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Abstract: The conservatism of sector-based results for systems consisting of an interconnection of a
linear-time-invariant (LTI) system and a static, sector-bounded nonlinearity is well known. Despite this,
they are widely used in control system analysis and synthesis. This paper shows how, when the sector-
bounded nonlinearity is a deadzone, standard sector based results can be modified to allow the synthesis
of a nonlinear controller which can deliver improved performance over standard results. The appealing
feature of the method is that, as the main part of the design is done using standard sector results,
the computation associated with the improved controller is essentially the same as with the standard
controller. An override control example is used to illustrate the potential of the results.

1. INTRODUCTION

Sector based stability results form the cornerstone of the theory
of analysis of feedback loops involving a stable linear-time-
invariant (LTI) system and an isolated, memoryless nonlinear-
ity. Indeed, sector-boundedness of the nonlinearity is vital for
establishing both the popular Circle and Popov criteria (see
Khalil (1996) for example). These sector-based absolute stabil-
ity results have found many applications in control engineering
due to their relative ease of application and their computational
tractability (Boyd et al. (1994)) and are widely used. Their im-
portance is particularly noteworthy in the control of constrained
systems where it is often possible to pose the stability problem
as that of ensuring the stability of a feedback interconnection
of a (normally) LTI part and a deadzone nonlinearity, which
is sector bounded. Thus sector-based results feature heavily in
the anti-windup literature (Kothare et al. (1994); Mulder et al.
(2001); Grimm et al. (2003); Pittet et al. (1997) for example)
where researchers have exploited them to design (normally)
linear anti-windup compensators. They have also been used in
override control, where the aim is to design an “override” con-
troller to prevent output constraints from being exceeded - see
Glattfelder et al. (1983); Glattfelder and Schaufelberger (2003);
Turner and Postlethwaite (2002a, 2004); Herrmann et al. (2007)
for more details.

Unfortunately, sector-based results tend to be conservative be-
cause sector-bounding a nonlinearity effectively assigns it to be
a member of a certain set, to which other nonlinearities also
belong. Thus any results derived on the basis of sector-bounds
hold not only for the nonlinearity under consideration but for
the whole set of nonlinearities which inhabit the same sector.
For example the Sector [0, I] contains both the saturation and
deadzone operators, which have very different small and large
signal behaviours.

The conservatism of sector based results has been of particular
concern in anti-windup control and many authors have sought
to overcome these limitations by various methods. A number
of researchers have developed generalised sector conditions
(Tarbouriech et al. (2006); Hu et al. (2004)) which provide less
conservative and more attractive analysis tools for designing
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AW compensators by providing improved regions of attrac-
tion. Other researchers (Nguyen and Jabbari (2000); Turner
and Postlethwaite (2002c); Zaccarian and Teel (2004); Lin and
Saberi (1995); Turner et al. (2005)) have devoted their attention
to performance and have conducted analyses which consider
local as well as global performance. While there is merit to
all of these approaches, some of them have a rather intricate
construction and have significant computational requirements
which may prevent their application to many practical or com-
plex problems.

In Turner and Postlethwaite (2002c), the conservatism of sector
based approaches was examined from a different perspective,
with particular attention to override control. Although the re-
sults presented in Turner and Postlethwaite (2002c) were pre-
liminary, they indicated that by augmenting the override con-
troller with a simple nonlinear static element of a particular
form, performance improvements could be obtained. This ad-
ditional nonlinear element was chosen so that the composi-
tion of this and the deadzone nonlinearity did not violate the
Sector[0, I] constraint which already existed on the deadzone.
Thus, the standard sector based results used to derive the linear
control (Turner and Postlethwaite (2002a, 2004)) were able to
be duplicated in the design of the nonlinear override controller,
thus making the computation and construction of the nonlinear
override controller virtually identical to that of the linear con-
troller.

This paper takes the same approach as Turner and Postlethwaite
(2002c) but widens the results. The basic aim of the paper is to
propose simple nonlinear modifications to “controllers” (which
may mean anti-windup/override controllers) which enable them
to perform better while still meeting standard sector stability
requirements. Section 2 formulates the problem in a fairly
general way. In particular, although most applications are likely
to involve feedback interconnections of LTI systems and sector-
bounded nonlinearities, more generality can be obtained by
considering general nonlinear systems instead. This makes
the results of some relevance to the work of Wu and Soto
(2004) where anti-windup for LPV systems is considered. In
this section, a crucial lemma gives conditions under which
the deadzone nonlinearity can be replaced by a composite
nonlinearity which preserves the sector bound. The following
section then applies these results to linear cascade systems
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which arise in, for example anti-windup and override control,
and demonstrates how appropriate choices of the additional
nonlinearity can “push” the graph of the deadzone closer to
the upper sector bound and thus potentially allow one to obtain
improved performance. A simple override example shows the
effectiveness of the scheme and finally some conclusions are
given.

Notation used in the paper is standard. For functions f(.) and
g(.)we denote their composition as f ◦g(.), i.e. f ◦g = f(g(.)).
Extensive use is made of the signum function sign(.) : R 7→ R

which we define as

sign(x) =

{
1 x > 0
0 x = 0

−1 x < 0
(1)

2. GENERIC RESULTS

2.1 Problem formulation

Σ

Ψ

zv

Fig. 1. System with sector-bounded nonlinearity

The problem is first posed in a fairly general way and is
then specialised to certain cases of interest. Thus, consider the
interconnection in Figure 1 which is described by the equations
below:

Σ∼

{

ẋ = f(x, v)
z = h(x, v) (2)

v = Ψ(z) (3)

where x ∈ R
n represents the system’s state, v ∈ R

m its
input and z ∈ R

m its output. In typical constrained control
applications Σ would be linear time invariant, but this is not
necessary. The static nonlinearity Ψ(.) : R

m 7→ R
m is, for the

moment, simply considered to be a memoryless decentralised
nonlinearity such that

Ψ(z) = [ψ1(z1), . . . , ψm(zm)]′ (4)

where
ψi ∈ Sector[0, 1] ∀i ∈ {1, . . . ,m} (5)

Note that the above equation is sufficient to ensure that Ψ ∈
Sector[0, I]. Note also that equation (5) is equivalent (Khalil
(1996)) to the following inequalities

ψ2
i (zi) ≤ ψi(zi)zi ≤ z2

i ∀i ∈ {1, . . . ,m} (6)

We assume that sector-based results have been used to prove
that the system in Figure 1 is asymptotically stable; formally
we make the following assumption.

Assumption 1. The origin of the interconnection of Σ and Ψ is
globally asymptotically stable for all Ψ ∈ Sector[0, I].

Such an assumption can normally be made, for example in
the context of anti-windup compensation, if absolute stability
results, such as the Circle or Popov Criteria, have been used
to establish the stability of the system and the nonlinearity in
question is Ψ(z) = Dz(z), where Dz(z) is defined as

Dz(z) = [Dz1(z1), . . . ,Dzm(zm)]′ (7)

where

Dzi(zi) =

{

0 |zi| < z̄i

sign(zi)(|zi| − z̄i) |zi| ≥ z̄i
(8)

and z̄i > 0 ∀ i. It is easy to see that Dzi ∈ Sector[0, 1] ∀ i
and thus Dz ∈ Sector[0, I]. It is convenient to define the set

Z = [−z̄1, z̄1] × . . .× [−z̄m, z̄m] (9)

and note that Dz(z) = 0 ∀z ∈ Z . However, also note that the
deadzone nonlinearity is one of many nonlinearities inhabiting
Sector[0, I] and thus any results derived on this basis will be
conservative. Many researchers Hindi and Boyd (1998); Pittet
et al. (1997); Wu and Soto (2004) have noted that, for finite
z, the sector which the deadzone inhabits can be narrowed to
Dz ∈ Sector[0, εI] for ε ∈ (0, 1). For ε < 1 this means
that the graph of the deadzone is closer to the “narrowed”
sector boundary. Figure 2 illustrates this idea for the scalar
deadzone case. In the context of anti-windup compensation,
this often allows the synthesis of more aggressive anti-windup
compensators which can deliver better performance (Zaccarian
and Teel, 2004).

This sector narrowing approach ensures that the graph of the

deadzone (for z < z̄(2)) is closer to its upper boundary and is

actually on this upper boundary for |z| = z̄(2) and therefore
the hope is that this will reduce conservatism and allow better
performance to be obtained. In this paper we shall attempt to
“push” the graph of the deadzone closer to its upper boundary
by adding another nonlinear function to increase the “gain” of
the composition of this function and the deadzone, again in the
hope that this will allow improved performance to be obtained.

_ _
(2)

__
(2) __

Dz(z)
Sector[0, 1]

Sector[0, ε]

z
z z

zz

Fig. 2. Deadzone with local and global sector bounds

2.2 Main results

The main technical result of this paper shows how the deadzone
nonlinearity can be augmented with another static nonlinear
element, Q(.) : R

m 7→ R
m in order to “push” the graph of

the composite nonlinear element,Q◦Dz(.) closer to the sector
boundary to extract better performance from the system. Sub-
sequent sections will then apply this general result to specific
areas of interest. Thus, the crucial technical result of the paper
is

Lemma 1. The decentralised nonlinearity

Q(.) = [Q1(.), . . . ,Qm(.)]′ Qi(.) : R 7→ R (10)

is such that Q ◦ Dz(.) ∈ Sector[0, I] and Lipschitz if and only
if Q(.) : R

m 7→ R
m satisfies the following properties.

(1) Q(.) is Lipschitz.
(2) Q(0) = 0
(3) Q(.) is such that sign(Qi(xi)) = sign(xi) or

sign(Qi(xi)) = 0 for all i ∈ {1, 2, . . . ,m}.
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(4) Q(.) is such that |Qi(xi)| ≤ |xi| + z̄i for all i ∈
{1, 2, . . . ,m}.

Proof: As both Q(.) and Dz(.) are decentralised it suffices to
prove items 1-4 for Qi ◦ Dzi(.).

ITEM 1

As Dz(.) is Lipschitz, thenQ◦Dz(.) is Lipschitz if and only if
Q(.) is Lipschitz.

ITEMS 2-4

These items pertain to the sector boundedness of Qi ◦ Dzi(.)
and by equation (5) require the following inequality to hold

[Qi ◦ Dzi(zi)]
2 ≤ [Qi ◦ Dzi(zi)]zi ≤ z2

i (11)

We first prove that Items 2-4 are sufficient for this inequality to
hold and then prove they are also necessary.

Sufficiency: z ∈ Z . Note that if z ∈ Z , then Dzi(zi) = 0 ∀i.

In this case, by Item 2, inequality (11) reduces to 0 ≤ 0 ≤ z2
i

which holds trivially.

Sufficiency: z /∈ Z . In this case zi > z̄i and thus Dz(zi) =

sign(zi)(|zi| − z̄i). Thus we have

[Qi ◦Dz(zi)]zi = sign[Qi ◦Dz(zi)]|Qi ◦Dz(zi)|×sign(zi)|zi|

By item 3, we then have two options:

• First assume that sign(Qi(xi)) = sign(xi). Then we have

[Qi ◦ Dz(zi)]zi = sign(zi)
2|Qi ◦ Dz(zi)||zi|

= |Qi ◦ Dz(zi)||zi|

≤ ||zi| − z̄i + z̄i||zi| = z2
i (12)

where the inequality is due to Item 4. This proves the right
inequality in (11).
Also note that as sign[Dz(zi)] = sign(zi) , by Item 3

we have

[Qi ◦ Dzi(zi)]
2

= sign(zi)
2|Qi ◦ Dzi(zi)| × |Qi ◦ Dzi(zi)|

≤ sign(zi)
2|Qi ◦ Dzi(zi)| × (|Dzi(zi)| + z̄i)

= sign(zi)
2|Qi ◦ Dzi(zi)| × (|zi| − z̄i + z̄i)

= sign(zi)
2|Qi ◦ Dzi(zi)| × |zi|

= [Qi ◦ Dzi(zi)]zi (13)

which proves the left hand inequality in (11).
• Next assume that sign(Qi(xi)) = 0, which implies that
Qi(xi) = 0. In this case we have

[Qi ◦ Dzi(zi)]
2 = 0 (14)

[Qi ◦ Dzi(zi)] zi = 0 (15)

Thus both inequalities in (11) are seen to hold trivially.

Necessity: z ∈ Z . Assume thatQi(0) 6= 0 and insteadQi(0) =
αi. Then for z = 0 ∈ Z it follows that

[Qi ◦ Dzi(zi)]
2
= α2

i (16)

[Qi ◦ Dzi(zi)] zi = 0 (17)

which obviously violates the sector condition (11). Thus Item 2
is necessary.

Necessity: z /∈ Z . Again consider

[Qi◦Dz(zi)]zi = sign[Qi◦Dzi(zi)]|Qi◦Dzi(zi)|×sign(zi)|zi|

If Item 3 is not satisfied, then this implies that

sign[Qi ◦ Dzi(zi)] = −sign(zi) (18)

and thus also that
Qi ◦ Dzi(zi) 6= 0 (19)

Thus we have that

[Qi ◦ Dzi(zi)]zi =−sign(zi)
2|Qi ◦ Dzi(zi)||zi| < 0 (20)

Now as [Qi ◦ Dzi(zi)]
2 ≥ 0, the sector condition (11) is

violated. Thus Item 3 is necessary.

Next assume Item 3 is satisfied (as it is necessary) but that
Item 4 is not satisfied; i.e. there exists a zi such that |Qi ◦
Dzi(z)| > |Dzi(zi)| + z̄i. For this to be the case, it follows
that zi /∈ Z (otherwise we would have 0 > |Dzi(zi)zi| + z̄i

which can never hold). Again we have two options:

• First, when sign(Qi(xi)) = sign(xi) we have sign[Qi ◦
Dzi(zi)] = sign(zi) and thus we obtain

[Qi ◦ Dzi(zi)]zi = |Qi ◦ Dzi(zi)||zi| (21)

> (|zi| − z̄i + z̄i)|zi| (22)

= z2
i (23)

which contradicts the sector condition (11).
• Next, when sign(Qi(xi)) = 0. Thus we have sign[Qi ◦

Dzi(zi)] = 0 which implies Qi ◦ Dzi(zi) = 0. Thus if
Item 4 is not satisfied we get

|Qi ◦ Dzi(zi)| > |Dzi(zi)| + z̄i > 0 (24)

But as Qi ◦ Dzi(zi) = 0 by assumption, we have a
contradiction.

Thus we see that Item 4 is also necessary. ��

Remark 1: Item 3 is quite general and it is normally desirable
to replace this with the assumption that Q(.) is an odd nonlin-
earity, which would be more useful in practice. Obviously this
reduces the necessary and sufficient nature of Lemma 1 to being
simply sufficient. �

Remark 2: One of the key conditions on the nonlinearity Q(.)
is that |Qi(x)| ≤ |xi| + z̄i. This suggests that Qi(xi) would
typically take the following form

Qi(xi) = ηi(xi)(|xi| + z̄i), ηi(xi) ∈ [0, 1] (25)

Note as |xi| + z̄i is even, it follows that ηi(xi) must be odd to
ensure Qi(xi) is also odd. �

Remark 3: Lemma 1 is actually a special case of a more
general result. A similar proof to that given above can be used
to prove that a decentralised Q ◦ Dz(.) ∈ Sector[0, εI] and
Lipschitz if and only if Q : R

m 7→ R
m satisfies the first 3

properties of Lemma 1 and the fourth property is replaced by

4. Q(.) is such that |Qi(xi)| ≤ ε|xi| + z̄i for all i ∈
{1, 2, . . . ,m}.

This allows the results here to be adapted to the cases when
global asymptotic stability is not achievable and one has to
consider local sector bounds (ε ∈ (0, 1)) to obtain local stability
results. See Hindi and Boyd (1998) and Pittet et al. (1997) for
more discussion. �

Remark 4: Lemma 1 guarantees that the compositionQ◦Dz(.)
is Lipschitz continuous and normally this is desirable. However,
the class ofQ(.) preserving sector boundedness can be widened
if one drops the Lipschitz requirement. �
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The results of Lemma 1 and Assumption 1 can now be assem-
bled to form the main Theorem in the paper.

Theorem 2. Let Assumption 1 be satisfied. Then the origin of
the interconnection ofΣ andΨ is globally asymptotically stable
when Ψ(.) ≡ Q ◦ Dz(.) where Q satisfies the conditions of
Lemma 1.

Proof: Assumption 1 implies that the origin of Σ is globally
asymptotically stable when Ψ ∈ Sector[0, I]. Thus when Ψ is
chosen as Ψ ≡ Q ◦ Dz(.) where Q satisfies the conditions of
Lemma 1, it follows that Ψ ∈ Sector[0, I] and thus the system
is globally exponentially stable. ��

3. APPLICATIONS

3.1 Linear systems with deadzone nonlinearities

Σk Σp

Σ̄

Ψ

zv

Fig. 3. Cascade system with sector-bounded nonlinearity

The obvious and most straightforward place to apply these
results is to the control of linear systems which contain sat-
uration and/or deadzone nonlinearities. It is well known that
the saturation and deadzone nonlinearities satisfy the following
identity

sat(u) = u− Dz(u) (26)

where sat(.) : R
m 7→ R

m is the standard decentralised sat-
uration nonlinearity. This allows many saturation problems to
be equivalently posed as deadzone problems. This immediately
makes the results of Section 2 applicable to many constrained
control problems of practical interest. In fact in such situations
we are often faced with cascade systems of the form

Σ̄ ∼







ẋp = Apxp +Bpyk

z = Cpxp +Dpyk

}

∼ Σp

ẋk = Akxk +Bkv
yk = Ckxk +Dkv

}

∼ Σk

(27)

v = Ψ(z) (28)

as shown in Figure 3 where Ψ ≡ Dz. In this Figure, Σ̄ is
a cascade of a “plant” Σp, which is given, and a “controller”
Σk which is to be designed. Note the designation “plant” and
“controller” may be something of a misnomer and in, for exam-
ple anti-windup and override control, the “plant” may actually
represent the physical system plus the linear controller and the
“controller” represents the anti-windup compensator or over-
ride controller to be designed. In most cases, this problem is
then solved by sector bounding the deadzone and using absolute
stability results to obtain a linear controller. Using the results
of the previous section we can easily obtain simple nonlinear
controllers which provide the same stability guarantees as their
linear counterparts, but with potentially improved performance.

Corollary 3. Assume there exists a linear Σk, as described by
equation (27), such that the system consisting of the intercon-
nection of Σk, Σp (27) and v = Ψ(z) where Ψ ∈ Sector[0, I]

is globally asymptotically stable. Define Σ̃k as

Σ̃k ∼

{
ẋk = Akxk +Bkv
yk = Ckxk +Dkv
v = Q(w)

(29)

whereQ(.) : R
m 7→ R

m satisfies the assumptions of Lemma 1.

Then the interconnection of Σ̃k, Σp and w = Dz(z) is globally
asymptotically stable.

Proof: The proof is straightforward: simply note that the cas-
cade of Σk and Σp can be put into the form of Σ as defined in
equation (2); also, as Q(.) satisfies the assumptions of Lemma
1, it follows that the composition Q ◦ Dz(.) ∈ Sector[0, I].
Application of Theorem 1 thus completes the proof. ��

3.2 Performance enhancement

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z [units]

f(z
) [

un
its

]

Graph of deadzone
far from sector boundary 

Graph of composite
nonlinear functions
much closer to sector
boundary

Fig. 4. Sector[0, 1] and graphs ofDzi(.) (solid),Qi,frac◦Dzi(.)
(dashed) and Qi,sat ◦ Dzi(.) (dash-dotted)

The main reason to use the nonlinear Σ̃k instead of the linear
Σk is to improve performance. Note that in the situation of
linear systems with deadzone nonlinearities, both linear and
nonlinear “controllers” are driven by the deadzone, the graph
of which is depicted in Figure 4. For the linear case, observe
that if z strays outside Z (in the case of Figure 4, Z = [−1, 1])
by only a small amount, then the value of Dz(z) will only
be small, which, by linearity, will only correspond to a small
“reaction” by the controller Σk. The natural objective of the
nonlinear “controller” Σk would be to increase the “gain” of
the override controller when zi is small, and thus far from the
sector boundary, and make the graph of Q ◦ Dz(.) lie closer to
the sector boundary.

There is obviously a continuum of suitable choices forQ(.) but
we will choose functions which have the following properties,
in addition to those stipulated by Lemma 1: Q is a monotoni-
cally non-decreasing function and limz→∞ {Q ◦ Dz(z) − z} =
0. One such function is

Qi,frac(xi) =
kixi

εi + ki|xi|
︸ ︷︷ ︸

ηi(xi)

(|xi| + z̄i) (30)

where ki > 0 and εi > 0. A graph of the compositionQi,frac ◦
Dzi(.) with ki = 3, εi = 0.1 is shown in Figure 4. Note that as
expected Qi ◦ Dzi(zi) = 0 when zi ∈ Z = [−z̄i, z̄i], and then
the graph approaches the unity gradient line (the boundary of
the sector) asymptotically. The value of ki/εi dictates the rate
at which the graph converges to unity.

Another possible function of a somewhat simpler, although
non-smooth, form is

Qi,sat(xi) = sign(xi)min {1, ki|xi|} (|xi| + z̄i) (31)

where again ki > 0. A graph of the compositionQi,sat ◦Dzi(.)
with ki = 3 is shown in Figure 4. Note that as expected
Qi ◦ Dzi(zi) = 0 when zi ∈ Z = [−z̄i, z̄i] but as soon as
|zi| = z̄i/ki, the composition Qi ◦ Dzi(zi) = zi and remains
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there thereafter. For large value of ki, the gradient of the line
connecting the zero portion of the function to the unity gradient
line becomes steeper, and begins to approximate a discontinu-
ous function. However, provided ki is finite, Qi,sat(.) remains
Lipschitz.

4. EXAMPLE

There are two control strategies to which these results are
logically applied: anti-windup control and override control. It
has been shown in, for example Zaccarian and Teel (2004) and
associated papers, that the anti-windup stabilisation problem

can be written as a cascade of the form described in Σ̄. In that
paper, a nonlinear anti-windup compensator which switched
anti-windup gains on the basis of positively invariant sets and,
as the signal z converged to zero, successively more aggressive
compensator gains were used to obtain improved performance.
In that paper, promising results were demonstrated but the
nonlinear compensator’s construction was rather complex as its
construction relied on the solution of a set of LMI’s, the number
of which increased as the number of gains was increased. An al-
ternative strategy, which we explore here, is to design only one
compensator but introduce nonlinear activation characteristics,
through Q(.), which allow it to have larger “gain” for smaller
signals.

c

GK
u

φ

r

y
Φ

~

y

y

d

Σk

Σp

Fig. 5. Override control scheme

Another control strategy which can take advantage of these
results is override control, which is rather like anti-windup
except, one considers constraints on outputs rather than in-
puts. A reasonably generic override control scheme is shown
in Figure 5 where the measured outputs used for standard
linear behaviour are denoted y and the constrained outputs
are denoted yc - these are required to remain below certain
limits, ȳc. It can easily be seen that its structure is exactly the

same as that of Σ̄ with the interconnection of the linear plant
G(s), and the controller K(s) playing the role of Σp and the

override controller, Φ(s) playing the role of Σk. The signal yc

is equivalent to z and the signal ỹ is equivalent to v. The aim
with override control is to ensure that the constrained output
yc does not exceed imposed limits, ȳc by designing a suitable
override controller Φ(s), which is activated when the limits
are transiently exceeded. The aim here is to improve the linear

override controller by using a nonlinear design Φ̃ = Φ ◦ Q for
suitable Q which satisfy Lemma 1.

4.1 Exponentially unstable example

We consider the same exponentially unstable example as in
Turner and Postlethwaite (2002c) in which the linear plantG(s)
has the following state-space realisation

G(s) ∼







ẋ1 = x1 − x2 + u
ẋ2 = x1
y = x1 + 10x2
yc = u

. (32)

A 4th order H∞ loop-shaping controller using shaping func-

tions W̃1 = s+10
s
, W̃2 = 1 was designed for this plant using

the ncfsyn command in the Matlab µ-analysis and synthesis
toolbox. This yielded a good nominal linear response without
constraints. The controller’s state-space realisation is given by

K(s)∼

[

Ac Bc Bcr

Cc Dc Dcr

]

=







−28.2357 −260.6437 1.1419 0 25.0283 0
−1.8851 −28.8506 0 0 2.8851 0
−35.9512 −256.0618 −6.3891 0 22.6459 0
−13.3052 −29.6024 −6.3891 0 0 0.8391
−4.2075 −9.3611 −2.0204 3.1623 0 0.2654






.

As G(s) is exponentially unstable, it is well-known that
this system cannot be globally asymptotically stabilised with
bounded feedback and the positive eigenvalues may cause prob-
lems with some LMI based anti-windup design procedures.
Thus, as advocated in Turner and Postlethwaite (2002b) and
Glattfelder and Schaufelberger (2007) (see also Glattfelder and
Schaufelberger (2004)) we use an override controller to ensure,
indirectly, that the control limits are respected as much as pos-
sible. In particular we assume the control limits are ±0.25 and
that the constrained “output” is taken as the control input i.e
yc = u. Limits of ȳc = ±0.24 were then applied to yc to ensure
that the override controller would become active just before the
control limits were violated. Using the results of Turner and
Postlethwaite (2002a), when override control is to be used, the
linear controller is augmented to have the form (see Figure 5)

K(s) ∼

{

ẋc = Acxc +Bcy +Bcrr + [I 0]φ
u = Ccxc +Dcy +Dcrr + [0 I]φ

(33)

In this realisation, the additional signal contributed by the
override controller is φ ∈ R

nc+m, where nc and m are
the controller state and control input dimensions respectively.
When override control is inactive, φ ≡ 0 and the nominal
linear controller given above is recovered. The override control
signal is computed as φ = Φ(s)ỹ and in this case a linear
override controller Φ was obtained according to the techniques
described in Turner and Postlethwaite (2002a). In particular
Φ was obtained as a static gain which ensured the system
was stable for all nonlinearities in Sector[0, I]. Thus Φ was
computed as

Φ = [−3.4844 −0.1935 −14.1398 −11.8456 0.1515 ]
′

In order to improve the performance of the linear override
controller we choose Q(.) in the forms indicated in Section 3.
Specifically, Q was chosen as

Qsat(ỹ) = sign(ỹ)min {1, 20|ỹ|} (|ỹ| + ȳc) (34)

Qfrac(ỹ) =
10ỹ

0.1 + 10|ỹ|
(|ỹ| + ȳc) (35)

Thus three different override controllers were obtained: Φ,
Φsat := ΦQsat(.) and Φfrac := ΦQfrac(.)

Figure 6 shows the response of the system to a step demand
of one unit for various situations. The thin solid line shows the
nominal linear response without constraints; observe the fast,
smooth response with little overshoot. The dotted line shows
the response of the system with constraints but no override
control; this response is significantly more oscillatory than the
linear response. The linear override (i.e. when Φ alone was
used) response is shown by the dashed line; in this case the
response is noticeably less oscillatory than without override

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7733



0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2
O

ut
pu

t r
es

po
ns

e 
− 

y 
[u

ni
ts

]

Time [sec]

Constrained, no O/R
Unconstrained
Constrained, Lin O/R
Constrained N/L O/R sat
Constrained N/L O/R frac

Fig. 6. Step response: y(t)
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Fig. 7. Step response: yc(t) (= u(t))

but there is significantly more overshoot than the linear case,
and the settling time is much longer. The dash-dotted response
shows the nonlinear override response when Φ ≡ Φsat(.) is
used and the thick solid line shows the response when Φ ≡
Φfrac(.) is used. Both these responses are significantly better
than the linear override response and actually remarkably close
to the linear response, indicating the advantage of using nonlin-
ear override control. The corresponding control responses are
shown in Figure 7. Notice that the nonlinear override controllers
prevent extended periods of control saturation which can lead to
the oscillatory behaviour. It is also interesting to note that when
the step demand is increased to 1.2 units, both the constrained
system without override and the constrained system with lin-
ear override become unstable, whereas the nonlinear override
controllers are able to maintain the stability of the system.

5. CONCLUSION

This paper has proposed a simple modification to sector based
stability results for systems containing deadzones. The results
show how a simple modification of the “controller” can be made
to improve performance without any corresponding increase in
computational burden; essentially they allow a linear controller
to be transformed into an nonlinear controller without forfeiting
stability guarantees. The results have obvious application in
constrained control, anti-windup compensation and override
control and it appears that they can be particularly useful in
the area of override control.
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