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Abstract: Intelligent Agent technologies constitute an important stream of research in the Artificial 
Intelligence community. Their characteristics make them suitable for a variety of applications. In this 
paper, we investigate the use of Intelligent Agent technology in the field of Gas-Turbine Engine Control 
and Health Management. We present and test a Planning agent, developed to choose and apply appropriate 
investigative and reversionary action plans, which are useful to correctly assess and mitigate faults. The 
agent is based on Soar technology and tests are performed using a previously developed Intelligent Agent 
architecture. The Planning agent uses a simple FMECA database and results show it is capable of choosing 
the correct action plans when presented with different failure cases. 

 

1. INTRODUCTION 

There is currently a considerable amount of research work 
focused on the development of increasingly autonomous 
UAV systems. The ultimate objective of this work is to 
provide a UAV with sufficient decision-making skills so that 
the operator will only need to assign a mission to it and the 
UAV will be able to perform it entirely, without the need of 
assistance from a pilot. Such capability can bring several 
advantages: for example, this means that a single operator 
can effectively control a team of UAVs being able to focus 
on mission management rather than on normal piloting tasks. 
Another example might be the case of personal UAVs for 
soldiers, where increased autonomy means a significant 
reduction in the skill level needed to pilot the UAV and a 
reduction in the control equipment needed. 

The challenges of autonomous UAV flight become 
particularly difficult to tackle for civil applications. Civil 
missions such as global monitoring of environment and 
security, for example, can only be achieved if UAVs are able 
to fly seamlessly amongst other air traffic within national or 
international airspace (UAV Task Force, 2004). Furthermore, 
this capability has to be proven and certified, and this means 
that the UAV control system has to satisfy the very strict 
requirements typical of civil aeronautical regulations, such as 
the DO-178B standard (RTCA, 1992) for software 
development. 

In order to open up opportunities for safe and routine use of 
UAVs in non-segregated air space by addressing specific 
regulatory and technological issues, ASTRAEA 
(Autonomous Systems Technology Related Airbone 
Evaluation and Assessment) was launched in 2006 as a key 
element of the National Aerospace Technology Strategy. 
ASTRAEA is a £32 million civil programme led by an 

industrial consortium incorporating Agent Oriented Software, 
BAE Systems, EADS, Flight Refuelling, QinetiQ, Rolls-
Royce and Thales UK, working with leading academics and 
supported by investment from the DTI, Welsh Assembly 
Government, Scottish Enterprise and regional development 
agencies covering the North West, South East and South 
West of England. 

The programme has been split into several sub-projects, each 
addressing the challenges of autonomy at different levels or 
for different sub-systems. In this light, Rolls-Royce and the 
Rolls-Royce University Technology Centre (UTC) in Control 
& Systems Engineering at the University of Sheffield are 
working cooperatively to develop technologies which will 
address the UAV autonomy issues related to propulsion and 
power generation systems (and particularly Gas-Turbine 
Engines). The objective is to improve the Diagnostic and 
Prognostic capabilities of the Full Authority Digital Engine 
Controller (FADEC), and to develop a computer system able 
to replicate typical pilot reactions to fault occurrence. 

2. INTELLIGENT AGENT TECHNOLOGY 

One of the main advances in computer science and artificial 
intelligence during the last two decades has been the 
introduction of the concept of Intelligent Agent (IA). 
Intelligent agents are a new paradigm in the development of 
software applications (Jennings et al, 1998) and are designed 
to address the need for flexible and autonomous computer 
systems. 

This technology is still at quite an early stage; it has been 
exploited thoroughly in certain areas of application (like 
internet search engines), but its use in other areas of software 
engineering is restricted at best. In fact, even agreement on 
the definition of IA is not universally accepted among 
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computer scientists. A popular definition, which we take as 
our own point of view, is that “an Agent is a computer 
system situated in some environment, and that is capable of 
autonomous action in this environment in order to meet its 
design objectives” (Wooldridge, 1999). Furthermore, we can 
say that an Intelligent Agent is one that is capable of flexible 
autonomous action, where flexible implies reactivity (ability 
to understand the environment and react to its changes), pro-
activeness (goal-oriented behaviour) and social ability 
(ability to interact with other agents). 

These characteristics mean that IAs are potentially a very 
good solution for the development of complex intelligent 
systems, which often must be able to replicate the reasoning 
process of a human being under severe real-time constraints. 
Computer systems are obviously able to react much faster 
than the human brain in simple and predictable situations, but 
the ability of the human brain to confront unexpected 
situations, change its decisions after a re-assessment, perform 
abstract reasoning and learn from experience remains 
unchallenged. IAs constitute a possible approach to narrow 
this gap, with the ultimate objective of building computer 
systems combining the fast reaction times of modern 
hardware with the skills typical of human reasoning. 

Even though consistent advances have been made in the 
recent years, expertise in designing and building agent 
applications is still underdeveloped. There are several support 
tools for building IA applications but often they are over-
specific and addressing only a restricted range of problems. 
We can identify two main trends in the development of IA 
tools: on one side there are “strong AI” systems, which 
represent the computerization of cognitive modelling 
theories; on the other side, certain IA tools are just an 
expansion of object-oriented programming languages (such 
as Java), introducing Agent classes so that IA concepts can be 
applied. Both types of approach have their advantages and 
disadvantages, and these must be carefully evaluated when 
selecting what tool should be used in a particular research 
project. 

During this project, two IA tools were identified and 
assessed, one for each of the categories above mentioned; the 
first one is JACK™, which is an agent-oriented expansion of 
Java; the second one is Soar, which is instead built around a 
specific cognitive architecture. A final decision was made to 
choose Soar as our main IA development tool. This was 
mainly due to two reasons: firstly, because this allows us to 
explore the potential of cognitive modelling tools for control 
applications, and secondly because of issues regarding the 
certification possibilities of Java-based software. In fact, 
Java-based platforms for Safety-Critical systems such as the 
PERC platform from Aonix are now available, but the 
integration with Java-based IA tools is likely to prove 
difficult. 

Soar provides a robust architecture for building complex 
human behaviour models and intelligent systems that use 
large amounts of knowledge (Soar Technology Inc., 2002). 
At a high level of abstraction, it uses a standard information 
processing model including a processor, memory store, and 
peripheral components for interaction with the outside world. 

At a low level of abstraction, Soar uses a Perceive-Decide-
Act cycle to sample the current state of the world, make 
knowledge-rich decisions in the service of explicit goals, and 
perform goal-directed actions to change the world in 
intelligent ways. The distinguishing features of Soar are: 
parallel and associative memory, belief maintenance, 
preference-based deliberation, automatic sub-goaling, goal 
decomposition and adaptation via generalization of 
experience. 

A Soar agent is based on its production rules; these represent 
long-term knowledge and are practically the program code 
for the agent. Production rules are in the form of if-then 
statements, where an action is performed only if the 
conditions are met. When the conditions of a production are 
met, the production is said to fire; as Soar treats all 
productions as being tested in parallel, several productions 
can fire at once, and this can happen at different levels of 
abstraction, giving the Soar agent natural pro-active 
behaviour (the agent is inherently aware whether the 
conditions to apply certain production rules are still valid). 
Short-term knowledge is instead constituted by external 
input, and appropriate functions must be developed to 
interface the Soar agent with its environment. 

We will now look at how the Soar tool can be used in the 
field of Gas-Turbine Engine (GTE) Health Management. In 
this case, we aim to develop a system able to correctly 
manage the running operation of a GTE, both in a fault-less 
and in a faulty condition. This system must optimize the 
operation when no fault is detected, and apply appropriate 
reversionary and investigative action plans when a fault has 
occurred. 

3. ENGINE HEALTH MANAGEMENT SYSTEM 

In the last two decades, avionic systems have become more 
and more important in an aircraft. The extraordinary 
advances in electronics allowed the introduction of complex 
control hardware for all the on-board systems. GTEs are not 
an exception and the introduction of Full Authority Digital 
Engine Controllers (FADEC) brings several benefits to their 
operation (Harris et al, 2000): 

• longer life guarantees; 

• improved operability including fast handling capability 
and minimum pilot intervention even after incidents; 

• ease of maintenance due to the availability of 
performance data and fault diagnostics 

• increased integration with airframe systems; 

• lower life cycle costs 

Modern FADECs usually include Engine Health Monitoring 
(EHM) capabilities; this means that the FADEC is connected 
to a number of sensors and logs all data coming from these. 
The FADEC can respond quickly to critical conditions such 
as flameouts or stalls, but most of the EHM data is used only 
for ground maintenance. 
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With this work, we aim to use EHM data to adjust engine 
behaviour during flight, so that the effects of a fault can be 
mitigated. This is a complex task, requiring: 

• correctly identifying a fault 

• understanding the effects both at engine level and at 
platform level 

• devising appropriate reversionary action plans 

Also, we aim to optimize engine operation in order to achieve 
lower-priority objectives such as maximising engine life, 
minimising fuel consumption and maximising engine 
response. All of this has to be accomplished under severe 
real-time constraints, as on-board hardware is usually 
resource-constrained and the system has to continuously 
monitor data from all sensors. Also, if the system is to be 
given real autonomy, it becomes safety-critical, adding severe 
requirements to ensure operability. 

The approach we used is based on a distributed architecture. 
The system consists of a general Intelligent Agent 
architecture, which is needed to interface the different types 
of technology used to provide the functionality. The use of 
the IA paradigm allowed encapsulation of different functions 
such as Fault Detection, Fault Isolation and Planning in 
different agents. The agents can then interact through the 
architecture, with the general behaviour of the system 
emerging from their interoperation. 

A key objective in assembling the agent architecture has been 
the possibility to integrate different types of Intelligent 
Systems technology. In fact, the various tasks that the system 
has to perform are best obtained from a coherent mix of 
diverse technologies. In particular, at present the following 
technologies have been integrated in the architecture: 

• Digital Signal Processing is used for Fault Detection 

• Case-Based Reasoning (CBR) is used for Fault Isolation 

• Fuzzy Logic is used to assess the effects of a fault at 
platform level (where by platform we intend the platform 
which is hosting the engine, e.g. the UAV) 

• Intelligent Agent tools are used for reversionary action 
Planning 

In terms of data flow, the obvious start is the FADEC, which 
collects engine sensor data; additional data is coming from 
the platform (environmental and mission data). Raw sensor 
data is digitally processed, partly by the FADEC and partly 
by our system, in order to achieve Fault Detection. 

Fault Isolation is accomplished using the Intelligent Fault 
Isolation System (IFIS), which is a tool also developed at 
Sheffield University (Mills et al, 2006). This system is based 
on CBR technology and is designed to fuse data from 
different sources, extracting “hidden information” already 
present in this data but difficult to interpret without 
contextualising the symptom using other sets of data not 
directly related to it (i.e., data from an additional sensor 
might confirm or discard the fault detected by a main sensor).  

Output from IFIS is fed into Fuzzy-Logic-based algorithms 
that evaluate the effects of a fault. Engine performance is 
evaluated using a series of engine performance parameters. A 
Fuzzy Inference System relates faults to a numerical 
estimation of their effect, calculated in terms of a reduction to 
these parameters. The criticality of a fault is also computed, 
by assigning a criticality degree to each of the possible 
effects to engine performance. 

Finally, all of this data is used by the Planning agent to select 
the correct reversionary action plans. The agent considers 
both EHM data and situational awareness data, in order to 
make contextual decisions: we do not want the system to 
reduce thrust during take-off because it detected a minor 
fault! In fact, the system is built to always operate under the 
authorization limits provided by the platform, so this would 
not be possible unless it is requested by the platform itself, 
but it is also important to avoid requesting to the platform a 
reduction in thrust when this is clearly not reasonable. The 
Planning agent also serves as an intelligent thrust demand 
optimization tool, which is useful during normal engine 
running condition (no fault present). In this case, the system 
can assume several different behaviours, such as maximising 
engine life, minimising fuel consumption or maximising 
engine response. The platform can impose a preferred 
behaviour, but the decision on which is the best behaviour is 
also influenced by EHM data. 

We will now concentrate on describing the structure of the 
Planning agent in Section 4, while Section 5 will present the 
tests performed on the agent. The other aspects of the 
architecture are described in more detail in a separate 
publication (Gunetti et al, 2007). 

4. THE PLANNING AGENT 

Incorporating Soar technology with the Intelligent Agent 
architecture involved realizing an appropriate interface. As 
the architecture is built using Matlab/Simulink software, this 
task meant writing an S-Function encapsulating the Soar 
agents. 

The S-Function is a custom-built Simulink block, which 
incorporates the code for the Soar kernel to effectively run an 
instance of Soar inside a Simulink model. The interface is 
designed to be general, so that it can be re-used with 
minimum changes. In fact, the user interface allows to freely 
choose what production rules the agent should load, the agent 
name and the port number (used, for example, to connect the 
Soar Debugger tool). The Input/Output structures are instead 
hard-coded, meaning that to change these it is necessary to 
change the S-Function code and recompile it. The 
Soar/Simulink is now being optimized and a basic version 
should be included in the next main Soar release. 

The S-Function encapsulates a single Soar agent with the 
rules specified in a file. In order to build a Soar agent, one 
must write these production rules in a text file (normally 
using the VisualSoar IDE). To correctly write the rules, it is 
imperative to carefully think about how to organize the 
agent’s execution cycles. The Soar programmer must 
understand how to divide the problems the agent must face 
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into different categories, and plan a priori the flow of the 
decision process. 

The Planning agent is a decision-maker, taking Fault 
Diagnosis and situational awareness data as inputs and 
outputting an optimized thrust demand together with 
reversionary and investigative actions. The symptoms, faults 
and reversionary actions which have been embedded in the 
system and in the Planning agent are derived from a sample 
Failure Mode, Effects and Criticality Analysis (FMECA) 
database provided by Rolls-Royce, who are an industrial 
partner in the project. It is important to stress that this work is 
intended to demonstrate the potential for such technology; 
therefore, the FMECA database is simplified but 
representative of the problem domain. This allows focus to be 
placed on working directly on the technology rather than on 
the implementation of a detailed database. It is expected that 
following the demonstration of the suitability of this 
technology in the field of GTE Health Management, a larger 
and more realistic database will be implemented. The Agent 
architecture and Planning agent are built with this in mind, so 
that implementation of a new database will be as seamless as 
possible. 

Technically speaking, the Soar Planning agent is built using 
the abstraction of several levels of decision-making. Figure 1 
shows the operator hierarchy adopted in the Planning agent. 
The main organizational division is between the two cases of: 

• No fault detected (running-normal) 

• Fault-detected 

Soar continuously checks input in order to find out whether a 
fault is present. If no fault is detected, it enters the “Running-
Normal” state, whereas when a fault is present it switches to 
the state of “Fault-detected”. 

PLANNING

RUNNING-NORMAL FAULT-DETECTED
Thrust Base-Thrust

Generate DRAP

Assess DRAP
Generate Plans

Reversionary Actions

Investigative Actions

 
Figure 1 – Planning Agent organizational diagram 

In the first case, the agent must only determine the thrust 
level to be applied, within the limits provided by the 
platform. The decision on thrust level is based on input 
coming from the platform (mission phase advisory and 
environmental condition) and from its own long-term 
knowledge (for example, the agent can have long-term 
knowledge of optimal thrust ranges). An interesting 
possibility is using the Soar learning system (called 
Chunking) to improve this aspect. The controller might 
analyze sensor data and calculate what the optimal thrust 
ranges are, then this could be “learnt” using the chunking 
technique (which basically involves adding a new production 

rule to the predetermined set). There is a drawback though; in 
fact such a characteristic would drastically decrease the 
predictability of the system, especially if new rules are to be 
added automatically. This would certainly lead to 
certification issues. For this reason, the learning capabilities 
of Soar have not been used at this stage of the project. 

As soon as a fault is detected, the agent enters the other main 
state, which is the “Fault-Detected” state; in this situation the 
agent goes through a series of tests in order to determine 
appropriate action. At first, it calculates a “Base-thrust”, 
which is basically repeating the same process of “Running-
Normal” but with (possibly) different parameters. This is 
needed to have a starting point for the next operators. The 
next decision phases are the ones during which a Draft 
Reversionary Action Plan (DRAP) is generated and then 
assessed against the action scope provided by the platform. If 
the DRAP is found to be falling out-of-scope, additional 
plans are generated, up to a number which is dependant on 
fault-criticality. Finally, additional reversionary and 
investigative action (such as requesting return to base or 
running additional tests) are assessed and the agent evaluates 
whether these are appropriate or not. When a complete plan is 
ready, filled with all details about programmed reversionary 
and investigative action, output is sent back to the agent 
architecture, which verifies that the command is consistent 
and then forwards it to the FADEC. In order to make it more 
predictable, plan generation has been designed as a scheduled 
activity; the generation of a plan will always go through the 
same series of decisions, in the same order. 

This main set of rules is complemented by additional 
productions such as the state elaboration rules, which create 
useful abstractions of input data, and the I/O management 
rules, which organize I/O data and interface with the I/O 
functions. 

Having described the structure and organization of the 
Planning agent, we now proceed to test it in a simulated 
environment, based around the IA architecture and 
complemented with a GTE model. 

5.  TESTS AND RESULTS 

The Planning agent was tested in a series of simulations 
where its behaviour under pre-determined conditions was 
recorded. The tests saw the use of the entire agent 
architecture with all the tools currently implemented; these 
had to be complemented with a Fault Injection tool, 
visualization tools and a GTE model which is used to verify 
how the entire system behaves when controlled by the 
Planning agent. 

The sample FMECA database in this test is constituted by a 
set of fourteen symptoms, which are mapped to six different 
faults. Reversionary and Investigative actions are related 
directly to the faults, but are also dependant on the current 
situation (i.e. actions are contextualized, so, for example, the 
system does not try to reduce thrust during take-off, even if 
the occurrence of a fault would suggest it from the engine 
point of view). The plans are devised in real-time, by 
progressively assessing the need for actions. This is a major 
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difference compared to more conventional technologies, 
employing traditional techniques such as look-up tables. With 
these, the system always reacts in a pre-specified manner, and 
each possible input configuration is directly mapped to an 
appropriate reaction. With IAs, we instead generate a plan by 
sequentially assessing the need for each action. 

The testing methodology involved running simulations in a 
Simulink environment, during which the entire architecture 
was in execution with simulated input. The inputs were 
mainly from the Fault Injection tool, but also from dedicated 
Simulink blocks designed to simulate the presence of the 
platform with its thrust requirements. A number of scenarios 
were identified, consisting of different environmental 
conditions and fault cases. Output from the Planning agent 
was then compared with output from a more conventional 
algorithm performing the same tasks and finally fed into the 
engine model to determine the realistic effects of the agent’s 
decisions. The conventional algorithm is based on look-up 
tables derived from empirical data and the results of the 
comparison are omitted due to space reasons. 

We will now present part of the results of the tests; these are 
obtained from a scenario where a standard flight condition is 
seeded with different faults. The simulated platform is 
requiring a thrust level within 40 to 60 percent of maximum 
thrust, and these limits cannot be exceeded by the system 
without authorization from the platform. Results show that 
the system correctly identifies the faults and takes appropriate 
reversionary and investigative actions. Results are shown in 
three graphs, depicting several aspects of the agent’s 
decisions. 

 

Figure 2 – Reversionary action plans 

Figure 2 shows what the reversionary actions are; these 
practically consist of a reduction in thrust level, which is 
always within the action scope provided by the platform. In 
case the agent decides for a thrust level which is out of the 
action scope, the selected level will be the closest one falling 
within the scope. The platform is informed that the optimal 
plan from the engine point of view is out-of-scope but 

advisable in terms of engine performance and health. It is 
important to understand here that our system plans thrust 
levels and all actions in order to pursue the “best interest” for 
the GTE; this may significantly differ from the requirements 
of the platform, which obviously have a higher priority. 

In the first graph we can notice the time plot for thrust 
demand, while the second graph depicts when extreme 
reversionary action is taken; in this case, for a very critical 
fault the system advises the platform to return to the base as 
soon as possible; this is the case when there can be no 
guarantee that the engine can complete the mission. 

 

Figure 3 – Investigative action plans 

Figure 3 shows the possible Investigative actions and their 
plots. The agent performs appropriate investigative action 
only if this is not interfering with reversionary action. 
Investigative actions include performing additional tests (BIT 
check), performing a detailed vibration analysis and 
signalling the necessity of maintenance when on-ground. 

 

Figure 4 – Alternate out-of-scope plans 
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Finally, Figure 4 shows the alternate plans which are 
generated by the agent. This happens only when the optimal 
plan is not falling within the action scope. In this case, the 
agent applies an immediate change of thrust falling within the 
action scope, but also sends an advice message to the 
platform to inform it that more drastic action is needed. 
Depending on the criticality of the fault (which is numerically 
estimated by previous algorithms), a different number of 
plans is presented to the platform, with more critical faults 
allowing a larger number of plans, up to a maximum of five 
plans. 

These results show that the Planning agent is capable of 
applying appropriate Reversionary and Investigative action 
plans when presented with different fault situations. 
Comparison with results from conventional technologies 
demonstrates that the Soar agent is able to give a similar level 
of performance, if not better. We must consider here that the 
implemented database is simpler than a realistic one. 
Performance may vary consistently with a more realistic 
database, but it is expected that it will still benefit from the 
use of IAs. 

The Planning agent also implements thrust optimization 
capabilities which are very complex to recreate using 
traditional techniques. These were very simple to model 
using the Soar language, as Soar is very well suited to 
performing symbolic reasoning tasks. In fact, as stated 
before, the Soar learning capabilities make the development 
of such an adaptive system much simpler when compared to 
other technologies. 

6. CONCLUSIONS 

In this paper we have presented a novel approach to Gas-
Turbine Engine Control and Health Management. The 
approach focuses on the use of the Intelligent Agent 
paradigm to model the various software components of the 
system. Several types of technology were integrated by 
encapsulating them in Intelligent Agents, which formed a 
distributed IA architecture. 

The main function of the system was choosing appropriate 
reversionary and investigative action plans. This was 
performed by an agent built using the Soar IA tool. The paper 
explains how the Soar agent is integrated with the rest of the 
system, details the modelling logic behind the agent and 
presents simulation tests. 

Tests demonstrated that this approach is practicable; in fact, 
the use of IA tools allowed not only the desired behaviour 
from the system to be obtained, but also implementation of 
more advanced features such as thrust optimization. From 
this, we estimate that the characteristics of Soar make it 
suitable to implement Adaptive Scheduling in the system. 
This is a very complex feature which is part of the 
requirements for the ASTRAEA project, and Soar technology 
should allow this to be put it into practice with relative ease 
compared to more conventional technologies. 

Four prospective areas of research have been identified: 

• Implementation of multiple agents; 

• Implementation of a larger and more detailed behaviour 
model; 

• Experiments on real-time implementations of Soar 

• Experiments on the use of Soar learning capabilities 

Future work will address these issues, but will also be 
dedicated to exploring the possibilities of using Soar agents 
for general UAV control. In fact, a lot of the research work 
done is meant to be easily portable to an autonomous UAV 
control unit. It is felt that the potential of Soar agents for 
high-level mission management is great, and our efforts will 
look at a practical demonstration of this capability. 
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