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Abstract: This paper is about the identification of discrete-time Hammerstein systems from output
measurements only (blind identification). Assuming that the unobserved input is white Gaussian noise, that
the static nonlinearity is invertible, and that the output is observed without errors, a Gaussian maximum
likelihood estimator is constructed. Its asymptotic properties are analyzed and the Cramér-Rao lower bound
is calculated. In practice, the latter can be computed accurately without using the strong law of large
numbers. A two-step procedure is described that allows to find high quality initial estimates to start up the
iterative Gauss-Newton based optimization scheme. The paper includes the illustration of the method on a
simulation example.

1. INTRODUCTION: BLIND NONLINEAR MODELLING

Despite their structural simplicity – namely a static
nonlinearity followed by a linear time invariant dynamic
system followed (see Fig. 1) – Hammerstein nonlinear model
structures have been effective in several application areas,
where linear modelling has failed: e.g. microwave and RF
technology (Greblicki, 1996; Prakriya and Hatzinakos, 1997),
chemical processes (Eskinat et al., 1991) and biology (Hunter
and Korenberg, 1986). They can also be used in model
predictive control (Wang and Henriksen, 1994; Zhu, 2000).

Fig. 1: Block diagram of a Hammerstein system. A static 
nonlinearity  and a linear dynamic block  are cascaded.

The Hammerstein model fits inside the family of block
oriented nonlinear structures, which have been extensively
studied over the past few decades (Billings and Fakhouri,
1982; Schoukens et al., 2003). Most of these identification
approaches assume the availability of both input and output
measurements of the system. However, in a real-world
situation – as frequently in sensor and measurement
applications, such as operational modal analysis (Peeters and
De Roeck, 2001) – one often does not have access to the
system input. In this case, blind identification of the nonlinear
system becomes the only option. Without measurements of the
input, and with little prior knowledge and hypotheses about
the system and the input, our goal is to identify the parameters
of the static nonlinear and the linear dynamic block. Blind
identification (closely related to blind inversion and
equalization) for linear systems has a long history with many
theoretical results and applications, especially in
telecommunications. Comprehensive reviews can be found in
(Abed-Meraim et al., 1997) and (Tong and Perreau, 1998). In
the linear case (i.e. without nonlinearity), the problem is also
known as classical ARMA time-series modelling (e.g. Ljung,

1999). However, the present knowledge on blind identification
of nonlinear systems is rather limited; the table below gives an
overview and comparison of the most recently available blind
identification methods for nonlinear systems. 

In this paper, similarly as was done for Wiener systems –
which have a similar structure as Hammerstein systems but
blocks in reverse order – in (Vanbeylen et al., 2007a), a
maximum likelihood estimator (MLE) is proposed, assuming
a white unobserved Gaussian input signal, errorless output
observations (this assumption is restrictive but necessary for
the analysis), and an invertible nonlinearity. The major
advantages of the maximum likelihood approach are the
consistency (convergence to the true value as the number of
data tend to infinity), the asymptotic normality, the asymptotic
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Volterra-

Hammerstein
(Kalouptsidis and 
Koukoulas, 2005): 

cumulant-based

• Input: Gaussian and white
• Robust to low-order moving-average output 

noise
• Consistent
• Parametric

Hammerstein-Wiener 
(Bai, 2002)

• Input: zero-order-hold (piecewise constant)
• Oversampled output
• Invertible output nonlinearity admitting a 

polynomial representation
• Not robust to output noise
• Parametric

Wiener-Hammerstein 
(Prakriya and 

Hatzinakos, 1995): 
polyspectral slices

• Input: circularly symmetric Gaussian
• Polynomial nonlinearity
• First linear system has minimum phase
• Robust to circular symmetric output noise
• Nonlinearity is not identified
• Nonparametric

Wiener
(Taleb et al., 2001):
mutual information

• Input: non-Gaussian iid
• Invertible nonlinearity and filter
• Not robust to output noise
• Quasi-nonparametric

Wiener
(Vanbeylen et al., 

2007a):
maximum likelihood

• Input: Gaussian and white
• Invertible nonlinearity and filter
• Not robust to output noise
• Consistent and efficient
• Parametric
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unbiasedness and the asymptotic efficiency (asymptotically
the smallest variance) of the estimates. To the knowledge of
the authors, no MLE based method is currently available for
blind identification of Hammerstein systems.
The main contributions of this paper are the following:
(i) generation of high quality initial estimates for both the

linear and the nonlinear part of a Hammerstein system
(ii) presentation of the Gaussian MLE for Hammerstein

systems
(iii) calculation of the Cramér-Rao lower bound
(iv) verification of the theoretical results by means of a

simulation example.
The method is similar to the Wiener case discussed in
(Vanbeylen et al., 2007a). This explains that this exposition on
Hammerstein systems follows approximately the same lines as
the MLE for Wiener systems.

2. ASSUMPTIONS AND CHOICES

The assumptions and choices are very close to those of the
Wiener case. For the sake of brevity, we briefly mention them
without discussion (Vanbeylen et al., 2007a).

2.1. Class of discrete-time Hammerstein systems considered

Hammerstein systems are defined as a cascade of a static
(memoryless) nonlinearity and a linear time-invariant dynamic
system (LTI)  (Fig. 1). In general, the static nonlinearity
can be characterized by its mapping function from  (input
signal) to  (intermediate signal): . The LTI system
can be characterized by its transfer function .
Assumption 1: (the class of discrete-time Hammerstein sys-

tems considered)
1.a  is a monotonic, hence bijective function.
1.b Moreover, the function  may not increase too fast:

 as  with .
1.c Its derivative  is bounded almost everywhere. It

is zero on a countable set, such that for every point of
the set, there exists a differentiability order  such that

  at that point, and
 over an open interval containing the

point.
1.d  is a causal, stable and inversely stable monic

transfer function.

2.2. Parameterization

The parameter vectors characterizing the linear and the
nonlinear part are respectively denoted by  and . The
nonlinear function is parameterized inversely: .
On the other hand, the LTI is parameterized in the numerator
and denominator coefficients of its transfer function :

(1)

with .
Moreover, the ‘inverse’ nonlinear function  is assumed to be
twice differentiable w.r.t. . Note that the inverse

parameterization enables a direct inversion (or equalization) of
the Hammerstein system by means of a Wiener system formed
by  in series with . (This could be useful for, e.g.,
calibration applications.) Finally, we define a global parameter
vector by stacking the parameters of both subblocks onto each
other:

(2)

2.3. Stochastic framework

Assumption 2: (stochastic framework)
2.a The unknown, unobserved input  is zero mean,

white Gaussian noise with unknown variance .
2.b The output  is known exactly (i.e. observed without

errors).

3. THE GAUSSIAN MAXIMUM LIKELIHOOD 
ESTIMATOR

3.1. The negative log-likelihood function

Theorem 1: Under Assumptions 1 and 2, the conditional
Gaussian negative log-likelihood function of the observations

(3)

given the model parameters  and input variance , is:

(4)

with  the forward shift operator ( ), with 
denoting the first order partial derivative w.r.t. the first
argument of the function: i.e. .
Here conditional means “given the initial conditions of the LTI
part”. However, asymptotically, the conditional MLE equals
the true MLE.
Proof: Follow the same lines as in Appendix A of (Vanbeylen
et al., 2007a). The proof is based on the classical expressions
of the log-likelihood for ARMA models and on the
transformation formula of probability density functions
through nonlinear mappings.
It remains possible to eliminate the input variance 
analytically from the log-likelihood cost function, by setting

, and solving for . This yields the
following result:

(5)

and the likelihood-based cost function boils down to the sum-
of-squares expression

(6)

with .

Stated differently, the cost function  can be rewritten as
a sum of squares of residuals :
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(7)

The sum-of-squares property is useful, since it allows to use
efficient Gauss-Newton based routines for the optimization.
At this point, it is also interesting to note that the first two
differences arise in contrast to the Wiener case: first, the factor

 no longer only depends on the data and the parameter
estimates of the nonlinear part; also  pops up in the
equations, and  becomes a function of the full parameter
vector . This results in slightly more complicated
expressions for the Jacobian matrix. Second, in contrast to the
Wiener case, we prefer to stay in the time domain to perform
the calculations, since it is the natural domain in which the
reconstructed input signal  is found.

3.2. Identifiability

As it is the case for the blind identification of Wiener systems,
the actual parameterization of the Hammerstein is not
identifiable as such. It can be seen that e.g. the displacement of
a gain factor from the input variance to the linear or nonlinear
block would result in the same output signal. This motivates
the need of introducing a set of identifiability conditions.
Assumption 3: (identifiability conditions)

3.a  has no common pole-zero pairs.

3.b  is monic (this means that the

constants in the  and  polynomials are 1).
3.c  for some .

3.3. Result

As a consequence of the preceding paragraphs, the following
holds:
Result: Under Assumptions 1 and 2, the maximum likelihood
estimator  of the system parameters minimizes the cost
function (6), subject to the constraints given in Assumption 3.
Since the cost function has been written as a sum-of-squares,
its minimizer

(8)

can be calculated in a numerical stable way via the classical
Gauss-Newton based iterative schemes (Fletcher, 1991). The
most likely input variance  corresponding to this parameter
set  can be found by evaluating (5).

3.4. Asymptotic properties

To study the asymptotic ( ) properties of the MLE,
standard assumptions are needed for the true model, the
parametric model and the excitation.
Assumption 4: (consistency)

4.a The true model is within the proposed model set.
4.b The normalized cost function  has

continuous second order derivatives w.r.t.  in a
compact (i.e. closed and bounded) set  for any ,
infinity included. The compact set  is constructed
such that it contains a unique global minimum of

, which is an interior point (i.e. not on the
boundaries) of .

4.c There exists an  such that for any , infinity
included, the Hessian of the expected value of the
normalized cost function , subject
to the constraints given in Assumption 3, is regular (i.e.
invertible) at the unique global minimizer of  in

.
Under Assumptions 1-4, and since the MLE satisfies the
standard conditions, amongst others, (i) the likelihood
function is based on iid Gaussian random variables, (ii) the
number of model parameters does not increase with the
amount of data ,  is strongly consistent, asymptotically
efficient, asymptotically unbiased, and asymptotically
normally distributed (Caines, 1988, p. 317, theorem 3.2).

4. GENERATION OF INITIAL ESTIMATES

As already mentioned, an iterative algorithm can be used to
find the MLE. However, the generation of initial estimates is
still necessary. This is done in two steps: in a first step, the LTI
part  is estimated. This allows to calculate an estimate of the
intermediate signal  (Fig. 1), from which – in a second step
– a nonparametric estimate of the nonlinearity  is generated.

4.1. Linear part

Making use of Assumptions 1.b and 2.a, it follows that the
intermediate signal is identically and independently
distributed and has bounded moments of all orders. The initial
estimates  can therefore be found by applying the blind
ARMA frequency domain estimator (noise model of Pintelon
and Schoukens, 2006) or classical time domain algorithms
(Ljung, 1999) to the observed output signal . After inverse
filtering of  with , one finds an estimate of the
intermediate signal . The order of  should be selected as to
whiten the power spectrum of the reconstructed signal .

4.2. Nonlinear part

Like in the Wiener case, it is possible to come up with a
nonparametric estimate of the nonlinearity. The method is
based on the increasing property of the nonlinear function .
As a consequence, it preserves order relationships, and for
every pair  satisfying , we have that

(9)

with  and  representing the random processes
corresponding to  and , and  and  representing their
corresponding cumulative distribution functions. Since the
distribution of  is known (besides an unknown variance
scaling factor), by equating the corresponding quantiles using
the empirical distribution function of , it becomes possible to
reconstruct (i.e. generate an estimate of) the values of the
input signal (within a scaling factor). Hence we have a
nonparametric estimate of the nonlinearity.
Afterwards, it is possible to calculate the variances of the
reconstructed input at each time instant, which are used as
weights in a weighted least squares step to find an initial value
of  to start the actual MLE optimization with.
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5. MINIMIZATION OF THE COST FUNCTION

Gauss-Newton based iterative algorithms for optimizing sum-
of-squares cost functions require use of the Jacobian matrix,
defined as the partial derivatives of the residuals  (7)
w.r.t. the parameters: . Its calculation is
straightforward, and, hence, left out of this paper. In the
general case, the practical implementation requires the
calculation of all mixed second order derivatives

, which can be quite a tedious task.
Therefore, we propose a simple parameterization for the
nonlinearity.

5.1. Parameterization of the nonlinearity

To simplify the computations, a model that is linear-in-the-
parameters is used to describe the nonlinearity :

(10)

with  the parameter vector of the
nonlinear block, and with  the vector of
basis functions. Moreover, this linear parameterization
simplifies, considerably, the weighted least squares
computation in the initial estimates algorithm; the problem is
linear-in-the-parameters, and an iterative procedure is
avoided.

5.2. Gauss-Newton procedure

The equations of  make it possible to compute the Jacobian
matrix from the data and the parameters, and to minimize the
cost function . This minimization is performed by using
a Levenberg-Marquardt algorithm. It yields the most likely
parameter vector , given the output observations , if the
global minimum is found.

5.3. Practical implementation of the constraint

In practice, for the model (10), the constraint on the
nonlinearity is not implemented as stated in Assumption 3.c,
but by setting the two-norm of the nonlinear parameter vector
in the linear parameterization to unity:

(11)

This norm-one constraint avoids fixing a particular coefficient
to unity. The latter has the disadvantage that it could be
detrimental to the numerical conditioning (of the Jacobian of
the Gauss-Newton scheme) if the true value of the coefficient
is zero. When performing the optimization, this constraint
between the coefficients  is taken into account at each step
of the Gauss-Newton procedure, by using the pseudo-inverse
of

(12)

for solving the normal equations, and then imposing (11) on
the updated parameter vector.

6. CRAMÉR-RAO LOWER BOUND

6.1. Theoretic expressions

Since we know from subsection 3.4 that the estimator is
asymptotically ( ) efficient – which means the
asymptotic covariance matrix equals the Cramér-Rao lower
bound (CRB) – its calculation allows us to compute the
uncertainties on the estimated model parameters. Note that the
full model structure is overparameterized if no constraints are
imposed (subsection 3.2), and that the negative log-likelihood
function (4) remains invariant under the transformation

, (13)
which preserves the statistical properties of the output
observations. As follows from (Pintelon et al., 1999), exactly
the same result would have been obtained if another choice
had been made to make the model structure identifiable (like
e.g. gain of the nonlinearity left free, combined with 
and a monic ). Although the obtained Fisher information
matrix (FIM) depends on this choice, the uncertainty bounds
on invariants, like the statistical properties of the observations
or the pole/zero positions, calculated via a certain chosen
CRB, are independent of the specific choice of the imposed
constraints. Hence, without any loss of generality, the
computations of the FIM – which is exactly the inverse of the
CRB matrix – may be performed by imposing , thus
simplifying the calculations considerably. In practice,
transformation (13) (i.e.  is replaced by ) is
applied before calculating the FIM with the expressions in the
theorem given below. 
Theorem 2: For the Gaussian MLE given in (8), and under the
above Assumptions 1-3, and for polynomial nonlinearities of
the form (10), asymptotically, the elements of the Fisher
information matrix are given by:

(a) for , 

(b) for ,

(c) for , 

Each of these symbols is a compact notation where, for
notational simplicity, the dependencies on the parameters have
been dropped. In these expressions, ,

, and .
Proof: see Appendix A.
First, it is interesting to note that – in contrast to the Wiener
case – the obtained CRB matrix can be calculated without
having recourse to the strong law of large numbers to
approximate the mathematical expectations. Since the
expectation operators do not contain frequency domain
expressions like , no leakage effects can occur either.
Second, it is seen that, in the case of an antisymmetric
nonlinearity,  is zero, and, therefore, the statistical coupling
between the linear and nonlinear parts disappears.
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6.2. Practical calculation

In practice, the mathematical expectations are calculated by
numerical integration of the considered expressions weighted
by the pdf of  denoted by . The integration limits are
chosen as the values of  which correspond with .
The pdf  is found by differentiation of (9) w.r.t. :

(14)

with (15)

The values of  and  are calculated similarly by
numerical integration.

7. OUTPUT NOISE

An important topic to bear in mind is the fact that the
observations are assumed to be errorless (Assumption 2.b). In
practice, it is highly likely that the presence of measurement
noise will have an impact on the estimates. E.g. consider the
particular case of a purely static nonlinear Hammerstein
system without linear part ( ). In general, the noiseless
output will be non-Gaussian. The effect of adding an
independent noise source at the output will result in the
convolution of both pdf’s. Since it is the nonlinear function
which determines the change of pdf from Gaussian (cf.
equation (14)), it becomes clear that the estimates of the
nonlinear function will be affected in this sense. Moreover, in
the case of Gaussian output noise, the pdf of the noise
corrupted output will look closer to Gaussian, and the
‘strength’ of the nonlinearity will be underestimated.
To summarize, as a consequence of output noise (i.e. the
violation of Assumption 2.b), the method will still work, but a
bias will pop up in the estimates. It can be shown that,
asymptotically, this bias has the property to be – in a first order
approximation – proportional to the variance of the additional
unmodelled noise source.
Nevertheless, it is possible to formulate the MLE problem
with Gaussian output noise, but it is not feasible at this
moment to solve it. This is left for future research.
It is interesting to notice that the model is suited as a noise
model as well, for the analysis of non-Gaussian and coloured
residuals.

8. SIMULATION RESULTS

8.1. Setup: presentation of the example

In this section, the results of the method applied to a
simulation example are discussed. The underlying
Hammerstein system used in the simulations was given by a
fifth-order polynomial inverse nonlinearity with powers of 
as basis functions :

(16)

and a fourth order filter with transfer function

(17)

A 500-run Monte-Carlo simulation with  points each
was performed, and the resulting parameter estimates were
analyzed.

8.2. Results and validation

It was first noticed that, as expected, the MLE improves (i.e.
lowers) the variances of the estimated parameters, compared
to the initial estimates. Also some statistical hypothesis tests
were performed on the Monte Carlo data at the 
significance level:
• Kolmogorov-Smirnov: could not detect significant deviations

from normality (12 out of 12 parameters).
• Deviation of the mean from the true value: for 11 out of the

12 parameters, no significant deviations could be detected.
• Sample variance vs. Cramér-Rao lower bound: could not

detect significant (variance) deviations on any of the 12
components of the parameter vector. The preceding facts are
shown graphically for the parameter  in Fig. 2.

Fig. 2: Normalized histogram of the initial and final estimates 
for , illustrating the asymptotic unbiasedness, normality, 
and efficiency.

The other parameters give similar results. For this simulation
example, the maximal ratio between the standard deviations of
initial and final estimates is 1.86. This illustrates the high
quality of the initial estimates.
Finally, the cross-validation of the results is performed (after
the MLE optimization) by calculation, for a randomly selected
realization, of:
• the pdf of the intermediate signal  based on the

estimated nonlinear parameters  and the estimated input
variance , as given in (14)-(15),

• and, the normalized histogram of the data sequence 
obtained by inverse filtering of the output with the estimated
parameters of the linear part .

Both are shown in Fig. 3, from which the excellent agreement
between both can be seen.
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Fig. 3: Cross-validation: calculation of the intermediate signal 
in two ways.

This cross-validation provides a practical way to the user to
check whether the Hammerstein model with white Gaussian
input is appropriate to model the signal provided to the
algorithm.

9. CONCLUSIONS

Following the lines of the Wiener case, a maximum likelihood
procedure for a blind identification of Hammerstein systems
has been handled. Like in the Wiener case, the cost function
can be rewritten as a sum of squares. Furthermore, a two-step
algorithm for generating high-quality initial estimates has
been presented.

APPENDIX A. FISHER INFORMATION MATRIX

First  is set to unity in (4), and the second derivative is
calculated. It is easily found that

(A1)

with .
From this equation and parameterization (10), the FIM in case
(c) follows immediately. Cases (a) and (b) are found after
some very lengthy – but not so complicated – calculations,
which are available as a technical note (Vanbeylen, 2007b).
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