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Abstract: In this paper, a neural network based continuous control mechanism that can
compensate for system uncertainties is developed for a class of robot manipulators under
both repeating and non-repeating disturbances. With limited assumptions about the systems’
dynamics, Lyapunov techniques are utilized to show that a semi-global asymptotic tracking
result is achieved while all the closed-loop states remain bounded. Numerical simulation results
are provided to demonstrated that the proposed control design achieves a good tracking
performance.

1. INTRODUCTION

The control objective in many robot manipulator applica-
tions is to command the manipulator motion to track some
desired trajectories with the control inputs being applied
to the manipulator joints. Under most working environ-
ment, the robot systems will face different kinds of addi-
tive disturbance, and hence, the system performance and
stability can not be directly predicted a priori. To make
the matters even more difficult, for many robot system, the
mathematical models are uncertain. In the case the model
uncertainty is caused by the unknown constant system
parameters and can be linearly parameterized, adaptive
control design (Kristic [1995], Sastry [1989]) is often con-
sidered to be the method of choice. However, an adaptive
control strategy designed for a disturbance-free system
might not be able to compensate for the disturbance, and
may even become unstable under certain condition. On
the other hand, some manipulator systems do not meet
the parameter linearizable condition, which prevent the
application of standard non-linear adaptive design strat-
egy. Neural network has been employed to compensate
for the systems’s uncertainty via its learning ability(Lewis
[1999]). Lots of existing neural-network based control sys-
tem can only provide a bounded tracking result in the
case with external disturbance Kwan [1998]. There are
different methods to deal with additive disturbance. If the
disturbance is periodic and the period is known, learning
control scheme can be designed (Antaskalis [1993]). If the
disturbance can be upper bounded by a norm-based in-
equality, slide-mode control (SMC) (Slotine [1991]), Utkin
[1992] (i.e., discontinuous control design) can be employed.
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Grant (9852J0704)and Natural Science Foundation of Tianjin Grant
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Inspired by the control strategy present in (Xian [2004],
Tatlicioglu [2007]), and (Braganza [2006]), we consider a n-
link robot manipulator system with uncertainties under re-
peating and non-repeating external disturbances. A neural
network control design combing with learning feed-forward
term and robust term are used to compensate for system
uncertainty, repeating disturbance with known period and
non-repeating disturbance respectively. Compared with
other robust control design methods, the proposed control
strategy need less control effort because the system uncer-
tainty is compensated by the neural network based feed-
forward and the periodic disturbance is compensated by
the learning component. Lyapunov-based techniques are
utilized to ensure that the proposed control law achieve
semi-global tracking result while all the closed-loop system
states remain bounded.

This paper is organized as follows. Section 2 presents
the dynamic model for the robot manipulator system.
The problem statement and error system development are
provided in Section 3. Section 4 and Section 5 present the
control design and stability analysis, respectively. Some
numerical simulation results for a two-link robot manip-
ulator are provided in Section 6 to demonstrate the per-
formance of proposed control design. Finally, conclusion
remarks are provided in Section 7.

2. ROBOT MANIPULATOR’S DYNAMIC MODEL

The dynamic model for a n-link, revolute, direct-drive
robot manipulator under external disturbance is assumed
to be of the following form (Lewis [1993], Xian [2004])

M(q)q̈ =−C(q, q̇)q̇ − G(q) −

F (q̇) − D1(t) − D2(t) + τ(t) (1)

where q(t) ∈ R
n is the link position, M(q) ∈ R

n×n repre-
sents the inertia matrix, C(q, q̇) ∈ R

n×n is the centripetal-
Coriolis matrix, G(q) ∈ R

n represents the gravity effects
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on robot manipulator, F (q̇) ∈ R
n denotes the viscous fric-

tion force, D1(t) ∈ R
n is the unknown external repeating

disturbance, D2(t) ∈ R
n is the unknown general external

disturbance, and τ(t) ∈ R
n is the torque input vector. The

subsequent control design is based on the assumption that
link position q(t) and link velocity q̇(t) are measurable.
M(q), C(q, q̇), G(q), F (q̇) are unknown nonlinear function
matrixes or vectors. Moreover, the following properties and
assumptions (Lewis [1993], Nicosia [1990], Xian [2004]) will
be utilized in the subsequent analysis:

Property 1 The inertia matrix M(θ) is symmetric and
positive-definite, and satisfies the following inequalities

m1 ‖x‖
2
≤ xT M(x, θ)x ≤ m2(‖x‖) ‖x‖

2
(2)

for all x ∈ R
n, where m1 is a positive constant, m2(·) is

a positive scalar function, and ‖·‖ denotes the standard
Euclidean norm.

Property 2 The external repeating disturbance D1(t)
satisfies the following properties

D1(t + T ) = D1(t)

Ḋ1(t + T ) = Ḋ1(t)
(3)

where T ∈ R
+ is the period for D1(t), and T is known.

Assumption 1 The nonlinear function M(q), C(q, q̇),
G(q) and F (q̇) are continuous differentiable up to their
second derivatives (i.e., M(q), C(q, q̇), G(q) and F (q̇) ∈
C2).

Assumption 2 The additive disturbance signal D1(t)
and D2(t) are assumed to be continuous differentiable
and bounded up to their second derivatives (i.e. Di(t) ∈

C2 and Di(t), Ḋi(t), D̈i(t) ∈ L∞, for i = 1, 2).

3. ERROR SYSTEM DEVELOPMENT

The control objective is to ensure that the robot manipula-
tor tracks a time-varying, reference trajectory in presence
of system uncertainty and additive disturbance.

Let qd(t) ∈ R
n be a C3 reference trajectory such that

q
(i)
d (t) ∈ L∞ (4)

for i = 0, 1, 2, 3, and let the output tracking error e1(t)
∈ R

n being defined as follows

e1(t) := qd(t) − q(t). (5)

Then the control objective is to make lim e1(t) = 0 as
t → ∞ via a continuous control torque input τ(t) with
state feedback q(t) and q̇(t), and keep all the signals in
the closed-loop system to be bounded. To facilitate the
control design and stability analysis, filtered error signals
e1(t) ∈ R

n and r(t) ∈ R
n are defined as follows

e2(t) = ė1(t) + e1(t)
r(t) = ė2(t) + Λe2(t)

(6)

where Λ ∈ R
n×n is a positive-definite, diagonal, constant

gain matrix. The filtered error signal e2(t) is measurable
but r(t) is not measurable due to the unmeasurable signal
ė2(t). After differentiating r(t) with t, multiplying both
sides of the resulting equation by M(q), and substituting
from the second derivative of (1), it can be obtained that

M(q)ṙ = M(q)
...
q d +Ṁ(q)q̈ + Ċ(q, q̇)q̇ + C(q, q̇)q̈ +

Ġ(q) + Ḟ (q) + Ḋ1(t) + Ḋ2(t) + M(q)ë1 +

MΛė2 − u̇

=−
1

2
Ṁ(q)r − e2 + N + Φ(t) +

Ḋ2(t) − u̇ (7)

where the auxiliary nonlinear function N(·) ∈ R
6 is defined

as follows

N(q, q̇, q̈, t) : = M(q)
( ...
qd +Λe2 + ë1

)

+

Ṁ(q)(q̈ +
1

2
r) + Ċ(q, q̇)q̇ +

C(q, q̇)q̈ + Ġ(q) + Ḟ (q̇) − e2 (8)

and Φ(t) := Ḋ1(t). Let Nd(t) := N(qd, q̇d, q̈d, t); hence,
from (8), it can be obtained that

Nd(t) = M(qd)
...
qd +Ṁ(qd)q̈d + Ċ(qd, q̇d)q̇d +

C(qd, q̇d)q̈d + Ġ(qd) + Ḟ (q̇d). (9)

Note that Nd(t) and Ṅd(t) ∈ L∞ due to (4) and the
C2 condition in assumption 2. Now, after adding and
subtracting Nd(t) to the right-side of (7), (7) can be
written as follows

M(q)ṙ =−
1

2
Ṁ(q)r − e2 + Ñ + Nd + Φ(t) +

Ḋ2(t) − u̇ (10)

where

Ñ(q, q̇, q̈, t) := N − Nd. (11)

Remark 1 Since N(·) defined in (8) is continuously dif-

ferentiable, Ñ(·) can be upper bounded as follows (Xian
[2004])

∥

∥

∥
Ñ

∥

∥

∥
6 ρ(‖z‖) ‖z‖ (12)

where ‖·‖ is the Euclidean norm and z(t) ∈ R
18 is

defined as

z :=
[

eT
1 eT

2 rT
]T

, (13)

and ρ(·) : R>0→ R>0 is some globally invertible, nonde-
creasing function.

4. DESIGN OF CONTROL LAW

Based on the open-loop dynamics of r(t) in (10), the
control torque input τ(t) is designed as follows

u(t) = Ψ̂(t) + ū(t) +

t
∫

t0

n̂(τ)dτ (14)

where Ψ̂(t) ∈ R
n represents the learning component

utilized to compensate for the periodic signal Φ(t) in
(10), n̂(t) ∈ R

n denotes a neural network based forward
component to compensate for the system uncertainty, and
ū(t) is the auxiliary torque input.

Ψ̂(t) is defined as follows
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Ψ̂(t) = Ψ̂(t − T ) + kL

t
∫

t0

Λe2(τ)dτ + kLe2(t)

−kLe2(t0) (15)

where kL is a positive control gain. Note that the initial
value of Ψ̂(t) is Ψ̂(t0) = 0n×1 from (15). The auxiliary

function Φ̂(t) ∈ R
n is defined as

Φ̂(t) =
.

Ψ̂ (t). (16)

Taking the time derivative of Ψ̂(t) along (15), and substi-
tuting the result into (16), it can be obtained that

Φ̂(t) = Φ̂(t − T ) + kLr(t). (17)

According to the approximation properties of neural work
(Lewis [2002], Spooner [2002]), the continuous, bounded,
uncertain nonlinear function vector Nd in (10) can be
approximated by two-layer (i.e., a hidden-layer with p
neurons and an output layer with 1 neurons) neural
network such that

Nd(·) = WT σ(V T χ) + o(χ) (18)

where χ =
[

qd q̇d q̈d
...
qd

]T
∈ R

4n represents the bounded

input to the neural network, W ∈ R
p×n and V ∈ R

4n×p

denote the ideal input layer and output layer weights,
σ(·) is the corresponding neural activation function vector,
o(·) ∈ R

n denotes the bounded reconstruction error (i.e.,
|o(χ)| ≤ ō where ō is some positive constant). The output
of neural network is designed as follows

n̂(t) = ŴT σ(V̄ T χ) (19)

where Ŵ (t) ∈ R
4n×p is the weight estimation of W .

Note, here for simplicity reason, only the estimation for
W will be designed, and V̄ is set to some constant matrix.
There are many choices for the activation function σ(·),

such as radial basis function σ(z0) = exp(−
z2

0

γ
) where

γ is some positive constant, hyperbolic tangent function

σ(z0) = − 1−exp(−z0)
1+exp(−z0)

, sigmoid function σ(z0) = 1
1+exp(−z0)

and so on (Spooner [2002]). Here sigmoid function will be
utilized as the neurons’ activation function. Inspired by the
augmented back-propagation algorithm in (Lewis [1999])

and the update law design in (Braganza [2006]), the Ŵ (t)
is generated via the following tuning law

Ŵ = −κ1Ŵ + Γσ(V̄ T χ)sat(e2 + ω1)

ω1 =
1

κ2
(−ω2 + e2)

ω̇2 =
1

κ2
(−ω2 + e2)

(20)

where κ1, κ2 ∈ R are some small positive constant, Γ ∈
R

p×p is a diagonal, positive definite, update gain matrix,
ω1(t), ω2(t) ∈ R are auxiliary filter signals, sat(·) ∈ R

n

is defined as sat(x) = [ sat(x1), sat(x2), · · · , sat(xn) ]
T

∀x ∈ R
n where sat(xi) is the standard saturation function.

Based on the structure of (20), it is easy to check that

Ŵ (t),

.
.

Ŵ (t)∈ L∞, thus it can be shown that n̂(t) and
.

n̂(t)∈ L∞.

Based on the dynamics of r(t) in (10), the auxiliary control
input ū(t) is designed as follows

ū(t) = (K + In)e2(t) − (K + In)e2(t0) +
t

∫

t0

[(K + In)Λe2(τ) + βsgn(e2(τ))] dτ (21)

where K, β ∈ R
n×n are positive definite, diagonal,

constant gain matrix, In ∈ R
n×n represents a iden-

tity matrix, and the function vector sgn(e2(t)) :=

[ sgn(e21(t)) sgn(e22(t)) ... sgn(e2n(t)) ]
T

∈ R
n with the

function sgn(·) being the standard signum function, e2i(t)
represents the i-th entry of the vector e2(t) for i = 1, 2, · ·
·, n. It is easy to check that ū(t0) = 0n×1. Thus it can be
obtained that u(t0) = 0n×1 from (14). After taking the
time derivative of (21), it can be obtained that

.
ū= (K + In)r(t) + βsgn(e2(t)). (22)

Thus the time derivative of control torque input u(t) is

u̇ = (K + In)r(t) + βsgn(e2(τ)) + Φ̂(t) + n̂(t) (23)

where (14), (16), (17), and (22) have been utilized.

By substituting (23) into (10), the closed-loop dynamics
of r(t) can be obtained as follows

M(q)ṙ(t) =−
1

2
Ṁ(q)r(t) − e2(t) + Ñ(t) + Φ̃(t) +

Ñd(t) + Ḋ2(t) − (K + In)r(t) −

βsgn(e2(τ)) (24)

where Φ̃(t) := Φ(t) − Φ̂(t), and Ñd(t) = Nd(t) − n̂(t). It

is easy to know that Ñd(t),
.

Ñd(t)∈ L∞. By utilizing (17)
and the condition that Φ(t) = Φ(t−T ), it can be obtained
that

Φ̃(t) = Φ̃(t − T ) − kLr(t). (25)

5. STABILITY ANALYSIS

Before presenting the main result of this section, a lemma
which will be invoked later is stated first.

Lemma 1 Let the auxiliary function L(t) ∈ R be defined
as follows

L(t) := rT (t)(Ḋ2(t) + Ñd(t) − βsgn(e2(τ)). (26)

If the control gain matrix β is selected to satisfy the
following condition

βi >
∥

∥

∥
Ḋ2i + Ñdi

∥

∥

∥

L∞

+
1

Λii

∥

∥

∥

∥

D̈2i+
.

Ñdi

∥

∥

∥

∥

L∞

(27)

where ‖·‖
L∞

is the L∞ norm (Khalil [2002]), Ḋ2i(t),

D̈2i(t), Ñd(t)i,
.

Ñd(t)i, and Λii represent the i-th entry
of the corresponding vector respectively, then

t
∫

t0

L(τ)dτ 6 ζb (28)

with the positive constant ζb being defined as follows

ζb = β ‖e2(t0)‖ − eT
2 (t0)(Ḋ2(t0) + Ñd(t)). (29)
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Proof: Please refer to (Xian [2004]).

The stability result for the proposed controller is stated
by the following theorem.

Theorem 1 The controller given in (14), (15), (19), and
(21) ensures that all system signals are bounded under
closed-loop operation and lim e1(t) = 0 as t → ∞
provided that the control gain matrix β is adjusted
according to (27), the minimum eigenvalue value of
matrix Λ satisfies that λmin(Λ) > 1

2 , and the control
gain matrix K is selected sufficiently large relative to
the system initial condition (details of the selection for
K is provided in the following analysis).

Proof: Let the auxiliary function P (t) ∈ R be defined as
follows

P (t) = ζb −

t
∫

t0

L(τ)dτ (30)

where ζb and L(t) are defined in Lemma 1. It is easy to
see that the use of Lemma 1 ensures P (t) > 0. Let a
non-negative auxiliary function Vg(t) ∈ R>0 be defined
as follows

Vg(t) =
1

2kL

t
∫

t−T

Φ̃T (τ)Φ̃(τ)dτ. (31)

Taking the time derivative of (31) along (25) results in

V̇g(t) =
1

2kL

(Φ̃T (t)Φ̃(t) − Φ̃T (t − T )Φ̃(t − T ))

=−rT (t)Φ̃(t) −
1

2
kLrT (t)r(t). (32)

Now let the non-negative function V (y(t), t) ∈ R be
defined as follows

V (y, t) : = eT
1 (t)e1(t) + eT

2 (t)e2(t) +

1

2
rT (t)M(q)r(t) + P (t) + Vg(t) (33)

where y(t) ∈ R
(3n+2) is defined as

y(t) :=
[

zT
√

P (t)
√

Vg(t)
]T

. (34)

According to Property 1, (33) can be bounded by

W1(y) 6 V (t) 6 W2(y) (35)

where the non-negative scalar auxiliary function W1(y),
W2(y) are defined as follows respectively

W1(y) := λ1 ‖y‖
2

W2(y) := λ2(‖y‖) ‖y‖
2

(36)

with λ1 := ( 1
2 )min{1,m1,λmi(Γ

−1)} and λ2(‖y‖) :=

max{ 1
2m2((‖y‖),

1
2λmax(Γ

−1), 1}. Here λmin(·) and λmax(·)
denote the minimum and maximum eigenvalue of the
corresponding matrix respectively. Note it can be shown
that ‖q‖ 6 g(‖y‖) where g(·) is some positive function by
using (4), (5), (6), and (34), thus m2(‖q‖) 6 m2(‖y‖). By

differentiating (33) with time, V̇ (y, t) can be expressed as

V̇ (y, t) = eT
1 ė1 + eT

2 ė2 +
1

2
rT Ṁ(q)r + rT M(q)ṙ +

V̇g + Ṗ . (37)

After substituting (6), (24), (26), (30), and (32) into (37),

V̇ (y, t) can be simplified as follows

V̇ (y, t) =−eT
1 e1 − eT

2 Λe2 + eT
1 e2 − rT (K + I6)r +

rT Ñ −
1

2
kLrT r. (38)

By using the fact that eT
1 e2 6

1
2 (‖e1‖

2
+ ‖e2‖

2
), an upper

bound of (38) can be obtained as

V̇ (y, t) 6−λ3 ‖z‖
2

+ ‖r‖ ρ(‖z‖) ‖z‖ − ks ‖r‖
2

6−(λ3 −
1

4ks

ρ2(‖z‖)) ‖z‖
2

(39)

where (12) was used, λmin(Λ) > 1
2 , λ3 := min{ 1

2 , λmin(Λ)−
1
2}, and ks := λmin(K) + 1

2kL. Based on (39), it can be
stated that

V̇ (y, t) 6−γ ‖z‖
2
forks >

1

4λ3
ρ2(‖z‖)

or ‖z‖< ρ−1(2
√

ksλ3) (40)

where γ is some positive constant. Let the non posi-
tive scalar auxiliary functions W (y), (̄W ) be defined as

W (y) := −γ ‖z‖
2

and W̄ (y) = −γ ‖e1‖
2
. It is easy to

check that W (y) 6 W̄ (y). By utilizing the inequality in
(40), a region D can be defined as follows

D := {y(t) ∈ R
3n+2

∣

∣

∣
‖y(t)‖ < ρ−1(2

√

ksλ3)}. (41)

The inequalities in (35) and (40) can be employed to show
that V (y, t) ∈ L∞ in D; hence, e1(t), e2(t), r(t) ∈ L∞ in
D. Given the results that e1(t), e2(t) and r(t) ∈ L∞ in D,
it can be proven that ė1(t), ė2(t) ∈ L∞ in D from (6). Thus
the condition that qd(t), q̇d(t) and q̈d(t) are bounded can
be used with (5) and (6) to conclude that q(t), q̇(t), and
q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in D, Assumption
1 can be employed to show that M(q), C(q, q̇), G(q), and
F (q̇) ∈ L∞ in D. Now it can be proven that u(t) ∈ L∞ in
D from (1) and the condition that D1(t), D2(t) are bound.
All the closed-loop system states are bounded in D.

Using the aforementioned boundedness statements, it is

clear that
.

W̄ (y)∈ L∞ in D, which is a sufficient condition
for W̄ (y) being uniformly continuous. Let the region S be
defined as follows

S := {y(t) ∈ D
∣

∣

∣
W2(y) < λ1(ρ

−1(2
√

ksλ3))
2 } (42)

By applying the Theorem 8.4 in Khalil [2002] and follow
the similar steps in Xian [2004], it can be proven that
e1(t) → 0 as t → ∞ ∀y(t0) ∈ S. Note that the attraction
region in (42) can be made arbitrarily large to include any
initial conditions by increasing the control gain ks (i.e., a
semi-global stability result). Specifically, (36) and (42) can
be used to calculate the region of attraction as follows

‖y(t0)‖ <

√

λ1

λ2(‖y(t0)‖)
ρ−1(2

√

λ3ks) (43)
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which can be arranged as

ks >
1

4λ3
ρ2(

√

λ2(‖y(t0)‖)

λ1
‖y(t0)‖). (44)

Based on (34), (30), and (31), an explicit expression of
‖y(t0)‖ can be written as follows

‖y(t0)‖ =

√

‖e1(t0)‖
2

+ ‖e2(t0)‖
2

+ ‖r(t0)‖
2

+ ζ2
b . (45)

6. NUMERICAL SIMULATION

The proposed control law was simulated for a two link
planar robot of the dynamic structure in Lewis [1993] with
the inertia matrix being set as

M(q) =

[

m11 m12

m21 m22

]

(46)

where m11 = (m1+m2)a
2
1+m2a

2
2+2m2a1a2 cos(q2), m12 =

m2a
2
2 + m2a1a2 cos(q2), m21 = m12, and m22 = m2a

2
2, the

Centripetal-Coriolis matrix being set as

C(q, q̇) =

[

c11 c12

c21 c22

]

, (47)

where c11 = −m2a1a2 sin(q2)q̇2, c12 = −m2a1a2 sin(q2)(q̇1+
q̇2), c21 = −c12 and c22 = 0, the gravity force vector being
set as

G(q) =

[

(m1 + m2)ga1 cos(q1) + m2ga2 cos(q1 + q2)
m2ga2 cos(q1 + q2)

]

,(48)

the friction force vector being set as

F (q̇) =

[

Fd1q̇1

Fd2q̇2

]

. (49)

External disturbance are set as D1(t) =

[

sin(t)
cos(t)

]

(N.m)

and D2(t) =

[

cos(2t) + e−0.5t + 0.5
sin(5t) + 1.2e−0.4t + 0.3

]

(N.m) respec-

tively. The manipulator’s parameters are chosen as m1 =
1kg, m2 = 1kg, a1 = 1m, a2 = 1m, g = 9, 8N/ sec2,
Fd1 = 0.2, and Fd2 = 0.3. The reference trajectory qd(t) is
selected as

qd =

[

0.5 sin(t)(1 − e−0.2t3)

0.4 cos(t)(1 − e−0.25t3)

]

rad. (50)

The system’s initial condition is set as q(t0) = [ 0.1 0.1 ]T

(rad). The number of neuron is selected as p = 10 with
the input for the neural network in (19) being set as
χ1 = [ 1 qd q̇d q̈d

...
qd ]T where the first term ”1” is used

to provide a basis. V̄ in (19) is chosen as

V̄ = [ 1 0.1 0.2 0.3 0.11 0.25 0.6 0.27 1 ]T (51)

to provide a basis Lewis [2002]. The control gains in (15)
and (21) are adjusted to the following value kL = 1,
K = diag{18, 20}, β =diag{12, 12}, Λ = {4, 4}. The upper
and lower value for the saturation function in (20) are
set as 100 and −100 respectively. The tuning gains for
neural network in (20) are tuned by trial-and-error until
a good tracking performance was achieved. This results
in the following gain values κ1 = 0.001, κ2 = 0.001,

Γ = diag{200, 420, 220, 300, 300, 500, 500, 500, 320, 320}.
Figure(1) and Figure (2) show the simulation results for
the tracking error e1(t) and control torque input τ(t).

7. CONCLUSION

This paper considered the tracking control problem of a n-
link robot manipulator system under system uncertainty
and external disturbance. A continuous control strategy
was proposed to ensure the semi-global asymptotic track-
ing under very limited restrictions on the uncertainties
and disturbance. The neural network based component
was used to compensated the system uncertainty. With
the help of robust term and learning term, the controller
compensated for both non-repeating and repeating dis-
turbance with unknown period. Lyapunov-based methods
were employed to ensure the system stability and the
tracking error being driven to zero. Numerical simulation
results show that the proposed control design achieves
good tracking performance. Future research work will ex-
amine the extensions of proposed control mechanism to
the output feedback problem and redundant robots.
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Fig. 1. Tracking error e1(t)
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Fig. 2. Control torque inputs τ(t)
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