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Abstract: It is a very challenging task to measure longitudinal slip of a tire on road surface in
normal driving conditions, because of the very small value of the slip (a few 1/1000). This paper
presents an industrially deployable method for Tire-Road Friction (TRF) monitoring applied
to passenger vehicle. This method estimates the longitudinal wheel slip κ and the normalized
friction coefficient µ, for low grip requirement driving conditions, in real time. It uses wheels
velocity and forces applied on wheels bearings. Due to the imperfections in the wheel speed
sensors used, signal to noise ratio from speed measurement is very low. A correction, taking into
account the measured deterministic component of the speed measurement noise (called sensor
signature), allows for a correction of wheels speed signals and, accordingly, a better estimation
of slip. The obtained results demonstrate the ability of our method to distinguish between wet
and dry roads during a longitudinal stabilized drive. This method finds applications in Adaptive
Cruise Control systems, Driving Assistance systems and Intelligent Highways.
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1. INTRODUCTION

According to the report PREDIT (2002), rainy condi-
tions pose tremendous challenges to highways traffic and
increase by 72% the risk of accident. The “Etude De-
taillée d’Accident” data base from the Biomechanical and
Accidentology Laboratory (LAB (2006)) also mentions
that 24% of car accidents implying a passenger vehicle
take place under degraded adhesion conditions and are
observed in straight line. In particular, these statistical
data show the bad human perception of TRF level.

Automatic TRF monitoring can contribute to solve this
problem. Informations about the actual maximum avail-
able grip level can be delivered to the driver, to the vehicle
or to the road infrastructure. Real time grip estimation
methods are still available (Zami (2005)). Some of them
require very specific sensors such as optical speed sensors,
dynamometric hubs or gyroscopic measurement systems
(Vandanjon et al. (2006)). The costs of these sensors do
not allow an industrial implementation. Other approaches
use existent sensors (ABS, GPS) and engine models for
estimating the longitudinal force (Ray (1997), Carlson
and Gerdes (2003)), Lee et al. (2004))). These methods
estimate the forces applied to the wheel. Therefore, they
require very complex vehicle dynamic and tire models.
As it will be shown later, in normal drive conditions, the
quantities to be estimated are very small and cannot be

distinguished from the model error. Because of this lack of
sensibility, these methods are applicable only when high
grip is used by the vehicle (braking, for example). Fur-
thermore, the knowledge of the maximum available grip
is useful only if it is known before a dangerous situation
appears. This is the reason why we consider here the least
favourable case: estimating TRF for a vehicle moving at a
stabilized speed in straight line, i.e. corresponding to a low
grip requirement trajectory. The obtained grip estimate
will be used to evaluate the maximum available grip.

The main contribution of this paper is to propose a
solution to TRF monitoring that is based on a system
that uses only industrial sensors. It is composed of four
wheel speed sensors (delivering N pulses per revolution)
and four dynamometric wheel bearing sensors set up on a
demonstrator. The considered signals for each side of the
vehicle are:

• front angular wheel speed ωf , corresponding to the
driving wheel speed

• rear angular wheel speed ωr

• effective wheel radii Rf and Rr of front and rear
wheels respectively

• front longitudinal traction force Fx

• front normal ground reaction force Fz
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These signals are used to compute the longitudinal wheel
slip κ according to,

κ = (Rfωf − Rrωr) /Rfωf if Fx > 0

κ = (Rrωr − Rfωf ) /Rrωr if Fx < 0
(1)

and the friction coefficient µ,

µ = Fx/Fz. (2)

In order to obtain tire-road interaction, we tackle the prob-
lem of estimating the coordinates of the measurements in
the (µ, κ) space which is often used in the literature, see
Pacejka and Bakker (1993), Uchanski (2001), Burckhardt
(1987) and Canudas-de-Wit et al. (2003). Figure 1 shows
an example of the variation of the friction coefficient µ as
a funtion of slip κ for two roadway grip conditions. At a
given speed and for given vehicle weight (Fx and Fz are
constant), the driving condition corresponds to one value
of µ. On figure 1 it can be observed that when the roadway
grip conditions change, the value of κ also changes. There-
fore, the observed values of µ and κ give us a valuable
information on grip conditions and consequently on the
maximum available grip µmax. This paper is organized as
follow:

• A revue of issues in TRF monitoring for a vehicle
moving at stabilized speed in straight line (accuracy
of slip measurent, number of measurements, sensor
defaults) is presented.

• A methodology for increasing slip measurement ac-
curacy (based on angular wheel speed processing,
named signature correction) is developed.

• Simulation results are presented and show the possi-
bility to distinguish a dry roadway from a wet road-
way.

• A method for determining µmax from (µ, κ) space
measurements is finally proposed.
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Fig. 1. Example of function µ = f (κ) for two different
roadway grip conditions

2. SPEED SIGNALS DENOISING

Table 1 is a summary of Durcos (2006) simulation results.
It shows the relation between the values µ and κ corre-
sponding to a stabilized longitudinal drive for different
speeds and for a given road having a theorical maximum

available friction coefficient µmax. These simulation results
have been experimentally confirmed.

Velocity (km/h) µmax κ (%) µ

120km/h 1, 0 0, 110 0, 050

120km/h 0, 8 0, 140 0, 050

120km/h 0, 5 0, 200 0, 050

090km/h 1, 0 0, 062 0, 030

090km/h 0, 8 0, 080 0, 030

090km/h 0, 5 0, 120 0, 030

060km/h 1, 0 0, 028 0, 017

060km/h 0, 8 0, 036 0, 017

060km/h 0, 5 0, 050 0, 017

030km/h 1, 0 0, 007 0, 008

030km/h 0, 8 0, 009 0, 008

030km/h 0, 5 0, 012 0, 008

Table 1. Slip and friction coefficient for dif-
ferent speeds and maximum available friction

coefficient

As can be seen, the expected sets of data (µ, κ) are very
small and close for these driving conditions. They are lo-
cated close to the origin of the (µ, κ) space. The slip values
indicate that obtaining a good slip measurement accuracy
requires very accurate wheel speed measurements (see (1)).
The next section presents the speed sensors characteristics,
observed speed signals and the signal processing method
proposed to enhance the signal to noise ratio.

2.1 Origins of the speed sensor noise

The speed sensor performs pulse to pulse timing. Pulses
are generated by the movement of magnetic consecutive
dipoles in front of a Hall effect sensor. Magnetic dipoles
are located on a rim connected to the wheel bearing inner
ring. Errors in speed measurements result from:

• the non-uniform repartition of magnetic dipoles
• the eccentricity of the magnetic dipoles repartition

(Fig. 2)

Both noise sources present a 1-revolution periodicity and
generate a high amplitude deterministic noise component.

Wheel speed is determined according to:

VP = R (θ (tk) − θ (tk−1)) / (tk − tk−1) , (3)

where VP is the velocity of an arbitrary point P located on
the wheel circumference, R is the wheel radius, tk is the
kth pulse time instant and θ (tk) is the angular position of
point P at time tk.

Fig. 2. Geometrical defaults of wheel speed sensor
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The method of angular wheel speed noise correction is
based on an estimation of the angular localisation of mag-
netic dipoles over 1-revolution. Thereafter, this localisa-
tion is named signature of the wheel speed sensor. In the
first step, the signature estimation method is presented
and the angular wheel speed signals correction using this
signature is introduced.

2.2 Wheel speed sensor signature estimation
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Fig. 3. Example of a signature of a N magnetic dipoles
wheel speed sensor

Considering the velocity of the point P as a constant V0

during the time interval [0, T ], the angular deviation ∆θk

between two consecutive pulses can be written:

VP (tk) = V0 ∀tk ∈ [0, T ]

∆θk = θ (tk) − θ (tk−1) = V0 (tk − tk−1) /R.
(4)

Considering the 1-revolution periodicity of the pulses, ∆θk

values are reproducible from one rotation to the other
with a period N corresponding to the number of magnetic
dipoles located on the inner ring. Then an estimation of

magnetic dipoles angular position error ∆̃θk is determined
over m wheel revolutions according to the minimization
of:

C =
m−1∑

n=0

(
∆θk+nN − ∆̃θk

)2

. (5)

Setting the derivative to 0 gives:

m−1∑

n=0

(
∆̃θk

)
=

m−1∑

n=0

(∆θk+nN ) . (6)

Hence an estimation of the signature ∆̃θk, k = 1 . . . N is
obtained:

∆̃θk =
1

m

m−1∑

n=0

(∆θk+nN )

∆̃θk =
1

m

m−1∑

n=0

V0 (tk+nN − tk+nN−1) .

(7)

An example of a wheel speed sensor signature provided
with N pulses is represented in (Fig. 3).

2.3 Analysis of the signature variability

Before defining our method for correcting the wheel
speed signals, we studied the signature variability in rela-
tion to vehicle speed and roadway texture (micro/macro-
roughness). Several experiments have been carried out
at different speeds (20, 30, 50, 70, 90, 100, 110km/h)
and on different kinds of roadway texture (macro-smooth
and micro-rough bituminous roadway, macro-rough and
micro-rough bituminous roadway, polished concrete and
tiling). Figure 4 represents the evolution of the ratio of the
quadratic error between the different obtained signatures
and an arbitrary chosen reference to the reference signa-
ture energy. The reference corresponds to the obtained
signature at 20km/h and for a macro-smooth and micro-
rough bituminous roadway.
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Fig. 4. Signature variability (see text)

According to this criterion, the signature variability
(< 0.2%) will be neglected for the rest of this paper. Our
denoising method is presented now.

2.4 Wheel speed signals denoising
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Fig. 5. Example of a speed signal with and without
correction

Using the previously estimated wheel speed sensor signa-
ture, the angular wheel speed at time tk is given now by:

ω (tk) = ∆̃θk/ (tk − tk−1) . (8)

Finally, the estimated linear speed ṼM of point any M in
the contact patch area is given by:
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ṼM (tk) = R∆̃θk/ (tk − tk−1) . (9)

Figure 5 represents a wheel speed signal with (inner curve)
and without (outer curve) signature correction during a
stabilized drive at 90km/h in straight line. As can be seen
the signal to noise ratio is dramatically increased.

Each speed sensor presents its own signature, so this
denoising method is applied to each wheel.

3. GRIP MEASUREMENT

Each wheel bearing is also equipped with a dynamic load
sensor (SNR. (1995)) that allows a real time preliminary
estimation of the load matrix. During a calibration phase,
the obtained signals are compared with dynamometric
hubs measurements, here considered as a reference, and
corrected so as to obtain a satisfactory agreement. A
multidimentional nonlinear regression between dynamic
load sensors signals and dynamometric hubs mesurements
has been performed so as to minimize the prediction error.
Fx and Fz are extracted from this corrected load matrix
and used to estimate the friction coefficient µ.

Fig. 6. Example of friction coefficient measurement with
dynamometric hub and wheel bearing sensor during
a braking maneuver

As shown in figure 6, both measurements of friction
coefficient are similar. Differencies in the bandwidths of
both sensors can be neglected since, to improve again the
signal to noise ratio, all measurements are lowpass filtered
as discussed in the next section.

4. REAL TIME MEASUREMENT IN (µ, κ) SPACE

4.1 Slip and grip estimates accuracy enhancement

The presented sensors supply accurate measurements of
friction coefficient and slip. To discriminate between differ-
ent roadway grip conditions and according to simulation
results (Tab. 1) the precision of this measurement must
be improved. Consequently, an additional lowpass Butter-
worth filter has been applied on all speed and force signals.
The filter cut-off frequency has been selected in accordance
with the potential slip variation dynamics and fixed to
1Hz. As it will be shown later, the filter characteristics
act on a compromise between the residual noise amplitude
of grip and slip estimates and the delay induced by the
filter. This delay will influence the detection delay for a
change in roadway grip conditions (see (Fig. 7)).

The upper curves of figure 7 show the unrefined slip
estimate as a function of time (outer curve) and the
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Slip estimate with speed correction

Slip estimate with speed correction + filtering
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−0.5

0

0.5

Actual slip

Fig. 7. Example of a change in grip conditions from wet
to dry roadway

lowpass filtered estimate (inner curve). The lower curve
of figure 7 shows the actual slip variation for a change of
µmax from 0.5 to 1.

Using this lowpass filter, we can now evaluate the final
precision on the slip estimate by realistic simulations. For
a given vehicle speed of 90km/h and for every selected
value of κ varying within the range [0.01, 1]% we have
generated 10000 speed signal realizations of front and rear
wheels. Then, an estimate of κ has been calculated for each
realization and statistics have been performed. Figure 8
shows the RMS value of the estimation error as a function
of the actual κ. Results have been normalized so as to be
expressed in percents.
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Fig. 8. Normalized RMS κ estimation error as a function
of the actual κ

As expected, estimate relative error is a decreasing func-
tion of the slip. For a vehicle speed greater than 90km/h
the slip estimate accuracy can be judged satisfactory (see
(Tab. 1) and (Fig. 8)).

4.2 Evaluation of the roadway conditions in (µ, κ) space

For each time instant considered in figure 7, the couple of
estimates in the (µ, κ) space can be represented now. On
figure 9, the upper subfigure corresponds to the first part
of the experiment (wet conditions) and the lower subfigure
corresponds to the second part of the experiment (dry
conditions), respectively. On both subfigures, loose obser-
vations come from the noisy estimates, tight measurements
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correspond to the refined estimates. The variance of the
estimates are dramatically reduced, so that roadway grip
conditions can be easily distinguished, as expected.
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Fig. 9. Representation of the µ and κ estimates in the
(µ, κ) space

5. ESTIMATION OF MAXIMUM AVAILABLE
FRICTION COEFFICIENT

While the estimation of µ and κ can be efficiently carried
out in real time, it is not essential for the driver safety.
In case of an emergency, this is not the actual value of µ
that will be used, but generally increasing new values of µ
up to the maximum available grip corresponding to µmax.
So, in terms of safety, determining µmax is a major issue.
There are two main methods for estimating µmax.

5.1 Methods based on analytical models µ = f (κ)

Many analytical models of the relationship µ = f (κ) can
be found in the literature: Pacejka and Bakker (1993),
Van Oosten and Bakker (1993), Uchanski (2001), Zami
(2005) and Canudas-de-Wit et al. (2003). Models are cho-
sen a priori to fit a large class of experimental observa-
tions. Identification of the models parameters generally
relies on the optimization of a cost function of the model
output and observed data. In our study, identification of
any model’s parameters cannot be performed because, in
a low grip requirement trajectory, actual grip and slip
measurements are located close to the origin and do not
allow an accurate estimation of the model parameters.

5.2 Phenomenologic approach

Another method (Gustafsson (1997)) uses the observed
correlation between µmax and the slope λ of the curve
µ = f (κ) at the origin. This correlation was confirmed in
Uchanski (2001). An estimate of the slope λ is obtained
using a Kalman filter. Grip conditions change induces a
modification of the slope λ. Detection of such changes
can be achieved with a real time detection algorithm like
CUSUM, see Basseville and Nikiforov (1991). This method
is presented now.

For small values of µ and κ, the relation µ = f (κ) is
approximately linear:

µ = λ (κ − δ) (10)

where δ is a constant representing the wheel radius varia-
tion. This equation is preferably written:

κ = µ
1

λ
+ δ (11)

Considering an additive zero mean white noise Nκ, the
observation equation becomes:

κ (t) = µ (t)
1

λ
+ δ + Nκ

= [µ (t) 1]

[
1/λ
δ

]
+ Nκ

= H (t)x + Nκ

(12)

where x is the unknown and H (t) = [µ (t) 1].

Adding the state equation (corresponding to a stationary
grip condition) to the model gives:

x (t + 1) = x (t) + Nx

κ (t) = H (t)x (t) + Nκ
(13)

Considering these equations for the left and right sides of
the vehicle leads to:

κ (t) =

[
κleft (t)
κright (t)

]

H (t) =

[
µleft (t) 0 1 0

0 µright (t) 0 1

]

x (t) =

[
1

λleft (t)

1

λright (t)
δleft (t) δright (t)

]T

(14)

Finally, Kalman equations are iterated to recursively esti-
mate x:

S (t) = P (t − 1) + Q (t − 1)

K (t) = S (t)HT (t)
(
H (t) S (t) HT (t) + R (t)

)−1

x̂ (t) = x̂ (t − 1) + K (t) (κ (t) − H (t) x̂ (t − 1))

P (t) = S (t) − K (t) H (t) S (t)

(15)

where

Q (t) = E
{
NxN

T

x

}

R (t) = E
{
NyN

T

y

} (16)

The noise covariance matrices are unknown. Selecting
them leads to a compromise between fast convergence
and stability of the estimate. Stability is preferred until a
change in grip conditions is detected. In such a case, Q (t)
is re-initialized to a value that ensures fast convergence,
otherwise Q (t) is iteratively decreased (if it has not
reached a fixed minimum value) to improve stability.

The precision obtained by applying our method allows us
to discriminate different road grip conditions (such as wet-
dry). Investigations are done in order to characterize the
relationship µmax = g (λ) in a probabilistic way. Another
solution, which is also under investigation, is to use the
invariance relationship (17) proposed in Michelin (2002).
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µmax = f (κopt)(
µmax

κopt

)
/

(
µ (κopt/2)

κopt/2

)
= Inv = 0, 58

(17)

where κopt is the observed slip value for µ = µmax.

Here again, the necessary extension of this relation to
much closer to the origin κ values must be addressed in a
further work.
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Fig. 10. Exemple of change in slope λ from wet to dry
roadway

6. CONCLUSION

In this paper, the problem of real time estimation of
tire-road grip and slip of a passenger vehicle in straight
line and normal driving conditions has been addressed.
Within these driving conditions,we recalled that the slip
must be estimated with a very high accuracy. We have
presented an industrially deployable measurement system
that mainly relies on instrumented wheel bearings and
allows joint estimation of slip and grip. We have explained
why slip and grip are both necessary to characterize
the road grip conditions. A method has been proposed
to reduce dramatically the noise on speed signals and
thus to improve slip measurements accuracy. Despite the
high improvement in signal to noise ratio, additional
lowpass filtering of speed and grip signals has been judged
necessary. Our work allows the determination of slip with
an accuracy of a few 1/1000.

Realistic simulations were performed for a dry and a wet
roadway during straight line stabilized drive at 90km/h.
Simulation results have been given in the (µ, κ) space,
used as a reference in TRF monitoring. They have shown
that it was possible to distinguish these two roadway grip
conditions.

For safety purposes, the useful information to the driver
is the maximum available friction coefficient µmax rather
than the actual friction coefficient µ. The obtained es-
timates µ and κ have been used for µmax estimation
according to a method detailed in Gustafsson (1997) and
based on a Kalman filter. This method uses a probabilistic
relation between the value of µmax and the slope of the
µ = f (κ) curve at the origin. Another approach, based on
the Michelin patent is under investigation.
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