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Abstract: The knowledge about control and dynamics of biological systems is often limited or
incomplete but, especially for cell metabolism, network structures are often well-characterized. A
major challenge in systems biology, therefore, concerns the reverse-engineering of cellular control
structures from the available knowledge on the controlled systems’ structures. Here, we propose
a method to analyze the sensitivities in metabolic reaction networks that makes use only of the
stoichiometry of the metabolic network and the assumption that the biological system is (and
remains) in steady state. It is based on least-squares analysis of reaction flux adjustments to
disturbances, for which we present an analytic solution. The method can be extended to include
multivariate disturbances and, if a reference flux distribution as an operating point is available,
to compute relative sensitivities. The resulting sensitivities are instrumental in predicting the
regulation of the affected reactions. We demonstrate the utility of the method with the example
of a medium-size network model for E. coli metabolism. In particular, we focus on the relation
of structural network sensitivities to the variance of gene expression data resulting from external
perturbations and from the action of cellular control circuits.

Keywords: Modelling and identification.

1. INTRODUCTION

Formal sensitivity analysis is a well-established tool for
analyzing the influence of perturbations and of control
structures on systems behavior. For the area of systems bi-
ology, the former type of analysis is mainly concerned with
characterizing the overall robustness of biological circuits.
The latter can be employed to investigate design principles
underlying complex networks in biology (Stelling et al.,
2004). These approaches in general require dynamic, for in-
stance, ODE-based systems models. However, establishing
realistic and predictive mathematical models for biologi-
cal circuits is currently a major bottleneck for the field.
For most biological systems of interest, our knowledge
of control structures and associated kinetic parameters
is insufficient for mechanistic modeling. Correspondingly,
identification of nonlinear biochemical systems is a chal-
lenge (Feng and Rabitz, 2004).

One possible alternative to analyzing the detailed sys-
tems dynamics is to focus on the set of possible behav-
iors that is consistent with structural constraints, in par-
ticular, reaction stoichiometries and reversibilities. This
type of ‘constraints-based’ approaches has been partic-
ularly successful for analyzing metabolic networks. For
one reason, reaction stoichiometries are well-characterized
for metabolic networks such that genome-scale models
could be established for several organisms (Borodina and
Nielsen, 2005). Also, metabolism operates on faster time-
scales than cellular processes such as genetic control sys-
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tems, which allows for focusing the analysis on the steady-
state behavior (Price et al., 2004). An approach termed
‘flux-balance analysis’ (FBA) allows computing flux distri-
butions in metabolic networks that are optimal in terms of
a given objective function by solving a linear optimization
problem (Varma and Palsson, 1994). This method has,
for instance, been used to predict mutant phenotypes,
outcomes of evolution, and to analyze structural couplings
in large networks (Price et al., 2004). Metabolic pathway
analysis, which is based on decomposition of large net-
works into smaller functional units such as elementary flux
modes (EFMs), can be employed for the same purposes.
In contrast to FBA, it characterizes the complete solution
space of a stoichiometric network model; as a drawback,
the determination of pathways is a computationally hard
problem and algorithms for genome-scale networks are not
available (Schuster et al., 2007).

While methods for the analysis of metabolic networks—
the controlled system—exist, it is largely unclear how
the available biological knowledge could be employed to
understand the corresponding control structures. In par-
ticular, the genetic control at slow time–scales that es-
tablishes different network operation modes is of interest.
For instance, by comparison of computational predictions
derived from metabolic network structures alone with ex-
perimental data on gene expression, the existence of cor-
relations between metabolic fluxes and genetic control has
been demonstrated (Stelling et al., 2002; Bilu et al., 2006).
An apparent path to integrated network representations is
the design of hybrid models that represent genetic control
in an abstracted form such as Boolean logic models. Such
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models allow for more accurate predictions (Barrett et al.,
2005), but they are of limited use in reverse-engineering of
control circuits.

Reverse-engineering of the associated controllers appears
feasible because the effective dimension of the control
problem may be much smaller than suggested by the
complexity of metabolic networks (Barrett et al., 2006).
Several approaches to identify closed–loop reactions to
perturbations, or to pinpoint control mechanisms from the
structure of the controlled network have been proposed.
They rely on assumptions on optimal rejection of perturba-
tions in the sense of a minimal deviation from a given oper-
ating point, using continuous (‘minimization of metabolic
adjustment’, MOMA; Segre et al. (2002)) or discrete (‘reg-
ulatory on/off minimization’, ROOM; Shlomi et al. (2005))
distance metrics to quantify the deviation between origi-
nal and perturbed state. Alternatively, ’structural kinetic
modeling’ makes use of randomly parametrized Jacobians
for a given, generic systems model for the same purpose
(Steuer et al., 2006).

Despite these advances, an equivalent to formal sensitivity
analysis for dynamic systems is lacking. Here, we propose
an approach to sensitivity analysis that uses the network
structure only and is based on an analytical solution of a
least-squares optimization problem (section 2). We apply
our method to predict control points in the metabolic net-
work of the bacterium Escherichia coli as a model system
and validate the predictions with published experimental
data on metabolic gene expression for a wide range of
experimental conditions and perturbations (section 3).

2. NETWORK SENSITIVITY

2.1 Metabolic Network Fundamentals

Nutrient molecules are taken up by the cell and converted
by chemical reactions to intermediary metabolites and
finally to biomass to enable life. One possibility to model
the biochemical processes in a bacterium is to look at the
stoichiometry of the chemical reactions occurring in that
organism. The interconversion of the different molecules
can be modeled as a reaction network. The nodes of
this network represent the metabolites that are part of
cell metabolism and the edges represent the chemical
reactions.

Mathematically, the network structure can be represented
as a matrix N, called the stoichiometric matrix. The
metabolites in a reaction network form the rows of N and
the reactions build the columns of the matrix. In a column
of the stoichiometric matrix, a negative entry denotes a
substrate of the reaction and a positive entry denotes a
reaction product. Zero entries indicate that a metabolite
is not affected by a reaction.

The stoichiometric matrix is a systems invariant that re-
lates the rates v of the reactions (fluxes) to the concentra-
tions c of the metabolites. If a metabolic reaction network
has m metabolites and n reactions (usually, m < n), then
N ∈ Rm×n and

dc

dt
= Nv. (1)

Equation 1 is an ordinary differential equation and states
that the changes of metabolite concentrations are a linear
function of the reaction rates.

The assumption that the system is in steady state can be
represented as

Nv = 0, (2)
meaning that the fluxes in the metabolic network are such
that metabolite concentrations do not change.

2.2 Structural Network Sensitivity

Based on the steady-state assumption, we aim at identi-
fying chemical reactions that are highly sensitive to dis-
turbances in reaction fluxes. The only information that is
used to compute the sensitivities is the stoichiometry of
the metabolic network.

Assume that a reaction k is subjected to a disturbance δk.
If none of the undisturbed fluxes changes, the resulting
flux is (in general) not in steady state any more. It is
thus reasonable to assume that the undisturbed fluxes will
adjust, such that, given the disturbed flux vk + δk, the
overall flux distribution is in steady state again (Segre
et al., 2002; Shlomi et al., 2005).

The sensitivity of a reaction i to a disturbance δk in
reaction k is defined as the minimal adjustment d∗i needed
to bring the overall network flux in steady state again.
Let v denote a flux distribution in steady state. If the
disturbance δk and the adjustments di are written as a
vector d, the condition for the new, disturbed flux is

N(v + d) = 0 (3)

There exist infinitely many possible adjustments di to
bring the overall flux v + d in steady state. We look for
minimal adjustments d∗i in the sense that their sum of
squares is minimized.

The same ideas hold if multiple simultaneous disturbances
in several reactions are taken into account. In the fol-
lowing, subscripts [k] denote the set of reactions that
are disturbed simultaneously and subscripts [i] refer to
undisturbed reactions that can freely adjust (independent
reactions). For example, the vectorial disturbances are
written as δ[k].

2.3 2-norm Minimization

To find the minimal adjustments d∗i of the independent
reactions, the following minimization problem must be
solved

min ‖d‖2

s.t. Nd = 0
d[k] = δ[k]

. (4)

Problem (4) has an analytical solution. To derive this solu-
tion, consider the following partition of the stoichiometric
matrix

N =
[

N[i] N[k]

]

into columns of independent reactions (indexed [i]) and
disturbed reactions (indexed [k]). The partition of the flux
vectors v and d is done analogously into independent and
disturbed fluxes

v =

[

v[i]

v[k]

]

d =

[

d[i]

d[k]

]

.
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The solution to problem (4) can be found by reformulating
the problem as a least squares problem

min
d[i]

∥

∥N[i]d[i] = −N[k]δ[k]

∥

∥

2
(5)

and by solving it through Singular Value Decomposition
(SVD) of the matrix N[i]

N[i] , UΣVT =
[

U[r] U[n]

]

[

Σ11 0
0 0

]

[

VT

[r]

VT

[n]

]

.

The matrices U and V are orthogonal matrices and the
matrix Σ is diagonal with the so-called singular values on
its diagonal. As in general the stoichiometric matrix N[i]

does not have full rank, some singular values are zero. The
diagonal matrix Σ can thus be written as an r × r matrix
Σ11 which has a non-zero diagonal (r being the rank of
N[i]) and a zero rest. The splitting of U and V is also
according to the rank r. Thus, the columns of U[r] form
an orthogonal basis of the range of N[i] and the columns
of V[n] form an orthogonal basis of the null space of N[i].

Then, the least squares adjustments d∗

[i] are given as

d∗

[i] = −V[r]Σ
−1
11 UT

[r]N[k]δ[k]. (6)

The adjustments d∗

[i] are a linear function of the distur-

bances δ[k]. It is thus reasonable to define the matrix of
this linear function as the sensitivity to disturbances in
reactions [k], i. e.

S[i],[k] , −V[r]Σ
−1
11 UT

[r]N[k]. (7)

An element (i, k) of the matrix S[i],[k] can be interpreted
as the ratio of the i’th adjustment to the k’th disturbance:

si,k =
d∗i
δk

It is important to see that the computation of the sensi-
tivity matrix S[i],[k] is based on the solution of problem (5)
which is a least squares problem that always yields a
solution. However, it is always possible to choose a set of
disturbed reactions [k] such that for certain disturbances
δ[k] there exists no adjustment vector d[i] that fulfills
Nd = 0. To check whether the system can indeed adjust
to arbitrary disturbances δ[k], one computes the residual

ρ = ‖N[i]d[i] + N[k]δ[k]‖.

Based on the previously computed SVD of N[i], the
residual is

ρ = ‖ − UT

[n]N[k]δ[k]‖. (8)

For the residual to be zero for disturbances δ[k] in all

directions, N[k] must be orthogonal to all columns of UT

[n]

UT

[n]N[k] = 0. (9)

The testing equation (9) can be interpreted as follows.
All vectors that can be formed by N[k]δ[k] (denoted as
range(N[k])) must also be formed by the adjustments
N[i]d[i] (denoted as range(N[i])), see Eq. (5). What we
want to know is whether range(N[k]) ⊆ range(N[i]). This is
equivalent to testing whether the orthogonal complement
(denoted as ⊥) of range(N[i]) intersected with range(N[k])
is the null element

range(N[i])
⊥ ∩ range(N[k]) = 0.

A possible way to circumvent these problems would be to
only allow vectors δ[k] that can be balanced by adjust-

ments d[i] even if range(N[k]) * range(N[i]). Disturbances
with this property can be written as

δ[k] = V[r]β

for any β.

This approach does not take into consideration the re-
versibilities of the reactions. Thus, if a flux v is close to
the boundary of feasible fluxes, the least squares adjust-
ments might lead to fluxes that are chemically impossible
for a finite disturbance δk. If, however, the sensitivity is
considered as adjustments to infinitesimal disturbances,
the definition of the sensitivity in Eq. (7) holds except for
those points lying exactly on the boundary.

2.4 Relative Sensitivities

The sensitivity matrix (7) defines absolute sensitivities in
that it gives a measure for the magnitude of the absolute
adjustments d[i]. If a reference flux vref (e. g. an operating
point) is known, one can compute relative adjustments r[i]:

ri ,
di

vref
i

. (10)

Using matrix notation, we can write the relative adjust-
ments as

r[i] = diag(vref
[i] )−1d[i] (11)

and a relation between relative adjustments r[i] and rel-
ative disturbances ρ[k] (which are defined analogously to

Eq. (10)) can be derived

r[i] = diag(vref
[i] )−1d[i]

= diag(vref
[i] )−1S[i],[k]δ[k]

= diag(vref
[i] )−1S[i],[k]diag(vref

[k] )ρ[k]. (12)

With this definition, it is straightforward to compute the
relative sensitivities Srel

[i],[k]:

Srel
[i],[k] , diag(vref

[i] )−1S[i],[k]diag(vref
[k] ). (13)

Note that in order to compute the relative sensitivities, a
complete reference flux distribution vref must be given. In
practice, it is often difficult to get experimental data of a
complete flux distribution. As a possible resort, flux distri-
butions obtained from flux balance analysis (FBA) (Varma
and Palsson, 1994) might be used. These are approx-
imations of the in vivo fluxes and computational pre-
dictions depend on the objective functions employed in
FBA (Schuetz et al., 2007). Despite these limitations, the
structural sensitivity framework allows for a direct relation
between controlled network structure and possible features
of the corresponding controller.

3. ANALYSIS OF E.COLI METABOLISM

We start from the hypothesis that structural network sen-
sitivities are related to variability in gene expression data
because if a reaction is very sensitive it requires regulation.
Thus, if there are disturbances in the network, sensitive
reactions need stronger regulation than insensitive reac-
tions, which should be reflected by high variability of gene
expression in the sensitive reactions.
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To analyze the metabolism of E. coli we use a medium
scale model of central carbon metabolism (Stelling et al.,
2002). Such models capture the basic properties of cell
metabolism but have only reduced demands for compu-
tational power as compared to full genome-scale models.
The model has 97 metabolites and 118 reactions (i. e.
the stoichiometric matrix N ∈ R97×118). An interesting
property of this network is that the stoichiometric matrix
has full row rank, which means that there is no redundancy
in the compact stoichiometric model.

3.1 Computation of Network Sensitivities

To be able to analyze the relative sensitivities, we first
generate reference fluxes. To this end, we use the elemen-
tary flux modes (EFMs) of the E. coli metabolic network.
Elementary flux modes represent independent minimal
subsets of reactions that permit steady-state fluxes. More
mathematically, they are the extreme rays of the so called
“flux cone”, which is the set of all feasible fluxes under
the steady state assumption and irreversibility constraints.
EFMs are unique up to a scaling factor and their linear
combination allows for computing all feasible flux distri-
butions, that is,

v =
∑

j

ξjej (14)

where ξj is a non-negative scaling factor for the j-th EFM
ej (Schuster et al., 2007).

For the computation of reference fluxes, we consider all
EFMs of the E. coli model with glucose uptake and
biomass production. This simulates growth of E. coli on
glucose as their only nutrient source. For the 97 × 118
model, there are roughly 27 000 EFMs with these proper-
ties (Stelling et al., 2002).

EFMs for generating a reference flux are selected accord-
ing to their biomass yield. This is the ratio of biomass
production flux to glucose uptake flux, which is a linear
fractional function. Fluxes with optimal yield ymax are
nonnegative linear combinations of the EFMs with highest
yield value. The selection of EFMs employs a parameter
α such that only EFMs ej with yield yj ≥ α · ymax are
used to generate a reference flux. The values for α and
corresponding numbers of EFMs used here are compiled
in Table 1. To find nonnegative linear combinations of the
EFMs, we draw the coefficients randomly from a uniform
distribution in (0, 1).

Table 1. EFM selection for reconstruction of a
flux operating point.

α Number of EFMs

0.01 21 592

0.1 20 996

0.5 8841

0.9 1425

0.95 708

0.97 400

0.99 90

0.995 35

1 2

Given the reference fluxes, we are now able to compute the
relative sensitivities. We compute the relative sensitivities
for a univariate disturbance in every reaction of the
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Fig. 1. Experimentally determined variability in metabolic
gene expression for 42 genes in E. coli that are in-
cluded in the stoichiometric model. (A) Average gene
expression and standard deviation of expression. (B)
Coefficient of variation as a function of the normalized
expression level.

network and then take the average over all disturbances.
Because the generation of reference fluxes depends on
computational methods, they might have errors compared
to wild-type fluxes. Therefore, we sample 20 different
reference fluxes for each disturbance and take the average.

3.2 Comparison with Gene Expression Data

For the experimental data, we compiled a gene expression
data set from the Many Microbe Microarrays Database
(http://m3d.bu.edu) (Faith et al., 2007) that includes 507
experimental conditions corresponding to a representa-
tive set of random perturbations. We focus on those 42
metabolic genes that are included in the stoichiometric
model. The experimental data show only small (< 2-fold)
variability in average gene expression levels (Fig. 1A), but
distinctions in the variances. However, as shown in Fig. 1B,
variability is not related to average expression levels. We
find no statistically significant correlation between the
coefficient of variation (CV) and the average expression
(r = 0.03 and p = 0.85 for Spearman’s rank-order cor-
relation), indicating that prediction of a flux distribution
alone will not yield insight into control of the network.

Average structural network sensitivities, in contrast, can
show a high correlation with the experimentally deter-
mined CV of gene expression, depending on the choice of α
(Fig. 2). With increasing α and corresponding decrease of
the share of EFMs used in generating the reference flux
distributions, the Spearman’s rank-ordered correlations
r increase. The two scenarios with r ≈ 0.5 (Fig. 2A)
correspond to α > 0.99, that is, reference flux distributions
with close-to-optimal yield.

To assess the significance of these correlations, we com-
puted the corresponding p-values that give the probability
that no correlation exists. As shown in Fig. 2B, only
the predictions for high α are statistically significant in
contrast to, for instance, negative correlations for low α
that would contradict our starting hypothesis. This is in
accordance with previous findings (e.g., from FBA) that
optimal biomass yield is an appropriate objective function
to predict fluxes in metabolic networks of microbes (Price
et al., 2004; Schuetz et al., 2007). Note also that the
correlation coefficients for gene expression variability are
higher than those obtained with a simple flux variability
score (as defined by the difference between maximal and
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Fig. 2. Correlation between structural network sensitivities
and experimentally observed variation of gene expres-
sion for metabolic genes. (A) Spearman’s rank correla-
tion coefficient r depending on the share of EFMs with
highest biomass yield (number of α-optimal EFMs
divided by the total number of EFMs) used for calcu-
lating the flux operating point. (B) Statistical signif-
icance of the correlations evaluated by the associated
p-values; the dashed line indicates a significance level
of p = 0.05.

minimal flux through each reaction) in a previous analysis
of a yeast network (r = 0.17) (Bilu et al., 2006); higher p-
values compared to that study result from a smaller sample
size (number of metabolic genes) considered here.

For practical applications of the approach, a ranking of
most sensitive—and, hence, most likely regulated—genes
could be useful because this would allow a more targeted,
detailed experimental analysis of potential key control
points in metabolic networks. Next, we therefore inves-
tigated how well structural network sensitivities could
identify those genes with most variable expression. More
specifically, we rank-ordered the experimental data accord-
ing to their CV, generated corresponding lists of rank-
ordered sensitivities with different lengths, and evaluated
the overlap between both.

The null model for statistical evaluation of prediction
results follows a hypergeometric distribution. It captures
the number of successes in L samples from a finite popu-
lation of size N without replacement. Here, N is the total
number of genes and L is the number of most variable
genes to be predicted. The expected value for the ratio of
correct to total predictions for the null model, ϕ0, and the
corresponding variance, σ2

0 , are given by

ϕ0 =
L

N
and σ2

0 =
(N − L)2

N2(N − 1)
. (15)

With this, we can calculate the 95% confidence intervals
for the null model as ϕ0 ± 1.96 · σ0.

Simulation results for different values of α are shown in
Fig. 3. The share of sensitive genes equals L/N and the
prediction accuracy refers to the relative overlap between
top–variable genes from the experimental data, and pre-
dicted genes with highest structural sensitivity. In agree-
ment with the correlation studies above, we find that the
flux operating point has a large influence if the predictions
are significantly different from the null model, that is, a
random selection of genes. In particular, when only EFMs
with highest biomass yield are used for constructing the
reference flux distributions, we find an ≈4-fold enrichment
of sensitive genes in the predicted lists compared to the
null model for the top 10-60% genes (Fig. 3D).
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Fig. 3. Prediction of gene expression variability. Prediction
accuracy is determined as the number of genes that
show highest experimental variability (CV) and are
identified as most sensitive by structural sensitivity
analysis divided by the number of most variable genes
considered for different shares of top-sensitive genes.
The panels refer to different scenarios for constructing
(random) flux operating points: (A) α = 0.01, (B)
α = 0.50, (C) α = 0.90, and (D) α = 0.995. Circles
refer to structural sensitivity predictions, while the
solid line and the dashed lines denote predictions
and 95% confidence intervals for the random model,
respectively.

Note that these predictions are not perfect; for instance,
only in the scenario with α = 0.01 (Fig. 3A) the genes with
highest expression variability are identified correctly. A
possible reason for these mismatches between predictions
and experimental observations is that the stoichiometric
model used here covers only a small core of the metabolic
network currently known in E. coli.

Figure 4 visualizes the correspondence between the reac-
tions’ sensitivities with the expression variability of their
encoding genes in most of central carbon metabolism. The
reactions are divided into four categories according to their
sensitivity and gene variability, showing matches and mis-
matches of our method. Note that not all reactions could
be uniquely assigend to encoding genes. These reactions
were not considered in our analysis.

4. CONCLUSION

We have shown a procedure to identify highly sensitive
reactions in metabolic networks. It makes use of network
structure alone, which is data that is often available
early in the investigation of biological organisms. The
kinetics of the biochemical reactions are neglected (for the
reasons mentioned in the Introduction). This implies that
we had to make the assumption of least adjustments to
disturbances (Segre et al., 2002) and the interpretation of
the results was possible only in a statistical sense.

Because all computations rely on standard procedures
from numerical linear algebra, the method is easy to
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Fig. 4. Correspondence between structural sensitivity of
reactions and gene variability of encoding genes for
part of the CCM network of E. coli used in this anal-
ysis. The reactions are classified as highly sensitive
and, correspondingly, gene expression is classified as
highly variable if they are among the 14 most sensitive
reactions or most variable genes. Three out of 14
reactions are found sensitive but their encoding genes
are not highly variable (none shown) and another 3 of
14 are not sensitive but their gene expression is higly
variable (2 shown).

implement and applicable to larger metabolic networks.
Genome-scale models have been established for many
model organisms such as E. coli (Reed et al., 2003) and
could be employed in future work. In particular, calculat-
ing structural network sensitivities scales well with net-
work size because the main computational burden lies in
the computation of the SVD, which is an O(n3) process.
However, for these larger networks, EFMs cannot be com-
puted yet; for specifying the flux operating point, sampling
methods such as those described in (Barrett et al., 2006)
could be employed instead.

We demonstrate the usefulness of the method with a model
of central carbon metabolism of E. coli and experimental
data of metabolic gene expression. We were able to show
significant correlation between the predicted sensitivities
and the variation of gene expression even with such a
limited model. Altogether, thus, validation of the struc-
tural sensitivity approach with a simple model as above, in

combination with the method’s scalability, could make this
a useful tool for experimental design to uncover control
structures that impinge on metabolic networks.
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