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Abstract: A powerful approach for dynamic optimization in the presence of uncertainty is
to incorporate measurements into the optimization framework so as to track the necessary
conditions of optimality (NCO), the so-called NCO-tracking approach. For nonsingular control
problems, this can be done by tracking active constraints along boundary arcs, and using
neighboring-extremal (NE) control along interior arcs to force the first-order variation of the
NCO to zero. In this paper, an extension of NE control to singular control problems is proposed.
The idea is to design NE controllers from successive time differentiations of the first-order
variation of the NCO. Based on these results, a NCO-tracking controller that is easily tractable
from a real-time optimization perspective is proposed, whose application guarantees that the
first-order variation of the NCO converges to zero exponentially. The performance of this NCO-
tracking controller is illustrated via the case study of a steered car, a 5th-order two-input
dynamical system.

1. INTRODUCTION

Optimization in the process industry has received a lot of
attention in recent years because, in the face of growing
competition, it represents a natural choice for reducing
production costs, improving product quality, and meeting
safety requirements and environmental regulations. Tradi-
tionally, the optimal operating conditions are determined
based on a model of the process. However, the resulting
process operation can be highly sensitive to uncertainty
such as model mismatch and process disturbances. This
generally gives rise to suboptimal process operation or,
worse, infeasible operation, which of course is not tolerable
in most industrial applications.

A natural approach to combat uncertainty and avoid con-
servatism consists in incorporating measurements in the
optimization framework. In particular, the NCO-tracking
methodology (Srinivasan and Bonvin, 2007) converts a
dynamic optimization problem with both path and ter-
minal constraints into a feedback control problem. In
this approach, near-optimal process operation is enforced
by tracking appropriate references, namely the necessary
conditions of optimality (NCO). The idea behind NCO
tracking is to take advantage of the structure of an optimal
control solution, which is usually made of a succession
of arcs. For those arcs along which path constraints are
active, part of the optimal inputs are obtained by enforcing
the corresponding constraints. The remaining part of the
optimal inputs is determined by the intrinsic compromises
present in the system. In this latter case, the Pontrya-
gin Maximum Principle (PMP) (Pontryagin et al., 1964)
shows that tracking the NCO consists in forcing a sensitiv-
ity term to zero. However, this is much more involved than

? This material is based upon work supported by the Swiss National
Science Foundation under grant 200020-101783.

constraints tracking in the sense that the corresponding
sensitivity terms depend on the adjoint variables, which
are typically unknown and cannot be measured. For non-
linear dynamical systems, a first-order approximation of
these sensitivity terms can be obtained upon application
of the theory of neighboring extremals (NE) (Bryson and
Ho, 1975). In other words, NE control forces the first-order
variation of the NCO to zero, and thus offers much promise
in the context of NCO tracking.

However, an inherent limitation of standard NE control
lies in the fact that the control problem must be nonsin-
gular, otherwise the control law calls for the inversion of
a singular matrix. In a previous work, Gros et al. (2004)
proposed to design NE controllers for single-input, singular
control problems from successive time differentiations of
the first-order variation of the NCO. The main contribu-
tion of the present paper is to generalize these ideas to the
multiple-input case. Most of the complications stem from
the fact that an optimal arc for a multiple-input system
may have different orders of singularity with respect to
the control variables (Robbins, 1967). Based on these new
developments, a NCO-tracking controller that is easily
implementable and tractable from a real-time optimization
perspective is proposed.

The paper is organized as follows. The problem formu-
lation is presented in Section 2. NE control for singular
problems is characterized in Section 3, and a multiple-
input NCO-tracking controller is devised in Section 4.
These new developments are illustrated via the case study
of a steered car in Section 5. Finally, Section 6 concludes
the paper.

2. PROBLEM FORMULATION

Consider the following dynamic optimization problem:
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min J [u] := Φ(x(tf)) +

∫ tf

0

L(x(t),u(t),θ) dt (1)

s.t. ẋ(t) = F(x(t),u(t),θ); x(0) = x0 (2)

uL ≤ u(t) ≤ uU , (3)

where t stands for the time (independent) variable, tf
the fixed final time, u : [0, tf ] → R

nu the control vector
function, x : [0, tf ] → R

nx the state vector function
with initial state x0, θ ∈ R

nθ the vector of uncertain
time-invariant parameters, F the system dynamics, J the
scalar cost functional to be minimized, Φ the terminal cost
function, and L the integral cost function. We shall assume
that all functions appearing in (1)–(3) are sufficiently
often continuously differentiable with respect to their
arguments.

Note that the formulation (1)–(3) contains simple input
constraints only. However, the subsequent developments
can be easily extended to problems with general path
constraints of the form S(x(t),u(t),θ) ≤ 0, e.g., by
forcing the first-order variation of these constraints to zero.
In general, this is not sufficient for obtaining a feasible
solution, so constraint backoffs need to be considered.

The first- and second-order necessary conditions of opti-
mality for the problem (1)–(3) are given by:

Hu = Lu + FT
u
λ − µL + µU = 0 (4)

Huu positive semi-definite,

where the Hamiltonian function H is defined as

H(x,u,θ,λ,µL,µU ) := L(x,u,θ) + F(x,u,θ)Tλ

+ µLT
(uL − u) + µU T

(u − uU ),

λ : [0, tf ] → R
nx denotes the adjoint vector function given

by

λ̇ = −Hx = −FT
x
λ − Lx; λ(tf) = Φx(x (tf)) ,

and µL,µU : [0, tf ] → R
nu are Lagrange multiplier vector

functions satisfying

µLT
(uL − u) = 0; µL ≥ 0

µU T
(u − uU ) = 0; µU ≥ 0.

Given the nominal parameter values θ̄, we shall assume
that a unique optimal control u∗(t), 0 ≤ t ≤ tf , exists in
the class of piecewise-continuous vector functions for the
optimization problem (1)–(3). We shall call the piece of an
optimal trajectory that does not intersect the boundary
an interior arc; if at least one constraint is active, we
call that piece of trajectory a boundary arc. Observe that
µL(t) = µU (t) = 0 along an interior arc, while there is
some i ∈ {1, . . . , nu} such that µL

i (t) 6= 0 or µU
i (t) 6= 0

along a boundary arc.

In optimal control theory, singular control problems are
those for which a straightforward application of the fore-
going NCO fails to provide adequate tests for singling
out optimal control values (Bell and Jacobson, 1975). In
other words, the matrix Huu is singular. To determine
optimal control values along singular arcs, one usually
exploits the identical vanishing of Hu and its successive
time derivatives Ḣu, Ḧu, . . .

3. CHARACTERIZATION OF NE CONTROL

Any slight change ηδx0 in the initial state or ηδθ in the
model parameters modifies the optimal control trajectory
u∗(t), 0 ≤ t ≤ tf , and requires that it be recalculated.
Clearly, calculating a perturbed optimal control is a time-
consuming task, hardly compatible with the objective of
real-time optimization. A more tractable way of obtaining
a perturbed optimal control trajectory is to consider the
first-order approximation

u(t; η) = u∗(t) + ηδu(t) + o(η),

and then use the theory of neighboring extremals for
calculating the correction δu in such a way that the
first-order variation of the NCO be equal to zero upon
application of the control u∗(t) + ηδu(t).

Let (u∗(t),x∗(t),λ∗(t)), 0 ≤ t ≤ tf , be an optimal triple
for the optimal control problem (1)–(3) corresponding to
the nominal parameter values θ̄. Along each arc composing
u∗, a control variable u∗i (t) may either:

• belong to the interior of the control region uL
i <

u∗i (t) < uU
i , in which case a neighboring-extremal

solution is such that δµL
i (t) = δµU

i (t) = 0, and δui(t)
is obtained from the first variation of (4) as

δHui
= H∗

uix
δx + F∗T

ui
δλ +H∗

uui
δui +H∗

uiθ
δθ = 0;

• or be at one of its boundaries uL
i or uU

i , in which case
a NE control is simply given by δui(t) = 0.

These nu conditions can be written collectively in the form

δL := A0δλ + B0δx + C0δu + D0δθ = 0, (5)

where A0(t),B0(t) ∈ R
nu×nx , C0(t) ∈ R

nu×nu , D0(t) ∈
R

nu×nθ , and

δẋ = F∗

x
δx + F∗

u
δu + F∗

θδθ

δλ̇ = − F∗T
x
δλ −H∗

xx
δx−H∗

xu
δu −H∗

xθ
δθ

δx(0) = δx0, δλ(tf) = Φ∗

xx
δx(tf).

If C0 has full rank, a NE control law is readily obtained
from (5) as

δu = −C−1
0 [A0δλ + B0δx + D0δθ] ,

which corresponds to the standard NE control law in the
case where no input constraint is active (Bryson and Ho,
1975).

On the other hand, if C0 is singular and of constant rank
(nu − r0), singular value decomposition (SVD) of C0 gives

( Uns
0 Us

0 )

(

Σ0

0r0×r0

)(

Vns
0

T

Vs
0
T

)

:= C0,

where Σ0 is a diagonal, positive-definite matrix, and U0 :=
( Uns

0 Us
0 ), V0 := ( Vns

0 Vs
0 ) are orthogonal matrices.

The input variations δu(t) can then be partitioned into
nonsingular δuns

0 (t) and singular δus
0(t) subparts of dimen-

sion (nu − r0) and r0, respectively,

δuns
0 (t) = Vns

0
T(t) δu(t), δus

0(t) = Vs
0
T(t) δu(t).

Using this partition, the conditions (5) can be split into

0 = Uns
0

TδL = Uns
0

T (A0δλ + B0δx + D0δθ) + Σ0δu
ns
0

0 = Us
0
TδL = Us

0
T (A0δλ + B0δx + D0δθ) .

Matrix Σ0 being invertible, the former (nu−r0) conditions
provide an explicit expression for the nonsingular control
variations δuns

0 as
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δuns
0 = −Σ−1

0 Uns
0

T (A0δλ + B0δx + D0δθ) .

The remaining r0 singular control variations δus
0 are de-

termined from the latter r0 conditions. Introducing the
new variables δ`0 := Us

0
TδL ∈ R

r0 , and differentiating
δ`0 twice with respect to time leads to 2r0 additional
conditions of the form

0 = δ ˙̀
0 = A1δλ + B1δx + D1δθ

0 = δ῭0 = A2δλ + B2δx + C2δu
s
0 + D2δθ, (6)

with A1,B1,A2,B2 ∈ R
r0×nx , D1,D2 ∈ R

r0×nθ , and
C2 ∈ R

r0×r0 .

At this point, we have either one of two cases:

• If C2 has full rank, the singular NE control δus
0(t) is

obtained from (6) as

δus
0 = −C−1

2 (A2δλ + B2δx + D2δθ) .

The NE control law is then obtained by piecing
singular and nonsingular control variations together
as

δu = −Vns
0 Σ−1

0 Uns
0

T (A0δλ + B0δx + D0δθ)

−Vs
0C

−1
2 (A2δλ + B2δx + D2δθ) ;

• If C2 is singular and of constant rank (r0 − r2),
one uses SVD of C2 to further partition the singular
control variations as δuns

2 := Vns
2

Tδus
0 ∈ R

r0−r2 and

δus
2 := Vs

2
Tδus

0 ∈ R
r2 . Then, introducing the new

variables δ`2 := Us
2
Tδ῭0 ∈ R

r2 , one can proceed as
before by differentiating δ`2 twice, and the procedure
continues in an obvious manner.

By continuing the recursion outlined previously, that is

δ`2k := Us
2k

Tδ῭2k−2 ∈ R
r2k ; δ`0 := Us

0
TδL, (7)

one obtains the following set of 3r2k−2 conditions that
must hold along a singular arc:

0 = δ`2k−2 = Us
2k−2

T (A2k−2δλ + B2k−2δx + D2k−2δθ)

0 = δ ˙̀
2k−2 = A2k−1δλ + B2k−1δx + D2k−1δθ

0 = δ῭2k−2 = A2kδλ + B2kδx + C2kδu
s
2k−2 + D2kδθ,

where A2k−1,B2k−1,A2k,B2k ∈ R
r2k−2×nx , D2k−1,D2k ∈

R
r2k−2×nθ , C2k ∈ R

r2k−2×r2k−2 are defined recursively as

A2k−1 = U̇sT
2k−2A2k−2 (8)

+ UsT
2k−2

(

Ȧ2k−2 −A2k−2F
∗T
x

)

B2k−1 = U̇sT
2k−2B2k−2 (9)

+ UsT
2k−2

(

Ḃ2k−2 + B2k−2F
∗

x
−A2k−2H

∗

xx

)

D2k−1 = U̇sT
2k−2D2k−2 (10)

+ UsT
2k−2

(

Ḋ2k−2 + B2k−2F
∗

θ
−A2k−2H

∗

xθ

)

A2k = Ȧ2k−1 − A2k−1F
∗T
x

(11)

− (B2k−1F
∗

u
−A2k−1H

∗

xu
)

×





k−1
∑

i=0





i−1
∏

j=0

Vs
2j





(

Vns
2i Σ

−1
2i Uns

2i
T
)

A2i





B2k = Ḃ2k−1 + B2k−1F
∗

x
−A2k−1H

∗

xx
(12)

− (B2k−1F
∗

u
−A2k−1H

∗

xu
)

×





k−1
∑

i=0





i−1
∏

j=0

Vs
2j





(

Vns
2i Σ

−1
2i Uns

2i
T
)

B2i





C2k = (B2k−1F
∗

u
−A2k−1H

∗

xu
)





k−1
∏

j=0

Vs
2j



 (13)

D2k = Ḋ2k−1 + B2k−1F
∗

θ
−A2k−1H

∗

xθ
(14)

− (B2k−1F
∗

u
−A2k−1H

∗

xu
)

×





k−1
∑

i=0





i−1
∏

j=0

Vs
2j





(

Vns
2i Σ

−1
2i Uns

2i
T
)

D2i



 ,

and the matrices Uns
2k, Us

2k, Vns
2k and Vs

2k are obtained
from SVD of C2k as

( Uns
2k Us

2k )

(

Σ2k

0r2k×r2k

)(

Vns
2k

T

Vs
2k

T

)

:= C2k. (15)

It is assumed throughout that the rank (r2k−2 − r2k) of
the matrix C2k is constant along the singular arc for each
k = 0, 1, . . .

The procedure is stopped after p iterations, where p stands
for the smallest value of k such that C2p is nonsingular. A
finite value is assumed for p in this work, i.e. the control
problem is not degenerate. Then, the control variation
δu(t) is obtained by piecing nonsingular and singular
control variations together,

δu =

p−1
∑

k=0

(

k−1
∏

i=0

Vs
2i

)

Vns
2kδu

ns
2k +

(

p−1
∏

i=0

Vs
2i

)

δus
2p−2,

(16)

where the control variations δuns
0 (t), . . . , δuns

2p−2(t), and

δus
2p−2(t) are obtained from the conditions δ῭2k−2 = 0

as

δuns
2k = −Σ−1

2k Uns
2k

T (A2kδλ + B2kδx + D2kδθ)

δus
2p−2 = −C−1

2p (A2pδλ + B2pδx + D2pδθ) .

4. DESIGN OF NCO-TRACKING CONTROLLERS

In general, the junction times between the various arcs
constituting the optimal solution u∗(t), 0 ≤ t ≤ tf ,
vary when initial conditions or model parameters are
perturbed. For many control problems, however, these
variations remain small and can be ignored without much
effect on system performance. This is the case, e.g., when
the nominal solution is dominated by a small number of
(possibly singular) arcs. We shall see in this section how
simple NCO-tracking controllers can be devised for such
problems by fixing the junction times to their nominal
values. The resulting controllers are advantageous from a
practical viewpoint because the state feedback law comes
as a closed-form expression, i.e. it does not necessitate
time-consuming on-line computations (such as the on-line
solution of a TPBVP).

By construction, applying the feedback law (16) guaran-

tees that the conditions Uns
0

TδL = 0, Uns
2k

Tδ῭2k−2 = 0,

k = 1, . . . , p − 1, and δ῭2p−2 = 0 are satisfied along a

singular arc. Yet, the remaining conditions Us
0
TδL = 0,
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Us
2k

Tδ῭2k−2 = 0 and δ ˙̀
2k−2 = 0, k = 1, . . . , p, are not

enforced by (16) and may be violated when the junction
times are fixed; in particular, this leads to a violation of
the first-order variation of the NCO, δL = 0.

A way of enforcing this latter condition is to modify the
recursion (7) as

δ`2k := Us
2k

TT2k−2δ`2k−2; δ`0 := Us
0
TδL,

where the operator T2k−2 is given by

T2k−2 :=
d2

dt2
+ γ1

2k−2

d

dt
+ γ0

2k−2, (17)

and γ0
2k−2, γ

1
2k−2 ∈ R are constant gain coefficients. By

finite induction on k = 1, . . . , p − 1, it can be shown that
this modification leads to the following expressions:

δ`2k = Us
2k

T (
Ā2kδλ + B̄2kδx + D̄2kδθ

)

δ ˙̀2k = A2k+1δλ + B2k+1δx + D2k+1δθ

δ῭2k = A2k+2δλ + B2k+2δx + C2k+2δu
s
2k + D2k+2δθ,

where:

Ā2k = A2k + γ1
2k−2A2k−1 + γ0

2k−2U
s
2k−2

T
A2k−2

B̄2k = B2k + γ1
2k−2B2k−1 + γ0

2k−2U
s
2k−2

T
B2k−2

D̄2k = D2k + γ1
2k−2D2k−1 + γ0

2k−2U
s
2k−2

T
D2k−2

Ā0 = A0, B̄0 = B0, D̄0 = D0.

The matrices A2k+1,B2k+1,D2k+1 are calculated as in
(8)–(10); A2k,B2k,C2k,D2k are calculated as in (11)–(14)
except that A2i, B2i, and D2i are now replaced by Ā2i,
B̄2i, and D̄2i; the matrices Uns

2k, Us
2k , Vns

2k and Vs
2k are

obtained from SVD of C2k as in (15).

Observe that the expression of δ῭2k−2 being the same as in
Section 3, the expression of the new feedback is identical
to (16), with the modified matrices Ā2k, B̄2k, D̄2k. This
feedback law can be rewritten in more compact form

δu(t) = − C(t) [A(t)δλ(t) + B(t)δx(t) + D(t)δθ] , (18)

with the matrices A,B ∈ R
(r0+···+r2p)×nx , D ∈

R
(r0+···+r2p)×np , and C ∈ R

nu×(r0+···+r2p) given by:

A :=









Ā0

Ā2

...
Ā2p









, B :=









B̄0

B̄2

...
B̄2p









, D :=









D̄0

D̄2

...
D̄2p









,

C :=

(

· · ·

k−1
∏

i=0

Vs
2i

(

Vns
2kΣ

−1
2k Uns

2k
T
)

· · ·

p−1
∏

i=0

Vs
2i C−1

2p

)

.

The following theorem shows that, under mild assump-
tions, the modified NE feedback law (18) drives the first-
order variation of the NCO to zero, in response to vari-
ations in both the initial condition δx0 and the model
parameters δθ.

Theorem 1. Let Γ2k ∈ R
2×2 be defined as

Γ2k :=

(

0 1
−γ0

2k −γ1
2k

)

.

If Γ2k is Hurwitz for each k = 0, . . . , p − 1, then the first
variation δL of the NCO converges to zero exponentially
upon application of the feedback law (18).

Proof. See Gros (2007) for a proof.

The gain coefficients γ0
2k, γ

1
2k, 0 ≤ k < p, determine the

rate of convergence of δL and must be selected carefully.
While too small values may not allow to reject the per-
turbations sufficiently rapidly relative to the time horizon
[0, tf ], large values may lead to excessive corrections that
invalidate the linear approximation and make the feedback
highly sensitive to measurement noise. As a possible exten-
sion, one may consider gain matrices Γ0

2k ,Γ
1
2k ∈ R

r2k×r2k

instead of scalar gain coefficients. It can be shown that
the result in Theorem 1 still holds, provided that the

(2r2k × 2r2k) matrix

(

0r2k×r2k
Ir2k×r2k

−Γ0
2k −Γ1

2k

)

is Hurwitz, for

each k = 0, . . . , p− 1.

Finally, an explicit feedback law is obtained from (18)
based on the backward sweep method (Bryson and Ho,
1975):

δu(t) = −Kx(t)δx(t) −Kθ(t)δθ (19)

Kx(t) = C(t) [A(t)Sx(t) + B(t)] (20)

Kθ(t) = C(t) [A(t)Sθ(t) + D(t)] (21)

Ṡx(t) = −H∗

xx
− Sx(t)F∗

x
− F∗T

x
Sx(t) (22)

+ [H∗

xu
+ Sx(t)F∗

u
]Kx(t); Sx(tf) = Φ∗

xx

Ṡθ(t) = −H∗

xθ − Sx(t)F∗

θ − F∗T
x

Sθ(t) (23)

+ [H∗

xu
+ Sx(t)F∗

u
]Kθ(t); Sθ(tf) = 0.

Because this control law drives the first-variation of the
NCO to zero, (19)–(23) can be seen as a NCO-tracking
controller. Note that, for the integration of the sweep
matrices Sx, Sθ to remain stable, the gain coefficients
γ0
2k, γ

1
2k, 0 ≤ k < p, must not be too large. A tradeoff must

therefore be sought, which is clearly problem dependent.

5. CASE STUDY

To illustrate the design and performance of NCO-tracking
controllers for singular control problems, a steered car with
inertia and friction is considered (see Fig. 1). A model
describing the motion of the car is as follows

ẏ = V cosψ; y(0) = y0 (24)

ż = V sinψ; z(0) = z0 (25)

V̇ = u1 − µV ; V (0) = 0 (26)

ψ̇ = V tanφ; ψ(0) = 0 (27)

φ̇ = u2; φ(0) = 0, (28)

where y and z denote the Cartesian coordinates of the
car [m], V its velocity [m/s], ψ its heading angle [rad],
φ the orientation of its driving wheels [rad], and µ is a
friction parameter [1/s]. The control variable u1 represents
the motor force divided by the mass of the car [N/kg], and
the control variable u2 stands for the rate of change of
the orientation of the driving wheels [rad/s]. A quadrature
variable, E, representing the cumulated energy consump-
tion per unit mass [J/kg] is added to the model:

Ė = u1V ; E(0) = 0. (29)

Note that Ė may be negative when u1 opposes V , meaning
that the car has the ability to recover energy from braking
(regenerative braking system). The numerical values for
the parameters, initial conditions, and input bounds are
given in Tab. 1.

The optimization problem consists in minimizing the en-
ergy needed to bring the car to a neighborhood of the
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Fig. 1. Steered car with indication of the state variables.

origin (0, 0) at a fixed final tf , while respecting input
bounds:

minimize : J [u] := y(tf)
2 + z(tf)

2 +E(tf) (30)

subject to : model equations (24) − (29) (31)

uL
1 ≤ u1(t) ≤ uU

1 (32)

uL
2 ≤ u2(t) ≤ uU

2 . (33)

5.1 Design of the NCO-Tracking Controller

The design of the NCO-tracking controller starts with
the computation of the nominal optimal control. Possible
values that can be taken by the inputs u1(t) and u2(t)
along an optimal solution are determined upon application
of Pontryagin’s Maximum Principle:

• the interior arcs for the input u1 are singular of degree
p1 = 1, and the values taken by u∗1(t) along an
optimal solution are restricted to {uL

1 , u
U
1 , µV (t) −

λ4(t)
2µ(cos φ(t))2u

L
2 , µV (t) − λ4(t)

2µ(cos φ(t))2u
U
2 , µV (t)};

• the interior arcs for the input u2 are singular of degree
p2 = 2, and u∗2(t) can only take on discrete values in
{uL

2 , u
U
2 , 0} along an optimal solution.

To get an idea of the optimal sequence of arcs, a numerical
solution to the problem (30)–(33) is computed using the
control vector parameterization (CVP) approach. The
optimal solution appears to be constituted of 6 principal
arcs, separated by 5 switching times t∗k, k = 1, . . . , 5
(Tab. 2).

Based on this arc sequence, a NCO-tracking controller is
designed following the procedure described in Sections 3

Table 1. Model parameters, initial conditions,
and input bounds.

µ 0.1 1/s uL

1 −1 N/kg
y0 −4 m uU

1 1 N/kg
z0 4 m uL

2 −1 N/kg
tf 8 s uU

2 1 rad/s

Table 2. Nominal arc sequence.

Arc u1 u2

1 uU

1 uL

2

2 using
1

(t) uL

2

3 using
1 (t) uU

2

4 using
1 (t) uL

2

5 using
1 (t) using

2 (t)

6 uL

1 using
2

(t)

Table 3. NCO-tracking controller.

Arc
Controller for

u1 u2

1 none

none
2

NE controller 13
4
5 NE controller 2
6 none NE controller 3

and 4. In this controller, the junction times are fixed to
their nominal values t∗k, k = 1, . . . , 5, and the corrective
actions taken along each arc are those indicated in Tab. 3.

The design of the three NE controllers is based on (19)–
(23) and requires the computation of the time-varying
matrices A, B, C and D. Although the SVD procedure
described in Section 3 gives constant singular and nonsin-
gular directions in this example (i.e., Uns

2k , Us
2k , Vns

2k, Vs
2k

are constant matrices), performing those calculations by
hand is both fastidious and prone to errors. Fortunately,
the theory lends itself naturally to automation, e.g., with
the symbolic toolbox of Matlab

r©

.

• In the NE controller 1, the recursion starts with the
conditions

0 = δL(t) =

(

δλ3(t) + δV (t)
δu2(t)

)

, t∗1 < t ≤ t∗4.

The matrix C0 has rank nu − r0 = 1, and 2 time
differentiations are required to devise the controller,
i.e. p = 1.

• In the NE controller 2, the recursion starts with the
conditions

0 = δL(t) =

(

δλ3(t) + δV (t)
δλ5(t)

)

, t∗4 < t ≤ t∗5.

The matrix C0 has rank nu − r0 = 0. The compu-
tations give r2 = 1 after 2 rounds of differentiations,
and a total of 4 successive differentiations is necessary
to design the controller, i.e. p = 2.

• Finally, the recursion for the NE controller 3 starts
with the conditions

0 = δL(t) =

(

δu1(t)
δλ5(t)

)

, t∗5 < t ≤ tf .

The matrix C0 has rank nu − r0 = 1. The compu-
tations give r2 = 1 after 2 rounds of differentiations,
and a total of 4 successive differentiations is necessary
to design the controller, i.e. p = 2.

The gain coefficients in the NE controller 1 are taken
as γ0

0 = s1s2 and γ1
0 = −s1s2, so that the differential

operator T0 given in (17) has stable poles at s1 = −0.2
and s2 = −2. On the other hand, the gain coefficients in
the NE controllers 2 and 3 are taken as γ0

0 = γ0
2 = s2

and γ1
0 = γ1

2 = −2s, so that T0 and T2 both have stable
poles at s = −1. Decreasing the poles leads to more
aggressive NE controllers in the sense that the inputs are
more likely to saturate at their upper or lower bounds.
Generally, decreasing the poles also has an adverse effect
on the stability of the backward sweep integration.

5.2 Performance of the NCO-Tracking Controller

To assess the performance of the proposed control ap-
proach, a scenario is considered where the initial conditions
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Table 4. Compared performance of various
control strategies.

Control Strategy J

Optimal Solution (Ideal) 0.7015
Open-Loop Nominal Solution 10.084
NCO Tracking 0.8034
NCO Tracking with NE Control on Arc 5 only 1.1005

are perturbed as ψ(0) = −0.175 [rad] and V (0) = 0.5
[m/s], and the friction parameter is perturbed as µ = 0.2
[1/s]. Note that these are substantial perturbations of the
nominal operating conditions.

The NCO-tracking controller is compared to:

(1) the optimal solution to the perturbed problem, as-
suming known perturbations;

(2) the optimal solution to the nominal problem, applied
open loop;

(3) a simplified NCO-tracking controller implementing a
two-input NE controller on Arc 5 and applying the
nominal control open loop along the remaining arcs.

The input and response trajectories for the various control
strategies are shown in Fig. 2. Moreover, the cost obtained
with each strategy is reported in Tab. 4. Note that ap-
plying the nominal input open loop leads to poor perfor-
mance. On the other hand, the proposed NCO-tracking
controller is able to recover most of the performance loss
compared to the optimal strategy (which assumes that
the perturbed initial conditions are known). Interestingly
enough, most of the performance loss is also recovered
upon application of a two-input NE controller along Arc 5
only (NE controller 2), while leaving the remaining arcs
uncontrolled. This comparison illustrates the central role
played by the NE controller 2 in the NCO-tracking scheme.

6. CONCLUSIONS AND FUTURE WORK

Many practical problems of interest exhibit solutions that
contain singular arcs, e.g., in rocket and air vehicle flight
or chemical plant operation. Strong incentives therefore
exist to operate these processes in the most efficient
possible manner, despite the presence of uncertainty. In
this paper, an extension of the theory of neighboring
extremals to address singular optimal control problem has
been proposed for multiple-input system. Moreover, to
make these results tractable from a real-time optimization
perspective, an explicit NCO-tracking controller has been
devised, which guarantees that, under mild assumptions,
the first-order variation of the NCO converge to zero
exponentially. These results have been illustrated by the
case study of a steered car. It is found that the NCO-
tracking controller not only allows to recover most of the
optimality loss induced by large perturbations of the initial
conditions, but it also shows excellent performance in the
presence of substantial parameter uncertainty.

Despite the apparent complexity of designing NE con-
trollers for singular control problems, it should be empha-
sized that most of this complexity is dealt with off-line.
In particular, on-line calculations are limited to the imple-
mentation of a simple state-feedback law. This approach is
therefore well suited to control fast dynamical systems. An
important limitation of the approach lies in the fact that

full state measurement is required in the NE feedback law.
The design of NE controllers based on output feedback will
be the topic of future research. Future developments will
also aim at handling those optimal control problems for
which fixing the junction leads to large performance loss.
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Fig. 2. Comparison of the input and state trajectories
obtained with different control strategies. Dashed line:
optimal solution to the perturbed problem; solid line:
NCO tracking; dash-dotted line: NCO tracking on
Arc 5 only; dotted line: optimal nominal solution
applied open loop.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1927


