
A Petri net model of distributed control
in a holonic Manufacturing Execution System

I. Demongodin, J-C. Hennet

LSIS, Faculté de Saint Jérôme, Avenue Escadrille Normandie Niémen,
13397 Marseille Cedex 20, France

 (Tel: 33 4 91 05 60 00; e-mail: isabel.demongodin (jean-claude.hennet)@lsis.org).

Abstract: In a holonic manufacturing execution system, operations assignment and scheduling can be
decided in real time by automatic negotiation between order holons and resource holons. Negotiation is
used to conciliate the goals pursued by the software agents who constitute the control part of the holons.
This paper proposes mathematical criteria to represent the agents’ goals, a game theoretic approach to
analyze the possible outcomes of the negotiation process, and a Petri net model to represent the interaction
protocols between order and resource agents. This model is analyzed in view of verifying the required
properties of the protocol. In particular, certain conditions are proposed under which the following
requirements are verified: no-blocking, selection of exactly one resource for each order, protocol
termination in a bounded time.

1. INTRODUCTION

For the last ten to twenty years, the agent paradigm has
become essential to conceive, describe and implement
distributed decision, execution and control processes in many
application frameworks, particularly in manufacturing
systems, supply chains and service networks. According to
Fox and co-authors (2000), “an agent is an autonomous, goal-
oriented software process that operates asynchronously,
communicating and coordinating with other agents as
needed”. From this definition, it clearly appears that the
actions performed by an agent tend to replace actions
performed by human actors in more traditional organizations.
These tasks may be rather complex, such as exchanging
messages, taking decisions, and even developing strategies.

Multiple agent systems open new possibilities for distributed
execution and control. In the manufacturing context, this
trend to use intelligent agents has often been combined with
the drive toward heterarchical and holonic organization.
Autonomous cooperating agents associated with
manufacturing objects are also called ‘holons’ (Van Brussel
et al., 1998). In the holonic reference architecture for
manufacturing systems, called PROSA, three basic types of
intelligent agents were identified: order agents, product
agents, and resource agents. In this architecture, staff agents
were added to assist the basic agents with expert knowledge.

The first purpose of this paper is to identify the goals of the
two types of agents involved in the execution stage: order
agents and resource agents. The nature of these goals creates
some competition: order agents compete for the use of
resources, resource agents compete to execute the orders. In
the considered distributed framework, the most appealing
technique for solving conflicts is negotiation, or more
precisely automated negotiation, since it only involves
software agents. The second section of the paper describes

the holonic model of the Enterprise network. Section 3 states
that the outcome of an automated negotiation game could be
theoretically predicted by game theory as a non-dominated
solution. In practice, some key properties to be satisfied by a
negotiation protocol are feasibility and termination in a finite
time. The paper contribution in part 4 is to propose a
negotiation protocol described as a time Petri Net and
analyzed to show that these properties are verified.

2. MODEL OF AN ENTERPRISE NETWORK

2.1 Basic constructs

Several incentives have been initiated at the international
level, to characterize the main Enterprise entities by basic
constructs. In this matter, one of the leading incentives has
been the UEML project (Vernadat, 2001) in which the
proposed model involves Enterprise objects such as
production units, machines, storage places, product structure,
production orders, algorithms, and the enterprise agents who
organize the objects in view of achieving particular goals.

2.2 Enterprise agents

A holonic system is a particular multi-agent system in which
agents are associated with manufacturing processes on
manufacturing objects. Holons are defined in the PROSA
Reference Architecture as “autonomous co-operating agents”
(Van Brussel et al., 1998). In the considered holonic
execution system, the system operates by negotiation
between order agents and resource agents. The considered
structure is purely heterarchical, tasks being executed on
resources according to local task schedulers run by resource
agents. Agents of both types have to accomplish their tasks in
an autonomous fashion, without any centralized control.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15939 10.3182/20080706-5-KR-1001.1044

According to Zambonelli and co-authors (1994), there are
two main types of multiple agent systems:

• Distributed problem solving systems, in which agents are
permanent and explicitly designed to achieve a given goal.

• Open systems in which agents are designed to achieve an
individual goal, can dynamically leave and enter the system.

Manufacturing systems include both types of agents.
Resources are permanent objects in the manufacturing
system. The operation of each resource is organized by its
own resource agent. Resource agents and product agents are
permanently assigned specific goals and specific roles in the
system, that is, a well defined task or responsibility in the
context of the overall system. On the contrary, orders are
temporary objects dynamically created according to demands
for end products and to material requirements for
manufacturing intermediate and end products. Order agents
are thus dynamic. Their interactions with the other agents are
programmed in the database of the associated product agent,
which contains the lists of necessary inputs and candidate
resources with expected lead-times. To each input product
correspond a new order agent and its associated data:
product, quantity, due date. So, globally, the system is open
since an order agent is created at each order arrival and
destructed at order completion.

3. AGENTS GAMES

3.1 Concurrency and competition between order and
resource agents

Agents are goal oriented and their goals may be antagonistic.
Their behaviour and interactions can be analyzed with the
help of Game Theory (see e.g. (Osborne and Rubinstein,
1994)): they constitute a finite set of players in a finite set of
states, each player taking a decision on the basis of a
preference relation represented by a utility function. Agents
typically need to interact with each other in order to exchange
knowledge, coordinate their activities and achieve their goal
as well as possible. In terms of game theory, goal
achievement corresponds to maximizing a utility function
while taking into account that the other players (agents in our
case) also maximize their own utility function.

For instance, order agents cannot accomplish their mission
without using some resources. As a consequence of the
interaction between each particular resource agent and
several order agents, conflicts may be generated on the use of
the resource and these conflicts have to be solved locally, by
resource agent decisions, with possible prior negotiation
between the order agents and the resource agent. In this
respect, a clear limitation of software agents is the
impossibility to create innovative solutions. They can only
run optimization algorithms, heuristics or priority rules, or
choose between several pre-programmed solutions. On the
other hand, many advantages can also be identified: rapidity
and memory size, rigor and objectivity. However, the agents’
objectivity may not be sufficient to obtain globally optimal
solutions, mainly because of the distributed decisional
structure with limited information. Agents can be seen as

players in a game. Being both reactive and proactive, they
always produce the best local response (with respect to their
own criterion) to the environment (created by the other
players) that they are able to perceive.

 i) The order agent goal

Basically, the goal of an order agent is to obtain the execution
of its associated order, denoted o, by an appropriate resource,
m, at the best possible date. The set of appropriate resources
able to execute the order o is denoted A(o). The information
on the set A(o) is provided to the order agent by its associated
product agent. By construction of the data base of products,
the constraint A(o) ≠ ∅ is supposed always valid.

The order agent goal is then translated into a utility function
to be maximized or, in the resource sharing context, into an
economic criterion to be minimized, under the compatibility
constraint:

)(oAm∈ (1)

Depending on the application case, this criterion, denoted ,
may be defined in different ways. It provides the order agent
goal with a quantitative index for comparing the proposals
from resource agents, selecting the best resource and
evaluating the level of achievement of the goal.

oC

The desired time window of an order o is the interval starting
with its release date, ro, and ending with its due date, do. Let

 be the starting time and the processing time of order
o on machine m.

m
ot

m
op

The desired time window of order o is achievable on machine
m if the processing interval is included in the time window:

o
m
o rt ≥ (2)

o
m
o

m
o dpt ≤+ (3)

a) In some cases, a minimum delay criterion is selected:
under constraints (1) and (2). ,0)max(o

m
o

m
oo dptC −+=

b) In other cases, the "makespan" criterion may be selected,
when early intervals are preferred: under
constraints (1) and (2).

m
o

m
oo ptC +=

c) Alternatively any deviation from the due date may be
penalized with order dependent weights:

,0)max(,0)max(o
m
o

m
oo

m
o

m
oooo dptptdC −++−−= γβ

under constraints (1) and (2).

 ii) The resource agent goal

The main roles of a resource agent are to estimate the state of
its resource, get information on the state of the resources
connected to it, negotiate with the order agents for whom the
resource is compatible, decide when the resource should be
active or stopped, decide what tasks are to be processed, and
monitor the resource execution processes. Generically, the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15940

problem of deciding what orders should be processed and at
what time, is referred as a scheduling problem. However,
depending on the resource type, other Operations Research
problems may better represent the addressed problem: bin
packing problems for glass cutting machines (Blanc et al.,
2006), knapsack problem for order selection under limited
capacity, for instance.

The scheduling problem to be solved by each resource agent
is generally a single machine problem. Nevertheless, it can
often be globally efficient to include in the problem, in its
criterion or in its constraints, the predicted effect of the
solution on other resources, in particular on critical ones and
on the ones frequently used just before or after.

Let be a set of orders compatible with resource m. Sets
 and are dual in the representation of the

compatibility relation:

mΟ
mΟ)(oA

)(oAmΟo m ∈⇔∈ . (4)

The optimization criterion that represents the goal of a
resource agent is normally consistent with the order agents'
criteria. For instance, if criterion b) is used by all the order
agents, possible criteria that can be used by the resource
agent are:
• the makespan criterion :

()m
o

m
o

mOo
m ptC +=

∈
max under constraints (1) and (2).

• the sum of execution times :

()

∑
∈

+=
mOo

o
m
o

m
oom -rptC α under constraints (1) and (2).

3.2 The 1 order- q resources subgame

Game Theory relies on two main assumptions: players’
rationality and integration of the information available on the
other players’ strategy. Accordingly, the decision of each
player maximizes his utility function in the constrained set
imposed by the other players. Several types of games have
been defined, depending on the sequence of game stages. In a
static (or strategic) game, there is only one stage and the
players simultaneously select their strategy. In dynamic (or
sequential games), players generally act and react iteratively
in a predetermined order.

In the considered multi agent manufacturing execution
system, the global assignment and scheduling game can be
decomposed into subgames of the two following types:

• the 1 order - q resources subgame: an order agent sends a
request to q candidate resources, waits for the answers and
selects the resource with the best offer for its execution,

• the 1 resource - n orders subgame: a resource agent selects
s among the n orders requests and proposes execution dates
to the s order agents.

In order to avoid the possibility of failure in the negotiation
protocol, the study is restricted to the case s = n for the

second type of sub game. This means that if a resource is
technically eligible for executing an order, its associate
resource agent must answer positively to the order agent,
even if the due date cannot be satisfied. Note that this
assumption is consistent with order agents criteria a), b), c)
proposed in section 3.1.i), and for which late deliveries are
allowed. Under this assumption, the negotiation game may
proceed in no more than two stages:

• a Call For Proposals (CFP) is sent by an order agent to q
candidate resources

• each of the q candidate resource agents sends a proposal
and the best one is selected by the order agent.

In a general setting, combination of all the subgames of the
two types (1 order - q resources and 1 resource - n orders)
leads to a complex sequential game for which the outcome is
very difficult to predict and convergence is not guaranteed, at
least in a pre-specified bounded time. On the contrary, the
problem becomes much simpler if each resource agent
applies an on line scheduling algorithm to position each order
one after the other and waits for the result from the current
order agent before processing the following order.

The multi-agent control system considered is an open system
where orders keep arriving randomly and should be
processed upon arrival. As stressed by several authors, such
as Shen and co-authors (2006), real-time scheduling
techniques are clearly the best ones for such systems. Many
algorithms for single machine on line scheduling have been
proposed in the literature, for instance the EQUI and LOGI
heuristics in (Pesenti et al., 2006). In a real-time scheduling
algorithm, orders are treated one by one, sequentially. In the
case of 2 orders arriving exactly at the same time, the tie can
be broken arbitrarily. Treatment of an order results in
provisionally assigning a time window for executing the
order on the resource. This assignment defines the resource
agent proposal to the order agent. Once the order agent has
selected the best proposal, the execution time window is
reserved on the chosen resource and liberated on the other
resources. For data consistency, treatment of a new order
should not begin before the decision on the preceding
proposal has been taken and the planned execution schedule
updated.

It can be noted that if orders are treated sequentially without
any recursive change of previous decisions, then, for each
resource)(oAm∈ , the set is simply the last arriving
order:

mΟ
{ }oΟm = and the two current criteria are

equivalent and reduce to minimizing the delivery date:
, under constraints (1) and (2).

mC

m
o

m
o pt +

Under such an algorithm, each resource agent simply treats a
1 resource - 1 order problem and such elementary problems
are evaluation rather than optimization tasks. The negotiation
game then reduces to a sequence of 1 order - q resources
subgames.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15941

4 AGENTS’ NEGOTIATIONS

Agents' negotiation can be defined as “the process by which a
group of agents comes to mutually acceptable agreement on
some matter” (Jennings et al., 2001). It is thus considered as
the most fundamental and powerful mechanism for managing
inter-agent dependencies for decisions on task execution. In
the 1 order - q resources subgame, negotiation can be seen as
the process through which one order agent maximizes its
utility function by selecting the best candidate resource to
process its order.

4.1 Negotiation protocols

The negotiation mechanism proposed in this study is a
simplified version of the “contract net protocol” (CNP)
(Smith, 1980). A semi-formal specification of the CNP
protocol has been proposed in (Odell et al., 2000), using
Agent-UML. Some extensions of this protocol have also been
proposed, to include in particular a multi-criteria evaluation
of proposals (Ounnar and Pujo, 2005).

Here, the order agent acts as an initiator, in charge of getting
its order processed in the most efficient manner. To this end,
it sends a CFP (Call For Proposal) to all the resource agents
eligible for processing the order (the participants in the CNP
terminology). Each such resource agent acts as a potential
bidder in submitting an execution proposal to the order agent.
A proposal simply consists of a proposed time window for
executing the order. For any order entering the system, the set
of candidate resource agents is supposed never empty.
Participants receiving a CFP cannot refuse it and should
answer within a limited time. In any case, proposals are
supposed honest and unbiased. The order agent evaluates the
proposals and selects the current best one. As long as better
offers arrive, the current best offer is updated. At each update
of the best offer, the previous best offer is refused.
Negotiation ends when all the proposals have been compared.
Another difference with the CNP is that only the negotiation
stage is represented. The purpose of these assumptions is to
propose a negotiation protocol easily implemented in any
ACL (Agent Communication Language) and to describe a
framework in which a negotiation failure would never occur.

4.2 Order-resource negotiation models

Taking the negotiation requirements into account, a
negotiation model based on the time Petri net formalism with
coloured concept, is proposed. Coloured Petri Nets (CPN)
(Jensen, 1992) are well-suited for systems that consist of a
number of processes which communicate and synchronize.
They can be used for design, specification, simulation and
verification of systems. The marking of places, which
describes the state of the system, corresponds to a set of
coloured tokens. In ordinary Petri nets, tokens do not support
information while in coloured nets, tokens are labelled by a
type of data – possibility structured – called colour. For
instance, the list of eligible resources for a given order can be
associated with a data type in a place for this order model.
Transitions of the Petri net model represent the change of
states. In our model, each transition is associated with an
action of an agent.

As previously described, time aspects are also very important
in the approach. The assumption of representing program
runs and evaluation tasks by time intervals seems reasonable
and justifies the representation by Time Petri nets (Merlin,
1974). Time intervals are thus used to represent several types
of actions: order scheduling by a resource agent, evaluation
and comparison of proposals by the order agent.
Consequently, time intervals have to be included in the
negotiation model. Extended CPN with a time concept have
been proposed to introduce a global clock and allow each
token to carry a time stamp indicating when it is ready to be
consumed by a transition. However, the time concept in the
negotiation protocol should rather be associated with
transitions, as they represent actions with bounded random
duration. Moreover, when time is associated with transitions,
logical conditions are tested first and time conditions are
executed next. Using such formalism thus presents two
interesting characteristics: on the one hand, it makes possible
an explicit representation of parallelism, concurrency,
synchronization and resource sharing. On the other hand, the
time intervals attached to transitions introduce additional
constraints on the protocol. In the considered Time Petri net,
a temporal interval is associated with certain transitions. For
the modelling purpose, the Time Petri net model used in this
study has a strong firing rule and infinite-server semantics. In
other words, an enabled transition must be fired at the static
latest firing time and k firings of a transition can be
performed simultaneously (or at the same time) if the
transition is k-enabled.

The negotiation model for an order agent is proposed in
Fig.1. Initialization is represented by transition t0. The
available order agent sends the CFP (place p7) to each
resource of list and waits for a proposal (place p)(oA 2).
When the first proposal arrives (place p8) from a resource
agent, the order agent initiates the best proposal (place p6)
and waits for other proposals (place p3). When another
proposal arrives from a resource agent, the order agent, which
is in the state 'waiting for proposal' (place p3), evaluates this
proposal (place p4) and compares it with the current best
proposal, to select the best one. If the result of the
comparison (place p5) is positive, the evaluated proposal
becomes the current best proposal (place p6) and the last best
proposal becomes a refused proposal (place p11). Hence,
place p11 informs the considered resource agent that its
proposal has been refused. As long as better offers arrive, the
current best offer is possibly updated. At each update of the
best offer, the previous best offer is refused. When all
resource agents proposals have been compared (place p13),
the negotiation is ended (place p14) and the current best
proposal is accepted (place p12). In the coloured Petri net
model, the exact number of tokens and their data values are
determined by the arc expressions with respect to the firing
rules of transitions.

The negotiation model for any resource agent is described on
Fig.2. For each particular order agent, each resource agent
acts as an evaluation module that produces an offer in a finite
time. The q resource agent Petri nets of Fig.2 can be merged
into the order agent Petri Net of Fig. 1 by merging the q+1
places labelled “CFP sent”, the q+1 places labelled “Proposal

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15942

sent”, the q+1 place “Proposal accepted” and the q+1 places
“Proposal refused”.

Fig.1 Negotiation model for order agents

Fig.2 Negotiation model for a resource agent

4.3 Protocol requirements verification

In the analysis, randomness of processing times requires
properties to be valid under any feasible firing trajectory. In
the 1 order - q resources interaction protocol, colours only
represent the different candidate resources contained in

. Thus the idea developed in this section is to aggregate
colours representing resources. The aggregated negotiation
model of the set of candidate resource agents has the same
structure as in Fig. 2, an initial state with q = Card(A(o))
tokens in place p

)(oA

9 and time intervals [t6min, t'6max] and [t8min,
t'8max] respectively associated with transitions t6 and t8, with:

.
⎪⎩

⎪
⎨
⎧

==

==

∈∈

∈∈

))('(max',))((min

))('(max',))((min

8
)(

max88)(min8

6
)(

max66)(min6

mttmtt

mttmtt

oAmoAm

oAmoAm

p7

CFP sent

waiting for
first proposal

t0

p0order arrival

initialize

t1

p2

t2

p3waiting for
proposal

compare
t3

p4

<A(o),o>

proposal sent

p8

evaluation

p5
result

accept
proposal

t5
refuse
proposal

t4

p11

p12

proposal refused

proposal accepted

p6
best
proposal

t9

p13

t10

p14
negotiation
finished

p1
agent
available

[t3,t'3]

q

The order-resource negotiation protocol can then be verified
and evaluated considering only the Time Petri net of Fig. 3,
representing a 1 order - q resources interaction protocol.

p7t0

t1

p2

t2

p3

t3

p4

q

p8

p5

t5 t4

p11

p6

t9

p13

t10

p14

p1

[t3,t'3]

p10

t6 t7
t8

[t6min,t'6max]

 [t8min,t'8max]

p12

q q p9

p7

p9

p8

p10

p11

p12

t6 t7 t8
[t6,t'6]

[t8,t'8]

current schedule

scheduling

actualizenull

proposal refused

proposal accepted

proposed schedule

CFP sent

proposal sent

Fig.3 Global model with q resource agents

In a Time Petri net, the reachability issue leads to
constructing an infinite number of states. To define a finite
enumerative analysis method for characterizing the behaviour
of Time Petri Nets, Berthomieu and Menasche, (1982) have
proposed to introduce the notion of state class. Informally, a
state class C = (M;D) can be defined as the union of all firing
time values which are possible from a given marking M. D
represents the infinite number of firing times possible from
M, defined by the set of all solutions of a system of
inequalities. Using the enabling and firing rules, the state
class graph can be constructed thanks to the software Tina
(Berthomieu and Diaz, 1991).

In order to study structural and time properties of the
proposed model in Fig. 3, place p0 is not considered as it
represents an arrival of orders (and a source place). For an
initial marking equal to M0 = [1 0 0 0 0 0 0 0 q 0 0 0 0 0], the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15943

corresponding state class graph has a strongly connected
structure. The following minimal invariants are computed.

Places invariants:
X1 = [1 1 1 1 1 0 0 0 0 0 0 0 0 1]
X2 = [1 1 0 0 0 1 0 0 0 0 0 0 0 0]
X3 = [0 0 0 1 1 1 0 1 1 0 1 1 0 0]
X4 = [q 0 0 1 1 0 1 1 0 0 0 0 1 q]
X5 = [0 0 1 (q-1) (q-1) 0 0 1 1 0 1 1 0 1]
X6 = [0 0 0 0 0 0 0 0 1 1 0 0 0 0]
Transitions invariants:
Y1= [1 1 (q-1) (q-1) 0 (q-1) q (q-1) 1 1 1]
Y2 = [1 1 (q-1) (q-1) (q-1) 0 q (q-1) 1 1 1].

For q = 3, the state class graph is composed of 28 state
classes, 40 transitions. Due to page limits, this state graph is
not presented in this paper.
From the analysis, the following properties are obtained.

 The system is structurally bounded as all places of the
model are bounded, i.e. the set of all places is a conservative
component.

 The system is consistent and structurally repetitive, i.e.
there is a T-invariant strictly non negative Y, such that
W.Y = 0 (where W is the incidence matrix of the model).
Thus, the Petri net negotiation model has the non blocking
property.

 The system is reversible (or reinitializable) for the initial
marking of 1 token in place p1 (order agent available) and q
tokens in places p9 (number of available resources), all other
places being empty. In fact, the system is bounded and the
corresponding class graph is strongly connected.

 The presence of initial tokens in each place invariant
guarantees the non-blocking property.

 Given the structure of our model, a time bound of the
negotiation process can be directly obtained from the worst
case execution of the model in Fig.3. The time boundedness
property of the negotiation protocol is thus established by
considering in the longest possible path for reinitialization in
the state class graph. For the 1 order - q resources
negotiation protocol analysed in this section, a global time
bound B is given by:

() .'''*1 max8max63 tttqB ++−= (5)

5 CONCLUSIONS

Multi-agent execution systems have become popular in the
context of distributed manufacturing systems, where
reactivity and flexibility are critical issues. Negotiation is
certainly the most appealing concept for achieving efficient
coordination of task execution in such systems. However,
very few studies have tackled the problem of verifying the
required properties of such negotiation protocols, the main
difficulty being in the evaluation of the outcome and time
duration of complex tasks, in particular the ones involving
execution of computer programs. The Petri net models
proposed in this study rely on the approximation of the
duration of computational tasks by time intervals. A simple

automated negotiation protocol has been proposed and
verified with respect to liveness, reversibility, structural and
time boundedness.

REFERENCES

Berthomieu B. and M. Diaz, 1991. Modeling and verification
of time dependant systems using time Petri nets. IEEE
Transactions on Software Engineering, vol. 17, n°3,
pp.259–273.

Berthomieu B. and M. Menasche, 1982. A state enumeration
approach for analysing time Petri nets. Proc. ATPN 82,
pp. 27–56.

Blanc P., I. Demongodin, P. Castagna, 2006. A holonic
approach for manufacturing control: an industrial
application. Proc. IFAC-INCOM'06, pp. 389-394.

Fox M. S., M. Barbuceanu, and R. Teigen, 2000. Agent-
Oriented Supply-Chain Management. Int. Journal of
Flexible Manufacturing Systems, vol. 12, pp.165–188.

Jennings N. R., P. Faratin, A. R. Lomuscio, S. Parsons, C.
Sierra, M. Wooldridge, 2001. Automated negotiation:
prospects, methods and challenges. Int. Journal of Group
Decision and Negotiation, vol. 10, n°2, pp.199-215.

Jensen, K, 1992. Coloured Petri Nets, Basic Concepts,
Analysis Methods and practical Use. Vol. 1: Basic
Concepts, 1992. Vol. 2: Analysis Methods, 1994. vol. 3:
Practical Use, 1997. Monographs in Theoretical
Computer Science, Springer-Verlag.

Merlin P. M., 1974. A study of the recoverability of
computing systems. PhD thesis, U. California, Irvine.

Odell J., H. Van Dyke Parunak and B. Bauer, 2000.
Representing agent interaction protocols in UML. In P.
Ciancarini & M. Wooldridge (eds), Proceedings of First
International Workshop on Agent-Oriented Software
Engineering, Springer-Verlag, pp. 121-140.

Osborne M.J. and A. Rubinstein, 1994. A Course in Game
Theory. The MIT Press.

Ounnar F. and P. Pujo, 2005, Supplier evaluation process
within a self-organized logistical network. Int. Journal of
Logistics Management, vol. 16, n°1, pp. 159-172.

Pesenti R., F. Rosi, S. Salvador and W. Ukovich, 2006. An
agent-based integrated resource control system. Proc.
MITIP2006, Budapest.

Shen W., L. Wang and Q. Hao, 2006. Agent-based
distributed manufacturing process planning and
scheduling. IEEE Trans. Syst., Man and Cybernetics,
Part C, vol. 36, n°4.

Smith R. G., 1980. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Trans. Computers, vol. 29, pp.1104-1113.

Van Brussel H., J. Wyns, P. Valckenaers, L. Bongaerts, P.
Peeters, 1998. Reference architecture for holonic
manufacturing systems: PROSA. Computers in Industry
vol. 37, pp. 255–274.

Vernadat F., 2001.UEML: Towards a Unified Enterprise
Modelling Language. Proc. MOSIM’01, pp. 3-9.

Zambonelli F.; N. Jennings and M. Wooldridge, 1994.
Organizational rules as an abstraction for the analysis
and design of multi-agents systems. Int. Journal of
Software Engineering and Knowledge Engineering.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15944

