filter used in the
example are as follows:

P0 =

[

100 0
0 100

]

, Q =

[

0.01 0
0 0.01

]

and
R = [ 0.01 ] .

the initial condtions are assumed to be

x0 = [ 0 0 ] .

Figure 15 shows the system output compared with the
model given by system matrix A−BK. Figure 16 presents
the system input and reference input.
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Fig. 15. State feedback control results, outputs
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Fig. 16. State feedback control results, inputs

5. CONCLUSIONS

In the paper the simulation software toolkit and the
experimental setup supporting the control education of
fractional order systems has been presented. The toolkit
provides basic insight into the performance and desing of
fractional order systems in discrete state space representa-
tion. Several fractional order building blocks have already

been implemented as C-MEX S-functions allowing the
simulation of simple control systems. This in turn allows
to build a real-life fractional order control system for a
plant of fractional order - ultracapacitor.

Both tools have been used in Advanced Control lab for
a selected group of students and the set of examples of
students simulations and experiments is presented. Their
first impressions after having gone through the lab were
encouraging. The students were able to grasp the basic
feeling of fractional order systems fairly quickly and they
achieved the correct results in their simulation and real
experiments without major difficulties. The students eval-
uation of the experiments was above the departamental
average.
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A. Dzieliński and D. Sierociuk. Controllability and ob-
servability of fractional order discrete state-space sys-
tems. In Proceedings of 13th IEEE/IFAC International
Conference on Methods and Models in Automation and
Robotics, MMAR’07, pages 129–134. Szczecin, Poland,
27-30 August, 2007b.
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