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Abstract: Parameter selection for the criterion weighting matrix is concerned based on the
information of both modifying the past estimation residuals and renewing the present estimation
residual error . After minimizing the system estimation error, an optimal recursive algorithm is
given. In this method the system data record can be used efficiently. The consistency of the new
recursive algorithm is analyzed. Finally, some simulation examples are included to demonstrate
the new method’s reliability.
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1. INTRODUCTION

Since the measured input-output data is processed sequen-
tially, adaptation schemes are adopted to re-identify the
system online or in real-time operation and form the recur-
sive identification algorithm. With rapid development of
computer science and automatic control, this method has
gained considerable attention and appeared much work,
especially the celebrated RLS algorithm (For example, see
Mershed and Sayed [2000], Lo and Zhang [2000], Hassibi
and Kaliath [2001], Hellgren and Forssell [2001], and Ahn
et al. [2004]. These recursive methods were based on the
conventional prediction error (PE) criterion Ljung [1999].

Because of a real system complicated, it is difficult to get
a precise prediction model. Smaller prediction errors does
not mean smaller parameter estimation errors. In fact, if
some complicated interferences occurred, a considerable
identification error would arise from the RLS algorithms
Lo and Kwon [2002], Lo and Kwon [2003], Yazdi et al.
[2005], and Chan et al. [2006].

A general recursive algorithm for discrete systems is con-
sidered in this paper. First, a simplified recursive algorithm
is proposed. There are many tuning parameters contained
in this recursive algorithm. Some regulating techniques are
established and the free tuning parameters are determined
based on the system data record. Then, the identifica-
tion principle is to construct an identification algorithm
⋆ This work is supported by the Funds NSFC60672110,

NSFC60474026, and the JSPS Foundation.

to estimate the system parameters. An optimal recursive
algorithm is constructed by minimizing the parameter
estimation error. This recursive algorithm is able to resist
system noise, including color noise, biased noise, and noise
for some unmodeled disturbance. Furthermore, the consis-
tency of the optimal recursive algorithm are analyzed, and
some simulation examples are included to demonstrate the
new method’s reliability.

2. RECURSIVE IDENTIFICATION

Consider the SISO linear regression system:

yt = ϕT

t θ + wt (1)

where yt is the system output. ϕt ∈ Rn the regressor
vector, θ is the unknown system parameter and wt the
noise. The system identification often includes the follow-
ing performance:

Jt = [Yt − Φtθ]
T Qt[Yt − Φtθ] (2)

where
Φt = (ϕ1, ϕ2, · · · , ϕt)

T

Yt = (y1, y2, · · · , yt)
T

and θ, ϕt ∈ Rn. The matrix Qt:

Qt =

(
Qt−1 αt

αT

t qt

)
, αt ∈ Rt−1, t = 1, 2, 3, · · ·

is a t × t symmetrical matrix. If the matrix ΦT
t QtΦt is

nonsingular, minimizing cost function (2), it is not difficult
to get the optimal solution of parameter θ:

θ̂t = [ΦT

t QtΦt]
−1ΦT

t QtYt, t = 1, 2, 3, · · · · · · (3)
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Specifically, estimation (3) becomes a weighted LS algo-
rithm if αt are taken as zeros. When αt are not zeros, in

general, the calculation of parameter θ̂t is complicated for
every sample number t. For this online calculation, com-

puting θ̂t is especially difficult when the sample number t
increases. Let:

Pt = ΦT

t QtΦt

at = 1 + ϕT

t P−1
t−1Φ

T

t−1αt (4)

σt = qt − αT

t Φt−1P
−1
t−1Φ

T

t−1αt (5)

bt = at + a−1
t σtϕ

T

t P−1
t−1ϕt (6)

The recursive algorithm of relation (3) was proposed as
(Lo and Kimura [2003], Lo et al. [2006]):




θ̂t = θ̂t−1 +
1

atbt

P−1
t (atΦ

T

t−1αt + σtϕt)(yt − ϕT

t θ̂t−1)

+
1

atbt

P−1
t−1(atϕt

−ϕT

t P−1
t−1ϕtΦ

T

t−1αt)α
T

t (Yt−1 − Φt−1θ̂t−1)

P−1
t = P−1

t−1 − b−1
t P−1

t−1(ϕtα
T

t Φt−1 + ΦT

t−1αtϕ
T

t )P−1
t−1

+
1

atbt

P−1
t−1(ϕ

T

t P−1
t−1ϕtΦ

T

t−1αtα
T

t Φt−1

−σtϕtϕ
T

t )P−1
t−1

(7)

Algorithm (7) is composed of two decoupled complemen-
tary parts. One part renews the information of the current
estimation residual; the other part modifies the estimation
on past arithmetic errors. In this scheme it shows that at
time t there are t tuning parameters: qt and αt ∈ Rt−1.
Therefore, a common question is posed: how are variables
chosen to guarantee that the algorithm is more reliable?
If αt is chosen as: αt = 0, t = 1, 2, · · · and qt is a positive
constant, from expressions (4)-(6), we have at = 1, σt = qt,
and

bt = 1 + qtϕ
T

t P−1
t−1ϕt

It follows that algorithm (7) is the same as the RLS
algorithm, which only considers the present estimation
residual in the modification part.

Due to a large number of free variables as well as
the tuning parameters in algorithm (7), there is space
to improve the algorithm performance. By minimizing
the frequency-domain estimate, the recursive empirical
frequency-domain optimal parameter (REFOP) estimate
was proposed (Lo and Kimura [2003] and Lo et al. [2006]).
In that algorithm, the tuning parameters could be gener-
ated by the input signal and the output signal of a given
discrete system. Since it is derived from the frequency
domain, the calculation seems somewhat complex. It could
not make the choice of tuning parameters efficient, either.
In this paper, we propose an optimal recursive algorithm
(ORA) instead of the REFOP method. In the proposed
algorithm, the tuning parameters are determined by min-
imizing the estimation error directly.

Theorem 1. With the previous notations, algorithm (7)
can be expressed as:

P−1
t = P−1

t−1 − b−1
t P−1

t−1(ϕtα
T

t Φt−1

+ΦT

t−1αtϕ
T

t )P−1
t−1

+
1

atbt

P−1
t−1(ϕ

T

t P−1
t−1ϕtΦ

T

t−1αtα
T

t Φt−1

−σtϕtϕ
T

t )P−1
t−1 (8)

θ̂t = θ̂t−1 + P−1
t

[
(ΦT

t−1αt + qtϕt)(yt − ϕT

t θ̂t−1)

+ϕtα
T

t (Yt−1 − Φt−1θ̂t−1)
]

(9)

The proof of Theorem 1 is omitted.

Theorem 1 is another form of the recursive algorithm
of estimation (3). It comes from algorithm (7); however,

instead of the calculated priority order of θ̂t and P−1
t at

time t in algorithm (7), the first calculation in Theorem

1 is that of P−1
t , and then the parameter θ̂t is calculated

by the result of P−1
t . Since of the complicated calculation

in algorithm (7), it is difficult to obtain the following
algorithm. Therefore, Theorem 1 is necessary for the next
analysis.

3. OPTIMAL RECURSIVE ALGORITHM

Lemma 1. Suppose that matrix Pt−1 is positive definite.
Then matrix Pt is also positive definite if

qt > αT

t Φt−1P
−1
t−1Φ

T

t−1αt − (ϕT

t P−1
t−1ϕt)

−1a2
t . (10)

The proof of Lemma 1 is omitted.

If the initial matrix P0 is positive definite and qt, (t =
1, 2, 3, · · ·) satisfies the condition, Lemma 1 implies that
the matrix Pt is also positive definite. Therefore, to opti-
mize the recursive algorithm, the variable αt can be chosen
by minimizing

θ̃T

t θ̃t, or θ̃T

t Ptθ̃t, or θ̃T

t P 2
t θ̃t

etc. Since
θ̃T

t P 2
t θ̃t = ||θ̃T

t Pt||2

it is easy to see that θ̃ = 0 if

θ̃T

t Pt = 0

Furthermore, since the function θ̃T
t P 2

t θ̃t is more convenient
to analyze some properties, it is chosen as the performance
function in the following discussion.

Theorem 2. If the vector

αt = (αt(1), αt(2), · · · , αt(t − 1))
T ∈ Rt−1

is chosen such that:

(Wt−1ϕ
T

t + Φt−1wt)(ϕtW
T

t−1 + ΦT

t−1wt)αt

= (Wt−1ϕ
T

t + Φt−1wt)(Pt−1θ̃t−1 − qtϕtwt) (11)

then performance function

Jt = θ̃T

t P 2
t θ̃t

is the minimum, where:

θ̃t = θ − θ̂t, Wt = (w1, w2, · · · , wt)
T .

The proof of Theorem 2 is omitted.
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Remark 1. The number of the equations in relationship
(12) is only n since θ ∈ Rn. If t is large enough, n vectors

ϕk1, · · · , ϕk2, ϕkn ∈ {ϕ1, ϕ2, · · · , ϕt}
can be chosen such that matrix

Φ
T
wt + ϕtW

T

is nonsingular, where

Φ = (ϕk1, ϕk2, · · · , ϕkn)T

W = (wk1, wk2, · · · , wkn)T

αt = (αt(k1), αt(k2), · · · , αt(kn))
T

αt ∈ Rn, and for l = 1, 2, · · · , t − 1:

αt(l) =

{
αt(l) = αt(l) l = ki, i = 1, 2, · · · , n

0, others.

In a simple implementation, however, for a fix number n
we can revert a default positive value and use a switching
technique for the matrix

F
T
wt + ϕtW

T

in case of singularity (see Example 1). Similar to the proof
of Theorem 2, the condition:

(WϕT

t + Φwt)(ϕtW
T

+ Φ
T
wt)αt

= (WϕT

t + Φwt)(Pt−1θ̃t−1 − qtϕtwt) (12)

is equivalent to relationship (11). Since of the nonsingular
nature of the matrix

Φ
T
wt + ϕtW

T

the minimum of performance function Jt can be achieved
if the variable αt is chosen as:

αt = (ϕtW
T

+ Φ
T
wt)

−1(Pt−1θ̃t−1 − qtϕtwt) (13)

Remark 2. From (12) it is easy to see that θ̃t = 0 if matrix
Pt is nonsingular and relation (13) is satisfied. This means
that the real parameter θ can be obtained exactly at time
t. In situations when symbols can not possibly be confused
with each other, in the following discussion the symbols αt

and αt, Φt−1 and Φ, and Wt−1 and W sometimes are not
distinguished from each other.

However, this result is based on the following requirements:

the signal {wk}t
1 and the difference θ̃t−1 must be known

and matrix Pt must be nonsingular. In practice it is
impossible to get the precise information of signals {wk}t

1

and θ̃t−1 in system identification. Thus, αt is only obtained
by estimation:

α̂t = (ϕtŴ
T + Φ

T
ŵt)

−1(Pt−1
̂̃
θt−1 − qtϕtŵt) (14)

where
̂̃
θt−1 and ŵt are the estimation of θ̃t−1 and wt, and

Ŵ = (ŵk1, ŵk2, · · · , ŵkn)T

At this time the selection of k1, k2, · · · , kn should satisfy
the condition that the matrix

Φ
T
ŵt + ϕtŴ

T

is nonsingular. Hereafter, it is discussed how to estimate

ŵt and
̂̃
θt−1. From system (1) the noise can be expressed

as:
wt = yt − ϕT

t θ

The most natural way to estimate noise is:

ŵt = yt − ϕT

t θ̂t−1 (15)

The ORA method is made up of relationships (8), (9),
(14), and (15). The justifiability of such an estimation is
verified by the next theorem.

Theorem 3. Let qt be chosen:

qt ∈
(

2|at| + (2 − ε)|αT

t ΦP−1
t−1Φ

T
αtϕ

T

t P−1
t−1ϕt − a2

t |
(1 − ε)ϕT

t P−1
t−1ϕt

,

1 − 2εat

εϕT

t P−1
t−1ϕt

)

(16)

and the parameters θ̂t be estimated by algorithms (8), (9),
(14), and (15). Then we have

||θ̃t|| ≤ (1 − ε)||θ̃t−1||,
where ε is a small positive number.

The proof of Theorem 3 is omitted.

Theorem 3 demonstrates that for an appropriate qt the
estimation based on algorithms (8), (9), (14), and (15) is
consistent. Since the algorithm contains relationship (15),
the result of Theorem 3 also conforms to the validity of

noise estimate ŵt. However, at time t it depends on θ̃t−1.

From the recursive algorithm the value of θ̃t−1 can be

calculated by the value of θ̃t−2. In contrast, if the value

of θ̃t−2 is determined from algorithms (8), (9), (14), and

(15), the values of αt−1 and θ̃t−1 are obtained. Therefore,
the key determining factor for αt should be how to choose

the initial value of θ̃0. In order to add some flexibility to
the algorithm’s performance and to make the recursive
algorithm more reliable and adaptable, in the following,

one method for the estimation of Pt−1θ̃t−1 is proposed.
From (C1) it follows that:

Ptθ̃t = P0θ̃0 −
t∑

k=1

[
(Φ

T
αk + qkϕk)wk + ϕkαT

k W
]

(17)

If the initial matrix P0 is taken as δI, where I is the
identity matrix and δ is a small positive number, then

P0θ̃0 can be omitted or the initial value is chosen by an

any small vector. Therefore, Pt−1θ̃t−1 can be estimated by
the recursive form:

Pt−1
̂̃
θt−1 = −

t−1∑

k=1

[
(Φ

T
α̂k + qkϕk)ŵk + ϕkαT

k Ŵ
]

= Pt−2
̂̃
θt−2 − (Φ

T
α̂t−1

+qt−1ϕt−1)ŵt−1 − ϕt−1α
T

t−1Ŵ (18)

We can use another method to deal with θ̃t−1 for estimat-
ing the values of αt. Since

θ̃t−1 = θ − θt−1

in relationship (14), θ̃t−1 can be estimated by an adaptive
method. The average of the last m estimation values

θt−1 =
1

m

t−1∑

k=t−m

θ̂k

is used as the parameter θ, where m is a proper integer.
Then, we have that:
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̂̃
θt−1 = θt−1 − θ̂t−1

=
1

m

t−1∑

k=t−m

θ̂k − θ̂t−1 (19)

Lemma 1 and Theorem 3 give the choice of domain for
qt. Of course, this is a theoretic result for analyzing the
performance of the new identification algorithm. In the
following simulations, in fact, qt is assigned a number from
an interval (0, 1].

4. SIMULATIONS

Most of the early system identification work was based
on the assumption that the interference system noise
was either Gaussian, m.d.s. signals, or white noise. In
engineering, these restrictions do not reflect reality since
system noises are unknown and are very complicated. In
this discussion there is no restriction on the system noise;
that is, the disturbance may be non-Gaussian, non-m.d.s.,
or non-white noise. This performance is demonstrated by
the following examples.

To illustrate the behavior of the optimal recursive algo-
rithms, a simulation trial was conducted for comparison
with ordinary LS recursive algorithms, which was a special
case of algorithms (8) and (9) with

αt = 0, t = 1, 2, 3, · · ·
For a real system, the output {yt}N

1 was generated by the
system with a given input sequence {ut}N

1 . The experi-
mental sample number N was 2000. Let

η = (
N∑

t=1

w2
t /

N∑

k=1

y2
k)

1

2

be the noise-to-signal ratio, which expresses the extent of
model signal disturbance. θ was denoted as the real model

parameter, while θ̂ORA and θ̂LS were the optimal recursive
algorithm and the recursive least-squares (RLS) estimates.

Example 1. The discrete system was given as:

yt =
b1

1 + a1q
−1 ut−1 + wt (20)

The real system parameters were a1 = 0.8 and b1 = 3.
The input signal {ut}N

1 was generated by a sine generator.
{wt}N

1 was a stochastic disturbance with mean 1.55 and
variance 0.52. It was a biased noise rather than a white
noise. The output of the system was then generated by (20)
with the noise-to-signal ratio η = 0.1475. The parameter
was estimated according to the RLS method and the
ORA1 method, which consisted of relationships (8), (9),

(14), (15), and (18). The initial parameter θ̂0 was the zero
vector. At time t the matrix Φ was chosen as

Φ = (ϕt−2, ϕt−1)
T

To avoid the singularity of the matrix

ϕtŴ
T + Φ

T
ŵt

in (14), the αt was chosen as the zero vector if

|det(ϕtŴ
T + Φ

T
ŵt)| < 0.1

In fact, only six switches were encountered in the full
simulation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

LS Estimate

ORA1 Estimate

0.8 

Fig. 1. Simulation of Example 1

The optimal recursive algorithm can be intuitively com-
pared with the RLS method as shown in Figure 1:

which clearly shows that the optimal recursive algorithm
method identifies the real system (20) more efficiently than
does the RLS method. It is also validated by the following
calculated values:

θORA1 =

(
0.7916 ± 0.0025
3.0684 ± 0.0206

)

θLS =

(
0.4100 ± 0.0194
2.3531 ± 0.0307

)

where θORA1 denotes the average estimate from the 100th
ORA value to the 2000th ORA value. θLS denotes the
average estimate from the value of the 100th LS estimate
to the 2000th LS estimate. The calculation error is defined
by standard deviation.

Example 2. The discrete system is given as:

yt =
ut−1

1 + a1q
−1 + a2q

−2 + wt (21)

where

wt =
w1t

1 + q−1 + 0.2q−2 + w2t

The real system parameters were a1 = −1.7, a2 = 0.8. The
input signal {ut}N

1 was generated by a pulse generator.
{w1t}N

1 was an approximate white noise and {w2t}N
1 was

a sawtooth signal. The noise {wt}N
1 consisted of these

two signals with mean 0.0301 and variance 2.0466. As in
example 1, this noise was not a white noise, either. The
output of the system was then generated by (21) with
a noise-to-signal ratio η = 0.2237. The parameter was
estimated according to the RLS method and the ORA2
method, which consisted of relationships (8), (9), (14),
(15), and (19) with m = 5. From (19) we can see that

the desired estimation
̂̃
θt−1 would depend on the choice of

initial parameter θ̂0. In order to get better initial values,
the recursive empirical frequency-domain optimal estimate
was used in the first 200 steps, where αt was determined
by (8) and v(t) = yt (Lo and Kimura 2003). At time t
matrix Φ was chosen as

Φ = (ϕt−2, ϕt−1)
T

too. To avoid the singularity of the matrix

ϕtŴ
T + Φ

T
ŵt

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7513



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ORA2 Estimate

LS Estimate

 

−1.7 

 0.8 

Fig. 2. Simulation of Example 2

in (14), αt was chosen as the zero vector if

|det(ϕtŴ
T + Φ

T
ŵt)| < 0.1

However, no switch occurred in the full simulation. Figure
2 shows the simulation result.

Due to the interference of complicated and biased noise,
a large error occurred using the ordinary RLS algorithm.
Figure 2 shows that the estimation of the ORA2 method
was more precise than that of the RLS method. The
calculated values were given by the following:

θORA2 =

(
−1.6969 ± 0.0038

0.8000 ± 0.0047

)

θLS =

(
−0.9769 ± 0.0383

0.0860 ± 0.0387

)

where θORA2 denotes the average estimate from the 100th
ORA value to the 2000th ORA value. θLS denotes the
average estimate from the value of the 100th LS estimate
to the 2000th LS estimate.

5. CONCLUSIONS

This paper presents a recursive algorithm for discrete sys-
tems, composed of two decoupled complementary parts.
There are many tuning parameters contained in this re-
cursive algorithm. They are included and constructed in
a time-varying performance criterion and in the recursive
algorithm. Minimizing the parameter estimation error, an
ORA method was established. Compared with the previ-
ous recursive algorithms, in this method the system data
record can be used efficiently, and computational time is
less than that of the REFOP estimate (Lo and Kimura
[2003]). Furthermore, the viability and consistency of the
optimal recursive algorithm were analyzed. Since there
was not any restriction on the system disturbance noise,
theoretic analysis and simulation results indicated that
the new algorithms have the advantage of being anti-
interference, which includes protection against color noise,
biased noise, and noise for some unmodeled systems.

The purpose of our research is to extend and adapt
system identification to be efficiently used in complicated
engineering applications. As a special case of algorithms
(8) and (9), the LS algorithm should be the simplest choice
because

αt = 0, t = 1, 2, 3, · · ·

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

LS Estimate

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ORA3 Estimate LS Estimate

 

−1.7 

 0.8 

Fig. 3. Simulation of Example 2

But this does not prove that it provides the best method
of choosing tuning parameters. In addition to the method
discussed in this paper, of course, there should be other
methods to choose tuning parameters αt to make the
algorithm more efficient. For instance, in the simulation
of Example 2, if the tuning parameters are chosen as:

αt = (α1t, α2t, · · · , α(t−1)(t−1))
T

with



α1k = 0, k = 1, 2, · · · , t − 3

α(t−2)t = α(t−1)t =
√

qt =
1

3

t = 3, 4, 5, · · · (22)

then the simulation results are as shown in Figure 3:

and the calculation values are as follows:

θORA3 =

(
−1.7030 ± 0.0051

0.7999 ± 0.0053

)

where θORA3 denotes the average of the estimation values
of algorithms (8), (9), and (22). It is also more exact than
the LS method in identifying real system (21).
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