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Abstract: In a holonic manufacturing execution system, operations assignment and scheduling can be 
decided in real time by automatic negotiation between order holons and resource holons. Negotiation is 
used to conciliate the goals pursued by the software agents who constitute the control part of the holons. 
This paper proposes mathematical criteria to represent the agents’ goals, a game theoretic approach to 
analyze the possible outcomes of the negotiation process, and a Petri net model to represent the interaction 
protocols between order and resource agents. This model is analyzed in view of verifying the required 
properties of the protocol. In particular, certain conditions are proposed under which the following 
requirements are verified: no-blocking, selection of exactly one resource for each order, protocol 
termination in a bounded time. 

1. INTRODUCTION 

For the last ten to twenty years, the agent paradigm has 
become essential to conceive, describe and implement 
distributed decision, execution and control processes in many 
application frameworks, particularly in manufacturing 
systems, supply chains and service networks. According to 
Fox and co-authors (2000), “an agent is an autonomous, goal-
oriented software process that operates asynchronously, 
communicating and coordinating with other agents as 
needed”. From this definition, it clearly appears that the 
actions performed by an agent tend to replace actions 
performed by human actors in more traditional organizations. 
These tasks may be rather complex, such as exchanging 
messages, taking decisions, and even developing strategies.   

Multiple agent systems open new possibilities for distributed 
execution and control. In the manufacturing context, this 
trend to use intelligent agents has often been combined with 
the drive toward heterarchical and holonic organization. 
Autonomous cooperating agents associated with 
manufacturing objects are also called ‘holons’ (Van Brussel 
et al., 1998). In the holonic reference architecture for 
manufacturing systems, called PROSA, three basic types of 
intelligent agents were identified: order agents, product 
agents, and resource agents. In this architecture, staff agents 
were added to assist the basic agents with expert knowledge. 

The first purpose of this paper is to identify the goals of the 
two types of agents involved in the execution stage: order 
agents and resource agents. The nature of these goals creates 
some competition: order agents compete for the use of 
resources, resource agents compete to execute the orders. In 
the considered distributed framework, the most appealing 
technique for solving conflicts is negotiation, or more 
precisely automated negotiation, since it only involves 
software agents. The second section of the paper describes 

the holonic model of the Enterprise network. Section 3 states 
that the outcome of an automated negotiation game could be 
theoretically predicted by game theory as a non-dominated 
solution. In practice, some key properties to be satisfied by a 
negotiation protocol are feasibility and termination in a finite 
time. The paper contribution in part 4 is to propose a 
negotiation protocol described as a time Petri Net and 
analyzed to show that these properties are verified. 

2. MODEL OF AN ENTERPRISE NETWORK 

2.1 Basic constructs 

Several incentives have been initiated at the international 
level, to characterize the main Enterprise entities by basic 
constructs. In this matter, one of the leading incentives has 
been the UEML project (Vernadat, 2001) in which the 
proposed model involves Enterprise objects such as 
production units, machines, storage places, product structure, 
production orders, algorithms, and the enterprise agents who 
organize the objects in view of achieving particular goals. 

2.2 Enterprise agents 

A holonic system is a particular multi-agent system in which 
agents are associated with manufacturing processes on 
manufacturing objects. Holons are defined in the PROSA 
Reference Architecture as “autonomous co-operating agents” 
(Van Brussel et al., 1998). In the considered holonic 
execution system, the system operates by negotiation 
between order agents and resource agents. The considered 
structure is purely heterarchical, tasks being executed on 
resources according to local task schedulers run by resource 
agents. Agents of both types have to accomplish their tasks in 
an autonomous fashion, without any centralized control.  
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According to Zambonelli and co-authors (1994), there are 
two main types of multiple agent systems: 

• Distributed problem solving systems, in which agents are 
permanent and explicitly designed to achieve a given goal.  

• Open systems in which agents are designed to achieve an 
individual goal, can dynamically leave and enter the system.  

Manufacturing systems include both types of agents. 
Resources are permanent objects in the manufacturing 
system. The operation of each resource is organized by its 
own resource agent. Resource agents and product agents are 
permanently assigned specific goals and specific roles in the 
system, that is, a well defined task or responsibility in the 
context of the overall system. On the contrary, orders are 
temporary objects dynamically created according to demands 
for end products and to material requirements for 
manufacturing intermediate and end products. Order agents 
are thus dynamic. Their interactions with the other agents are 
programmed in the database of the associated product agent, 
which contains the lists of necessary inputs and candidate 
resources with expected lead-times. To each input product 
correspond a new order agent and its associated data: 
product, quantity, due date. So, globally, the system is open 
since an order agent is created at each order arrival and 
destructed at order completion. 

3. AGENTS GAMES 

3.1 Concurrency and competition between order and 
resource agents 

Agents are goal oriented and their goals may be antagonistic. 
Their behaviour and interactions can be analyzed with the 
help of Game Theory (see e.g. (Osborne and Rubinstein, 
1994)): they constitute a finite set of players in a finite set of 
states, each player taking a decision on the basis of a 
preference relation represented by a utility function. Agents 
typically need to interact with each other in order to exchange 
knowledge, coordinate their activities and achieve their goal 
as well as possible. In terms of game theory, goal 
achievement corresponds to maximizing a utility function 
while taking into account that the other players (agents in our 
case) also maximize their own utility function.  

For instance, order agents cannot accomplish their mission 
without using some resources. As a consequence of the 
interaction between each particular resource agent and 
several order agents, conflicts may be generated on the use of 
the resource and these conflicts have to be solved locally, by 
resource agent decisions, with possible prior negotiation 
between the order agents and the resource agent. In this 
respect, a clear limitation of software agents is the 
impossibility to create innovative solutions. They can only 
run optimization algorithms, heuristics or priority rules, or 
choose between several pre-programmed solutions. On the 
other hand, many advantages can also be identified: rapidity 
and memory size, rigor and objectivity. However, the agents’ 
objectivity may not be sufficient to obtain globally optimal 
solutions, mainly because of the distributed decisional 
structure with limited information. Agents can be seen as 

players in a game. Being both reactive and proactive, they 
always produce the best local response (with respect to their 
own criterion) to the environment (created by the other 
players) that they are able to perceive. 

 i) The order agent goal 

Basically, the goal of an order agent is to obtain the execution 
of its associated order, denoted o, by an appropriate resource, 
m, at the best possible date. The set of appropriate resources 
able to execute the order o is denoted A(o). The information 
on the set A(o) is provided to the order agent by its associated 
product agent. By construction of the data base of products, 
the constraint A(o) ≠ ∅ is supposed always valid. 

The order agent goal is then translated into a utility function 
to be maximized or, in the resource sharing context, into an 
economic criterion to be minimized, under the compatibility 
constraint: 

)(oAm∈       (1) 

Depending on the application case, this criterion, denoted , 
may be defined in different ways. It provides the order agent 
goal with a quantitative index for comparing the proposals 
from resource agents, selecting the best resource and 
evaluating the level of achievement of the goal.  

oC

The desired time window of an order o is the interval starting 
with its release date, ro, and ending with its due date, do. Let 

 be the starting time and  the processing time of order 
o on machine m.  
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The desired time window of order o is achievable on machine 
m if the processing interval is included in the time window: 
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a) In some cases, a minimum delay criterion is selected: 
under constraints (1) and (2).  ,0)max( o

m
o

m
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b) In other cases, the "makespan" criterion may be selected, 
when early intervals are preferred:  under 
constraints (1) and (2). 

m
o

m
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c) Alternatively any deviation from the due date may be 
penalized with order dependent weights: 

,0)max(,0)max( o
m
o

m
oo

m
o

m
oooo dptptdC −++−−= γβ  

under constraints (1) and (2). 

 ii) The resource agent goal 

The main roles of a resource agent are to estimate the state of 
its resource, get information on the state of the resources 
connected to it, negotiate with the order agents for whom the 
resource is compatible, decide when the resource should be 
active or stopped, decide what tasks are to be processed, and 
monitor the resource execution processes. Generically, the 
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problem of deciding what orders should be processed and at 
what time, is referred as a scheduling problem. However, 
depending on the resource type, other Operations Research 
problems may better represent the addressed problem: bin 
packing problems for glass cutting machines (Blanc et al., 
2006), knapsack problem for order selection under limited 
capacity, for instance.  

The scheduling problem to be solved by each resource agent 
is generally a single machine problem. Nevertheless, it can 
often be globally efficient to include in the problem, in its 
criterion or in its constraints, the predicted effect of the 
solution on other resources, in particular on critical ones and 
on the ones frequently used just before or after.  

Let  be a set of orders compatible with resource m. Sets 
 and  are dual in the representation of the 

compatibility relation: 

mΟ
mΟ )(oA

)(oAmΟo m ∈⇔∈ .     (4) 

The optimization criterion that represents the goal of a 
resource agent is normally consistent with the order agents' 
criteria. For instance, if criterion b) is used by all the order 
agents, possible criteria that can be used by the resource 
agent are: 
• the makespan criterion : 

( )m
o

m
o

mOo
m ptC +=

∈ 
max  under constraints (1) and (2). 

• the sum of execution times :  

( )  
 
∑
∈

+=
mOo

o
m
o

m
oom -rptC α  under constraints (1) and (2). 

3.2 The 1 order- q resources subgame 

Game Theory relies on two main assumptions: players’ 
rationality and integration of the information available on the 
other players’ strategy. Accordingly, the decision of each 
player maximizes his utility function in the constrained set 
imposed by the other players. Several types of games have 
been defined, depending on the sequence of game stages. In a 
static (or strategic) game, there is only one stage and the 
players simultaneously select their strategy. In dynamic (or 
sequential games), players generally act and react iteratively 
in a predetermined order. 

In the considered multi agent manufacturing execution 
system, the global assignment and scheduling game can be 
decomposed into subgames of the two following types:  

• the 1 order - q resources subgame: an order agent sends a 
request to q candidate resources, waits for the answers and 
selects the resource with the best offer for its execution, 

• the 1 resource - n orders subgame: a resource agent selects 
s among the n orders requests and proposes execution dates 
to the s order agents. 

In order to avoid the possibility of failure in the negotiation 
protocol, the study is restricted to the case s = n for the 

second type of sub game. This means that if a resource is 
technically eligible for executing an order, its associate 
resource agent must answer positively to the order agent, 
even if the due date cannot be satisfied. Note that this 
assumption is consistent with order agents criteria a), b), c) 
proposed in section 3.1.i), and for which late deliveries are 
allowed. Under this assumption, the negotiation game may 
proceed in no more than two stages:  

• a Call For Proposals (CFP) is sent by an order agent to q 
candidate resources 

• each of the q candidate resource agents sends a proposal 
and the best one is selected by the order agent. 

In a general setting, combination of all the subgames of the 
two types (1 order - q resources and 1 resource - n orders) 
leads to a complex sequential game for which the outcome is 
very difficult to predict and convergence is not guaranteed, at 
least in a pre-specified bounded time. On the contrary, the 
problem becomes much simpler if each resource agent 
applies an on line scheduling algorithm to position each order 
one after the other and waits for the result from the current 
order agent before processing the following order.  

The multi-agent control system considered is an open system 
where orders keep arriving randomly and should be 
processed upon arrival. As stressed by several authors, such 
as Shen and co-authors (2006), real-time scheduling 
techniques are clearly the best ones for such systems. Many 
algorithms for single machine on line scheduling have been 
proposed in the literature, for instance the EQUI and LOGI 
heuristics in (Pesenti et al., 2006). In a real-time scheduling 
algorithm, orders are treated one by one, sequentially. In the 
case of 2 orders arriving exactly at the same time, the tie can 
be broken arbitrarily. Treatment of an order results in 
provisionally assigning a time window for executing the 
order on the resource. This assignment defines the resource 
agent proposal to the order agent. Once the order agent has 
selected the best proposal, the execution time window is 
reserved on the chosen resource and liberated on the other 
resources. For data consistency, treatment of a new order 
should not begin before the decision on the preceding 
proposal has been taken and the planned execution schedule 
updated. 

It can be noted that if orders are treated sequentially without 
any recursive change of previous decisions, then, for each 
resource )(oAm∈ , the set  is simply the last arriving 
order: 

mΟ
{ }oΟm =  and the two current criteria  are 

equivalent and reduce to minimizing the delivery date: 
, under constraints (1) and (2). 

mC

m
o

m
o pt +

Under such an algorithm, each resource agent simply treats a 
1 resource - 1 order problem and such elementary problems 
are evaluation rather than optimization tasks. The negotiation 
game then reduces to a sequence of 1 order - q resources 
subgames. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15941



 
 

4  AGENTS’ NEGOTIATIONS 

Agents' negotiation can be defined as “the process by which a 
group of agents comes to mutually acceptable agreement on 
some matter” (Jennings et al., 2001). It is thus considered as 
the most fundamental and powerful mechanism for managing 
inter-agent dependencies for decisions on task execution. In 
the 1 order - q resources subgame, negotiation can be seen as 
the process through which one order agent maximizes its 
utility function by selecting the best candidate resource to 
process its order. 

4.1 Negotiation protocols 

The negotiation mechanism proposed in this study is a 
simplified version of the “contract net protocol” (CNP) 
(Smith, 1980). A semi-formal specification of the CNP 
protocol has been proposed in (Odell et al., 2000), using 
Agent-UML. Some extensions of this protocol have also been 
proposed, to include in particular a multi-criteria evaluation 
of proposals (Ounnar and Pujo, 2005). 

Here, the order agent acts as an initiator, in charge of getting 
its order processed in the most efficient manner. To this end, 
it sends a CFP (Call For Proposal) to all the resource agents 
eligible for processing the order (the participants in the CNP 
terminology). Each such resource agent acts as a potential 
bidder in submitting an execution proposal to the order agent. 
A proposal simply consists of a proposed time window for 
executing the order. For any order entering the system, the set 
of candidate resource agents is supposed never empty. 
Participants receiving a CFP cannot refuse it and should 
answer within a limited time. In any case, proposals are 
supposed honest and unbiased. The order agent evaluates the 
proposals and selects the current best one. As long as better 
offers arrive, the current best offer is updated. At each update 
of the best offer, the previous best offer is refused. 
Negotiation ends when all the proposals have been compared. 
Another difference with the CNP is that only the negotiation 
stage is represented. The purpose of these assumptions is to 
propose a negotiation protocol easily implemented in any 
ACL (Agent Communication Language) and to describe a 
framework in which a negotiation failure would never occur. 

4.2 Order-resource negotiation models  

Taking the negotiation requirements into account, a 
negotiation model based on the time Petri net formalism with 
coloured concept, is proposed. Coloured Petri Nets (CPN) 
(Jensen, 1992) are well-suited for systems that consist of a 
number of processes which communicate and synchronize. 
They can be used for design, specification, simulation and 
verification of systems. The marking of places, which 
describes the state of the system, corresponds to a set of 
coloured tokens. In ordinary Petri nets, tokens do not support 
information while in coloured nets, tokens are labelled by a 
type of data – possibility structured – called colour. For 
instance, the list of eligible resources for a given order can be 
associated with a data type in a place for this order model. 
Transitions of the Petri net model represent the change of 
states. In our model, each transition is associated with an 
action of an agent.  

As previously described, time aspects are also very important 
in the approach. The assumption of representing program 
runs and evaluation tasks by time intervals seems reasonable 
and justifies the representation by Time Petri nets (Merlin, 
1974). Time intervals are thus used to represent several types 
of actions: order scheduling by a resource agent, evaluation 
and comparison of proposals by the order agent. 
Consequently, time intervals have to be included in the 
negotiation model. Extended CPN with a time concept have 
been proposed to introduce a global clock and allow each 
token to carry a time stamp indicating when it is ready to be 
consumed by a transition. However, the time concept in the 
negotiation protocol should rather be associated with 
transitions, as they represent actions with bounded random 
duration. Moreover, when time is associated with transitions, 
logical conditions are tested first and time conditions are 
executed next. Using such formalism thus presents two 
interesting characteristics: on the one hand, it makes possible 
an explicit representation of parallelism, concurrency, 
synchronization and resource sharing. On the other hand, the 
time intervals attached to transitions introduce additional 
constraints on the protocol. In the considered Time Petri net, 
a temporal interval is associated with certain transitions. For 
the modelling purpose, the Time Petri net model used in this 
study has a strong firing rule and infinite-server semantics. In 
other words, an enabled transition must be fired at the static 
latest firing time and k firings of a transition can be 
performed simultaneously (or at the same time) if the 
transition is k-enabled.  

The negotiation model for an order agent is proposed in 
Fig.1. Initialization is represented by transition t0. The 
available order agent sends the CFP (place p7) to each 
resource of list  and waits for a proposal (place p)(oA 2). 
When the first proposal arrives (place p8) from a resource 
agent, the order agent initiates the best proposal (place p6) 
and waits for other proposals (place p3). When another 
proposal arrives from a resource agent, the order agent, which 
is in the state 'waiting for proposal' (place p3), evaluates this 
proposal (place p4) and compares it with the current best 
proposal, to select the best one. If the result of the 
comparison (place p5) is positive, the evaluated proposal 
becomes the current best proposal (place p6) and the last best 
proposal becomes a refused proposal (place p11). Hence, 
place p11 informs the considered resource agent that its 
proposal has been refused. As long as better offers arrive, the 
current best offer is possibly updated. At each update of the 
best offer, the previous best offer is refused. When all 
resource agents proposals have been compared (place p13), 
the negotiation is ended (place p14) and the current best 
proposal is accepted (place p12). In the coloured Petri net 
model, the exact number of tokens and their data values are 
determined by the arc expressions with respect to the firing 
rules of transitions. 

The negotiation model for any resource agent is described on 
Fig.2. For each particular order agent, each resource agent 
acts as an evaluation module that produces an offer in a finite 
time. The q resource agent Petri nets of Fig.2 can be merged 
into the order agent Petri Net of Fig. 1 by merging the q+1 
places labelled “CFP sent”, the q+1 places labelled “Proposal 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15942



 
 
sent”, the q+1 place “Proposal accepted” and the q+1 places 
“Proposal refused”.  

 

Fig.1 Negotiation model for order agents 

 

Fig.2 Negotiation model for a resource agent 

 

4.3 Protocol requirements verification 

In the analysis, randomness of processing times requires 
properties to be valid under any feasible firing trajectory. In 
the 1 order - q resources interaction protocol, colours only 
represent the different candidate resources contained in 

. Thus the idea developed in this section is to aggregate 
colours representing resources. The aggregated negotiation 
model of the set of candidate resource agents has the same 
structure as in Fig. 2, an initial state with q = Card(A(o)) 
tokens in place p

)(oA

9 and time intervals [t6min, t'6max] and [t8min, 
t'8max] respectively associated with transitions t6 and t8, with: 

. 
⎪⎩

⎪
⎨
⎧

==

==

∈∈

∈∈

))('(max',))((min

))('(max',))((min
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evaluation 
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proposal 
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refuse 
proposal 

t4
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proposal refused

proposal accepted

p6
best 
proposal 

t9

p13

t10

p14
negotiation 
finished 

p1
agent 
available 

[t3,t'3] 

q 

The order-resource negotiation protocol can then be verified 
and evaluated considering only the Time Petri net of Fig. 3, 
representing a 1 order - q resources interaction protocol.  

p7t0

t1

p2

t2

p3

t3

p4

q 

p8

p5

t5 t4

p11

p6

t9

p13

t10
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p1

[t3,t'3] 

p10

t6 t7
t8

[t6min,t'6max] 

 [t8min,t'8max] 

p12

q q p9

 
p7

p9

p8

p10

p11

p12

t6 t7 t8
[t6,t'6] 

[t8,t'8] 

current schedule 

scheduling 

actualizenull 

proposal refused 

proposal accepted 

proposed schedule 

CFP sent 

proposal sent 

Fig.3 Global model with q resource agents 

In a Time Petri net, the reachability issue leads to 
constructing an infinite number of states. To define a finite 
enumerative analysis method for characterizing the behaviour 
of Time Petri Nets, Berthomieu and Menasche, (1982) have 
proposed to introduce the notion of state class. Informally, a 
state class C = (M;D) can be defined as the union of all firing 
time values which are possible from a given marking M. D 
represents the infinite number of firing times possible from 
M, defined by the set of all solutions of a system of 
inequalities. Using the enabling and firing rules, the state 
class graph can be constructed thanks to the software Tina 
(Berthomieu and Diaz, 1991).  

In order to study structural and time properties of the 
proposed model in Fig. 3, place p0 is not considered as it 
represents an arrival of orders (and a source place). For an 
initial marking equal to M0 = [1 0 0 0 0 0 0 0 q 0 0 0 0 0], the 
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corresponding state class graph has a strongly connected 
structure. The following minimal invariants are computed. 

Places invariants: 
X1 = [1 1 1 1 1 0 0 0 0 0 0 0 0 1] 
X2 = [1 1 0 0 0 1 0 0 0 0 0 0 0 0] 
X3 = [0 0 0 1 1 1 0 1 1 0 1 1 0 0] 
X4 = [q 0 0 1 1 0 1 1 0 0 0 0 1 q] 
X5 = [0 0 1 (q-1) (q-1) 0 0 1 1 0 1 1 0 1] 
X6 = [0 0 0 0 0 0 0 0 1 1 0 0 0 0] 
Transitions invariants: 
Y1= [1 1 (q-1) (q-1) 0 (q-1) q (q-1) 1 1 1] 
Y2 = [1 1 (q-1) (q-1) (q-1) 0 q (q-1) 1 1 1]. 

For q = 3, the state class graph is composed of 28 state 
classes, 40 transitions. Due to page limits, this state graph is 
not presented in this paper. 
From the analysis, the following properties are obtained. 

 The system is structurally bounded as all places of the 
model are bounded, i.e. the set of all places is a conservative 
component.  

 The system is consistent and structurally repetitive, i.e. 
there is a T-invariant strictly non negative Y, such that  
W.Y = 0 (where W is the incidence matrix of the model). 
Thus, the Petri net negotiation model has the non blocking 
property. 

 The system is reversible (or reinitializable) for the initial 
marking of 1 token in place p1 (order agent available) and q 
tokens in places p9 (number of available resources), all other 
places being empty. In fact, the system is bounded and the 
corresponding class graph is strongly connected.  

 The presence of initial tokens in each place invariant 
guarantees the non-blocking property. 

 Given the structure of our model, a time bound of the 
negotiation process can be directly obtained from the worst 
case execution of the model in Fig.3. The time boundedness 
property of the negotiation protocol is thus established by 
considering in the longest possible path for reinitialization in 
the state class graph. For the 1 order - q resources 
negotiation protocol analysed in this section, a global time 
bound B is given by: 

( ) .'''*1 max8max63 tttqB ++−=     (5) 

5  CONCLUSIONS 

Multi-agent execution systems have become popular in the 
context of distributed manufacturing systems, where 
reactivity and flexibility are critical issues. Negotiation is 
certainly the most appealing concept for achieving efficient 
coordination of task execution in such systems. However, 
very few studies have tackled the problem of verifying the 
required properties of such negotiation protocols, the main 
difficulty being in the evaluation of the outcome and time 
duration of complex tasks, in particular the ones involving 
execution of computer programs. The Petri net models 
proposed in this study rely on the approximation of the 
duration of computational tasks by time intervals. A simple 

automated negotiation protocol has been proposed and 
verified with respect to liveness, reversibility, structural and 
time boundedness. 
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