
A Modular Synthesis Approach for
Distributed Safety Controllers,

Part B: ?

Modular Control Synthesis

Dirk Missal and Hans-Michael Hanisch ∗

∗ Martin Luther University Halle-Wittenberg,
Institute for Computer Science

06099 Halle, Germany
(Dirk.Missal, Hans-Michael.Hanisch)@informatik.uni-halle.de

Abstract: The contribution provides an approach for formal synthesis of controllers that ensure
safe operation on the shop floor level. It is structured into two parts.
Part B presents the modular synthesis approach. It is based on the modular backward search in
order to avoid the complexity of generating all states and state transitions of the plant model.
It therefore uses modular backward steps that describe the trajectories leading to forbidden
states. The generation of these trajectories is stopped as soon as a controllable (in our case
preventable) step is found. From this information the models of the controllers are generated.
Each controller has decision functions and communications functions. Together they establish
a network of local, interacting controllers with communication. Up to now, we suppose that the
plant is completely observable, i.e. the local controllers have complete information of the local
states of the partial plants they are supposed to control. The method is illustrated by taking
the example from Part A.

1. INTRODUCTION

The complexity is a major obstacle for application of
synthesis to real scale problems. Therefore algorithms
omitting complete enumeration of the state space have to
be developed. The presented backward search works over
symbolic markings given from a state predicate instead of
a complete set of reachable markings. Hence, the implicit
state representation of the model is used in the algorithm.
Furthermore, modular approaches provide the opportunity
to reduce complexity by distributing the global problem
into a set of local subproblems. Modularity, in our case,
is obtained by applying the synthesis algorithm on plant
model parts defined by modules. The reduction potential
is practically shown in the comparison of the example with
the monolithic synthesis approach in Missal and Hanisch
(2006) in Sec. 4.

Based on the fundamentals described in Part A Missal and
Hanisch (2008), the modular synthesis of distributed safety
controllers is described in this contribution. The starting
point for synthesis is a well-structured modular safe Net-
Condition/Event system (SNCES) plant model and a
formal specification in terms of forbidden state predicates.
The model has to be partially composed. Forbidden state
predicates are distributed before they can be used for a
modular approach.

The goal is to synthesize a collaborating set of local
controllers. Thereby every controller has local observation
and controllability to disjoint plant parts. To ensure global
? The work is supported by the Deutsche Forschungsgemeinschaft
(DFG) under reference HA 1886/16-1 and HA 1886/16-2.

specifications, the controllers exchange information via
Boolean communication variables (see Fig. 1).

Fig. 1. Structure of the controlled system

In principle, we use the symbolic backward search as
described for the monolithic synthesis approach in Missal
and Hanisch (2006). But the possible steps for the modular
approach are defined within basic modules and under
consideration of the input state. The backward search op-
erates just within one module while the dependencies with
the modules are handled parallel. The modular backward
search is described in Sec. 2. Section 3 addresses the whole
synthesis process including the dependency handling. Fi-
nally a synthesis example is given in Sec. 4. A summary
and a critical view of current shortcomings and limitations
followed by providing directions for further research con-
clude the contribution.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14479 10.3182/20080706-5-KR-1001.1006

Notations and definitions of Part A are used in the
following sections without further reference.

2. MODULAR BACKWARD SEARCH

The backward search algorithm determines the complete
set of uncontrollable trajectories leading to a forbidden
state. A detailed description of the general idea of back-
ward search is given in Missal and Hanisch (2006). For
the modular synthesis the algorithm has to generate lo-
cal prepredicates to forbidden state predicates. Then we
analyse local possible steps and generate the prepredicates
enabling the possible steps. If the analysed local step is un-
controllable, the prepredicates are identified as forbidden
states too.

First the possible steps and local possible steps are defined
based on the modular step definition given in Part A
with Def. 3.5 and 3.7. Possible steps are steps defined
under consideration of partial markings in terms of state
predicates. They are called possible steps because the
enabling conditions of enabled steps (see Part A Def. 3.4
and 3.6) can not be determined without consideration of
concrete markings.

The local possible steps ξp
Mi

are defined at a module
Mi. Further the possible steps ξp

ZPi
are defined as the

aggregation of local possible steps and depending on a local
state predicate ZPMi

. We define them as follows:

Let N be a SNCES, ΞM a set of local steps and ZPM a
local state predicate. A local step ξM (following Def. 3.5
at Part A and not an enabled local step) is a local possible
step ξp

Mi
iff the following holds:

@t′ ∈ ξp
Mi

for which holds:

• ∀p ∈ P : (p, t′) ∈ F |(m(p′) = 1) ∈ ZPM and
• ∀p′ ∈ P : (p′, t′) ∈ CN |(m(p′) = 1) ∈ ZPM

Transitions satisfying a condition of the definition of ξp
Mi

cannot be part of a step from a marking m(M) with
ZP (m(M)) = 0 to a m′(M) with ZP (m′(M)) = 1. A
transition satisfying the first condition would remove a
marking from a place (m(p) = 1) ∈ ZP or restore the
marking of a place (m(p) = 0) ∈ ZP and the follower
marking would not satisfy ZP . A transition satisfying the
second condition is disabled because the source place of
the condition arc is not marked.

Based on these local possible steps we define possible steps
on depending modules of the whole modular plant model.
For possible steps we have to ensure mostly the same
conditions as for steps. But in difference to Def. 3.7 at
Part A, we cannot define enabled possible steps because we
do not consider any marking on the whole plant. Possible
steps are defined as follows:

Let N be a SNCES and ZPM a local state predicate, a
step ξ (following Def. 3.6 at Part A and not an enabled
step), consisting of local possible steps, is a possible step
ξp iff the following holds:

Every
ξp
ZP =

⋃
Mn∈N

ξp
M

is a possible step if:

• for the local possible steps ξp
M holds ∃{ek} ⊆ EK :

∀(t, eout) ∈ EOarc ∧ eout ∈ {ek}|t ∈ ξp
ZP which event

input enables 1 all ttM ∈ ξp
M and

• ∃ξp
M ∈ ξp

ZP : |ξp
M ∩ TZP | ≥ 1, while

TZP = {tpre
pn

∈ T : (m(pn) = 1) ∈ ZPM ∧ (tpre
pn

, pn) ∈
F}∪{tpost

pn
∈ T : m(pn) = 0) ∈ ZPM∧(pn, tpost

pn
) ∈ F}

It can be proven that the set of possible steps to a state
predicate ZP includes all transition sets which can be part
of an enabled step from a marking m(N) : ZPM (m(N)) =
false to a marking m′(N) : ZPM (m′(N)) = true.

We define possible steps depending on a predicate ZPM

because the following described backward search algorithm
is defined on state predicates instead of a marking m(N)
of the net N .

The prepredicates ZP ′
M for every possible step belonging

to a predicate ZPM are calculated due to the following
rules:

The re-determination rule for ZP ′
M is:

• ∀p ∈ P : ∃t ∈ ξp
M : (p, t) ∈ F ⇒ ZA′ = (m′(p) =

1) ∈ ZP ′
M

• ∀p ∈ P : ∃t ∈ ξp
M : (t, p) ∈ F ⇒ ZA′ = (m′(p) =

0) ∈ ZP ′
M , notation ZA′

• ∀p ∈ P : ∃t ∈ ξp
M : (p, t) ∈ CN ⇒ ZA′ = (m′(p) =

1) ∈ ZP ′
M .

The statements follow from the marking and condition
enabling condition for transitions (Def. 3.4 at Part A) and
the definition of enabled steps.

In difference to the monolithic approach in Missal and
Hanisch (2006) we need additionally a rule for consider-
ation of condition couplings.

Therefore we define the condition enabling rule for all
ZP ′

M :

∀p ∈ P with ∃ck ∈ CK : (p, cout) ∈ COarc∧cout ∈ ck|∃t ∈
ξp
M ′ : (cin, t) ∈ CIarc ∧ cin ∈ ck

⇒ ZP ′
M ∧ ZA(m(p) = 1) = ZP ′

M or
if @ZP ′

M ⇒ ZP ′
M = ZA(m(p) = 1).

We have to ensure that transitions are condition enabled
by condition inputs too, and therefore by the source places
of condition interconnections. Condition inputs without
connection to a source place are not considered by the
rule. They are necessary for definition of controllable
transitions.

Further the following propagation rule has to hold:
For ZA or ZA a state atom of ZPM and ξp

M a local possible
step from ZP ′

M to ZPM the atom ZA / ZA is in ZP ′
M

too, iff for p holds:

@t ∈ T with (p, t) ∈ F : t ∈ ξp
M ∧ (m(p) = 0) ∈ ZPM and

@t ∈ T with (t, p) ∈ F : t ∈ ξp
M ∧ (m(p) = 1) ∈ ZPM

The predicate ZPM can be empty for local possible steps.
This holds for example if the local possible step is within a
possible step and enables a local possible step at another
module.

1 see Part A, Def. 3.6

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14480

The predicate ZP ′
M has to be free of contradictions. Thus

ZP ′
M has to have the following consistency property :

It must not exist two state atoms ZA1 and ZA2 within
ZPM which contradict each other, i.e. it must hold:

ZA1 = (m(p) = a) ∧ ZA2 = (m(p) 6= a) 2

Possible steps enabled by contradictive prepredicates are
not taken into account further on. Reachable states satis-
fying contradictive predicates cannot exist and therefore
possible steps to contradictive prepredicates cannot be
part of an enabled step.

To improve the efficiency of the synthesis algorithm we cal-
culate place invariants of all Petri net parts (see Missal and
Hanisch (2006)) within the net. Prepredicates containing
invariants are not treated further on.

Under consideration of the mentioned rules we determine
the local prepredicates ZP ′

M . Thereby prepredicates are
generated for all local possible steps included in the pos-
sible step belonging to ZP .

Definition 2.1. Let N be a SNCES, ZPM a local state
predicate and ξp

ZP a possible step over N . For every
local possible step ξp

M ⊆ ξp
ZP the set of prepredicates

PZPM (ZPM , ξp
M,i) of ZPM is the set of state predicates

ZP ′
M , which is calculated by backward analysis of steps

ξp
M under consideration of the re-determination rule, the

condition enabling rule, the propagation rule and the con-
sistency property.

2

The generated predicates together with the local possible
steps can be represented as graphs called local backward
graph, where BGn,i = (CPMi

, BA) is the nth graph within
the module Mi. The nodes are CPMi

= (k, ZP, CO)
with the index k, the local state predicate ZPMi

and
an associated communication predicate CO. The arcs are
BA = {ZPMi

, ξp
Mi

, ZP ′
Mi
}, while ξp

Mi
⊆ ξp

ZP . For every
newly assigned prepredicate it is checked whether there
already exists a node with the same predicates. If not, a
new node and depending arc are created. Thereby CO is
inherited from ZPMi

the local possible step is built from,
if it exists. A backward step to an already existing node
is considered within CO of the existing node in a way
described later on.

To consider the dependency between the local steps within
the local predicates generated by the same possible step,
we additionally generate communication variables coml,
where l is an index. We define two communication vari-
ables, com+

l and com−
l for every event interconnection

necessary for building the possible step. That means that
one pair for every ek satisfying condition 2) of the def-
inition of possible steps is generated. A communication
variable representing communication in direction of the
event interconnection ek is symbolised with com+

l , and
the one in reverse direction with com−

l , as displayed in
Fig. 2. A pair of communication variables belonging to an
ek is symbolised by coml
 ek.

The communication variables are considered in the local
backward graph, more precisely in the communication

2 while a ∈ {0; 1}

Fig. 2. Example scheme of a modular backward step and
it results

predicate CO. The predicate consists of all communica-
tion variables related to that control predicate. For every
possible step we define local communication predicate com-
ponents cocMi

ξp .

A cocMi

ξp is built cocMi

ξp = cocMi

ξp ∧ coml

• for all com+
l for which holds: ∃t ∈ ξp

ZP : (t, eout ∈
EOarc

Mj
∧ eout ∈ ek∧∃ttMi

∈ ξp
ZP : (ein, ttMi

) ∈ EIarc
Mi

∧
ein ∈ ek ∧ com+

l
 ek

• for all com−
l for which holds: ∃t ∈ ξp

ZP : (t, eout ∈
EOarc

Mi
∧eout ∈ ek∧∃ttMj

∈ ξp
ZP : (ein, ttMj

) ∈ EIarc
Mj

∧
ein ∈ ek ∧ com−

l
 ek

Every follower node inherits the CO of the source node
belonging to the analysed possible step. The new local
communication predicate to ξp

ZP is attached conjunctively
CO := (CO) ∧ cocMi

ξp . The scheme of defining nodes and
arcs of a local backward graph to a possible step ξp is
shown in Fig.2.

If a local possible step ξp
mi

leads to a local state predicate
ZP for which already exists a node (k, ZP, CO), then the
communication predicate of the source node, conjunctively
connected with cocMi

ξp resulting from ξp : ξp
Mi

⊆ ξp is
attached disjunctively to CO. The association of state
predicates by communication variables and predicates is
schematically illustrated in Fig.3. The step ξp

M,2 in Fig.3
is such a step backward leading to the existing node
(3, ZP3, CO3). Thus, the communication predicate CO3 =
CO1 is extended by the communication predicate cocξp

M,2

resulting of ξp
M,2 to CO2∧ cocξp

M,2. It has to be mentioned
that only nodes with identical state predicates are melt
that way. A node capturing a subset of states of another
node has to be treated separately. Otherwise the control
gets unnecessarily restrictive. In Fig. 3 the arcs are di-
rected in the firing direction of steps. The backward search
algorithms analyses the steps in reverse direction.

Generally, the composition of communication variables is
deduced by a representation of backward search in a mono-
lithic model. Every conjunction of communication vari-
ables composes together one predicate over the composed
model. Disjunctive coupling represents different ”global”
predicates with the same local component. That relation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14481

naturally follows as conversion from the proven rules for
distribution of monolithic predicates presented in Missal
and Hanisch (2006).

Fig. 3. Schematic example of the creation and the compo-
sition of communication predicates

If a communication predicate is extended because of a new
connection within BG, we also have to extend the CO of all
nodes reachable from the updated node (as can be seen at
node four in Fig. 3). Reachable are all local state predicates
(nodes) for which a trajectory of local steps exists ξp

Mi
in

BGMi
: ZP ∈ BGMi

leading to it.

The control functions of the distributed controllers are
generated directly by analysing the local backward graphs.

The use of graphs including the communication predicates
gives the possibility to use the results of already analysed
local step trajectories for all forbidden states. Different
forbidden states can depend on the same behaviour of
the plant, therefore the analysis of different possible steps
can be enabled by a local state predicate already analysed
(ZP ′). We check every generated local prepredicate for
being already analysed to prevent repeated treatment. If
such an already analysed predicate occurs, we generate an
arc from the analysed local predicate (ZP) to the local
prepredicate (ZP ′) at BG and modify the communication
predicate of the affected nodes in the already described
manner. That way two graphs can be melt to one if they
contain local steps leading to the same prepredicate (see
Fig.3).

The stop criterion for the backward search is the existence
of controllable steps to a forbidden state predicate. Hence,
for every calculated step it is checked if it needs condition
inputs to be enabled for activating the step. Such steps can
be prevented from firing by disabling the plant input, i.e.
the step is controllable. If a calculated step is preventable
by setting a condition input to zero, then the prepredicate
is stored together with the locking inputs as decision
predicates DP . The required condition input set (CEM =
{ciin ∈ Cin | ∃t ∈ ξp

M : (cin, t) ∈ CIarc}) for the local
step from ZP ′

M to ZPM , resulting from the enabling rule
of SNCES, is identified therefore. If a marking satisfying
ZP ′

M occurs, then an input status is′ would have to enable
the step ξp

M for reachability of a marking satisfying ZPM

and for is′ has to hold:
∀cin ∈ Cin : ∃t ∈ ξp

M : (cin, t) ∈ CIarc ∧ @cin ∈ CK ⇒
is′ = 1.

The controller has to prevent the firing of ξp
M to avoid the

forbidden state. The control function has to ensure:

If the system is at a state satisfying ZP ′
M , then

cin
i ∈ Cin | ∃t ∈ ξp

M : (cin
i , t) ∈ CIarc ∧ @cin ∈ CK} ,

is′(cin
i) = 0 has to be true for at least one input.

As control components result from preventable steps,
the node to the prepredicate ZP ′

M and an input to be
influenced are stored at a set of decision components DP =
{(CPM , CEM)}. The whole synthesis process including
the final extraction of the control functions is presented in
the next section.

3. DISTRIBUTED CONTROL SYNTHESIS

In contrast to the monolithic synthesis (Missal and
Hanisch (2006)) we perform the backward search module
by module under consideration of the signal interconnec-
tion between them. The result is a distributed control
structure with one controller for every unit module. There-
fore the control structure is predefined by the modular
structure of the plant model. The synthesis procedure runs
through the following steps:

(1) composition of the hierarchical modular plant model
to a modular structure of basic modules for the units,

(2) derivation of local specifications from a global speci-
fication,

(3) modular backward search
(4) derivation of the control functions from the backward

search results.

These steps are described in more detail in the following.

A SNCES plant model can consist of multiple hierarchy
levels. It is partially composed to a modular model of basic
modules as described in Part A of this contribution. Every
plant module represents the observed and controlled plant
part for one controller.

Next the forbidden state predicates have to be transformed
to local state predicates. The methodology is similar to the
distribution of the control predicates presented in Missal
and Hanisch (2006). If a specification predicate includes
state information of more than one plant module, all
state atoms related to the same module are cut out from
the state predicate and form a local state predicate as
defined in Def. 3.10 in Part A. If a local state predicate
is assigned to more than one communication variable,
the conjunction of the variables builds the CO. The
assignment of communication variables can be done in
any order under these conditions. The building of the CO
is similar to the representation of event interconnection
within a possible step described in Sec.2. An example
for building local specifications is presented in the next
section.

Using the local state predicates and the modular plant
model the backward search is started as described in Sec.2.
The backward search determines when for every prepredi-
cate only controllable backward steps are calculated or no
more prepredicates are determined.

When the backward search is completed we have to gener-
ate the control functions from the local backward graphs.
Our distributed controllers consist of local decision func-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14482

tions defining the state of control outputs and commu-
nication functions defining the value of the communicated
variables. We use the same structure as presented in Missal
and Hanisch (2006) (Fig. 1). For the decision functions
only nodes of BG’s with a decision predicate DP are of
interest. We define functions associated to every occurring
plant input, one for every input. Because every plant part
input is controlled by exactly one local controller we can
build the function locally, i.e. by analysing the BG’s of
one module. Local decision functions DFMi

cin are defined
for every local input cin.

DFMi

cin =
∨

∀ZPMi
∈(CPM ,CEM):cin∈CEM

(ZPMi
∧ COZPMi

)

The decision function consists of local state predicates and
communication variables. The communication variables
represent a set of local state observations of other (i.e. not
directly observable) plant parts. Ramadge and Wonham
(1986) show that global predicates can be decomposed to
conjunctively combined local predicates. Therefore, local
state predicates are conjunctively combined with commu-
nication variables representing ”external” state predicates.

Communication functions are generated for every com-
munication variable included in a communication predi-
cate. Before the functions are generated, the communica-
tion predicates CO are transformed to disjunctive normal
form (DNF) CODNF . In the DNF of such communication
predicate every conjunction represents a combination of
communication variables defining a single system state
while the disjunction represents different global states with
the same local predicate. From that context results the
following rule for generation of communication functions.

The communication function for coml is a disjunctive
composition of all state predicates associated with coml

within the CO. The state predicates are built from the
local state predicates ZPMi conjunctively combined with
a communication term. That term consists of the disjunc-
tive combination of all conjunctive terms of CO including
coml, while coml has to be removed of these terms.

coms
l =

∨
∀BGM :com¬s

l
∈CO∧BGM /∈DP

ZPMi
∧

∨
∀coc:com¬s

l
∈coc

coc\com¬s
l ,

while coc are the conjunctive terms of CODNF and s ∈
{+,−}.
We get a set of local decision functions and communication
functions for every plant part. These functions together
form the distributed controllers. We get the same struc-
ture of local controllers and communication as presented
in Missal and Hanisch (2006), but the functions are got
from the backward search result directly. The number of
communication variables needed is less or equal compared
to the homogeneous approach. The modular approach can
include chains of communication variables, i.e. commu-
nication functions can include communication variables.
These advantages together with a reduced complexity of
the backward search are pointed out using the following
example.

4. SYNTHESIS EXAMPLE

The modular plant model and the formal specification
introduced in Part A are used for the synthesis example
in the following. The partially composed SNCES model
of the ejection unit and the measuring unit is displayed in
Fig. 4. The forbidden state predicate p(ec nr) ∧ p(mc nr)
is the used specification.

Fig. 4. Partially composed cutout of the sNCES model for
the testing station

As described in Sec.3 the backward search is processed
in a modular manner and we have to transform the
forbidden state predicate first. The two state atoms are
related to different modules and form local predicates
each apart. Because they have to represent a global state
together we link them by communication variables. The
communication variables com+

1 ; com−
1 are included in the

communication predicates CO of the state predicates.
We get two root nodes for local backward graph in the
modules:

Module CPM = {k, ZP, CO}
ejection {1, {p(ec nr)}, (com+

1)}
measuring {1, {p(mc nr)}, (com−

1)}

Starting from the local state predicates the backward
search is performed. A marking of the place p(ec nr)
can be reached by the local possible step ξp

Me
= {t37}.

The step is enabled by the state predicate V ZP =
p(ev on) ∧ p(ec retra). It is a local step and has no
dependence to any other local possible step. Therefore the
communication predicate stays unchanged. The resulting
node is {2, {p(ev on) ∧ p(ec retra)}, (com+

1)}. Since the
transitions of the step are not controllable we have to
go on with the backward search. The next possible step

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14483

is ξp
Me

= {t32} in the ejection module. The enabling
prepredicate is V ZP = p(av off) ∧ p(ec retra) and we
save the node {3, {p(ev off)∧p(ec retra)}, (com+

1)}. The
transition t32 is controllable and the analysis of that local
graph is finished because there are no other possible steps.
The evaluation of the second local graph runs similarily.
The results of the backward search are displayed in Fig.5.

Fig. 5. Backward search result for the forbidden state f3

Table 1. distributed control functions for the
specification example

ejection controller

cie 2 = 0 if ec retra ∧ ev off ∧ com+
1

com−1 = 1 if ec nr ∨ ec retra ∧ ev on
measuring controller

cim 2 = 0 if mc retra ∧mv off ∧ com−1
com+

1 = 1 if mc nr ∨mc retra ∧mv on

These results are in the following compared to the homo-
geneous approach in Missal and Hanisch (2006). For this
approach the same example is discussed. The homogeneous
distributed controller synthesis approach works on a fully
composed model. In comparison with the monolithic syn-
thesis the number of analysed backward steps is reduced
from 8 to 4. That reduction leads also to an reduced num-
ber of states (from 8 to 6). Four communication variables
are generated with the monolithic approach as presented
in Missal and Hanisch (2006), while the example above
comes out with just two. A similar reduction can be seen
on other examples not discussed in this contribution.

5. CONCLUSION

Control synthesis and especially distributed control syn-
thesis are a major issue of scientific research and practical
application. The reduction of computational complexity
turns out to be the main requirement for real scale appli-
cation.

We have shown that a modular approach based on the
backward search offers major advantages. It reduces the
complexity in terms of numbers of analysed steps and
states and leads directly to compact distributed control
functions. That is shown by a comparison with the ho-
mogeneous approach using backward search too. Both
approaches avoid the enumeration of the complete reach-
ability set.

Up to now, the method has neither been proven to be
correct nor to be maximally permissive. A proof for

maximal permissiveness of the monolithic procedure is
there, but not yet published.

Hence, we see a large open field of questions that need to
be answered in further work.

Despite of these previously unanswered questions, the
proposed method, however, shows potentials that may
bring synthesis a significant step torwards feasibility to
systems of realistic size and complexity.
The potential benefits are significant:

(1) The algorithm has less computational complexity
than the one that works on complete composed plant
models. The gain one could get obviously depends on
the structure of the plant model and the assignment
of controllers to it (e.g. grade of distribution). This,
in turn, depends on the decision of human beings.

(2) The plant model is as close to reality as it can be.
It can be constructed systematically from predefined
modules rather than designed from the scratch.
This helps the human in the modelling and validation
process.

(3) The presented synthesis approach can be run partially
parallel. This aspect is remarkable and may become
more interesting for further application to systems of
realistic scale.

It is obvious that further work has to focus on the
formal aspects mentioned above. For a more realistic
methodology, also incomplete state observation has to be
included in the research.

REFERENCES

D. Missal and H.-M. Hanisch. Synthesis of distributed
controllers by means of a monolithic approach. In
Proceedings of the 11th IEEE Int. Conf. on Emerging
Technologies and Factory Automation (ETFA’2006),
pages 356–363, September 2006.

D Missal and H.-M. Hanisch. A modular synthesis ap-
proach for distributed safety controllers, part a: Mod-
elling and specification. In Proceedings of the 17th IFAC
World Congress, Seoul, Korea, 2008.

P. J. Ramadge and W. M. Wonham. Modular supervisory
control for discrete event systems. In Seventh Inter-
nat. Conf. Analysis and Optimazition of Systems, Nice,
France, June 1986.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14484

