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Abstract: Multi-Input Single-Output (MISO) Wiener system is comprised of a multi-
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ters. It is shown that the algorithm is convergent. Finally, some simulation results illustrate the
identification theoretic results.
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1. INTRODUCTION

Hammerstein and Wiener models(Ljung [1999], Hsia
[1977]) as kinds of Grey Box models are widely used
in engineering practice, such as modeling the pH neu-
tralization process(Kalafatis et al. [2005]), distillation
columns(Bloemen et al. [2001]), chromatographic separa-
tion process(Visala et al. [2001]), adaptive precompensa-
tion of nonlinear distortions(Kang et al. [1998]), and so
on. Although it is possible for these models to simulate
the structure and behavior of whole systems on the basis
of the input-output measurements, the signals between
their two subsystems cannot be measured, which makes
the identification of such systems difficult. Due to the
different connection sequence, identification for Wiener
models is more complicated than that of Hammerstein
models. As a result, in the past few decades, the research
of Hammerstein models is more advanced, whereas the
studies of Wiener models should be given more attention.
Although there already have many approaches on the
identification of Wiener models (neural networks(Visala
et al. [2001]), correlation analysis(Billings et al. [1982]),
parametric regression (Bai [2003], Gomez et al. [2004]),
and nonparametric regression(Greblicki [2001]), very few
of them are about multi-dimensional systems.

In the previous studies, it is found that using piece-wise
linear functions to characterize the nonlinear subsystem
of the Wiener model can be used in some practical ap-
plications. To deal with these special models, we can use
some particular methods because the identification of the

⋆ This work is supported by the Funds of NSFC60672110,

NSFC60474026, and the JSPS Foundation.

nonlinear block could be reduced to the estimation of the
unknown parameters in these piece-wise linear functions
(Vörös [2001, 2007], Chen [2006]). A key term separation
principle is introduced, which is used with an iterative
algorithm for the identification of ARMA Wiener systems
(Vörös [2001]). The same method is used in (Vörös [2007])
for the identification of another similar kind of Winer
model. For better results in estimating the nonlinear-
ity, a recursive estimation algorithm is proposed in(Chen
[2006]), and most importantly, its convergence has been
proven without no restrictive conditions except the struc-
tural assumptions. However, both of the two methods are
not for multi-dimensional systems.

Thus, the model treated in this paper is a multi-
dimensional Wiener model with such a nonlinear system.
Specified real systems will inevitably be affected by noise.
So noise has been taken into consideration during the
identification also. The identification problem is explicitly
defined and the assumptions for the identification conver-
gency are given in section 2 and 3, respectively. Then the
detailed identification algorithms are proposed in section
4. Section 5 illustrates the identification accuracy and the
convergence rate by means of simulation studies. At last,
a conclusion is given in section 6.

2. PROBLEM DESCRIPTION

Consider system in Fig. 1.

Here U(k) = [u1(k), u2(k), . . . , un(k)]T is the input vector
at time k, v(k) is intermediate signal, e(k) is the noise and
y(k) is the output of the whole system.

Assume the difference equation of the linear subsystem is:
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Fig. 1. Multi-Input Single-Output Wiener system

v(k) = B(z)U(k) (1)

where
B(z) = A + B1z

−1 + . . . + Bqz
−q,

In which, A is an n-dimensional vector of ones, z is the
unit delay operator and q is the upper boundary of the
real order, and

Bj = [bj1, bj2, . . . , bjn]T (j = 1, 2, . . . , q).

In fact, (1) can be rewritten as:

v(k) =
n

∑

i=1

ui(k) + θT φ(k). (2)

where φ(k) = [UT (k − 1), UT (k − 2), . . . , UT (k − q)]T is
the regressor vector, and θ = [BT

1 , BT
2 , . . . , BT

q ]T denotes
the unknown coefficient matrix of the linear subsystem.

Assume the nonlinear subsystem is characterized by the
function f(v(k)), then the output of the Wiener model
can be written as:

y(k) = f(v(k)) + e(k). (3)

3. ASSUMPTIONS

Noting that the wiener systems with a memory-less non-
linear block which is made of discontinuous asymmetric
piece-wise linear function are often used in practical ap-
plication, here the nonlinear function is assumed to be

f(v(k))=







c+(v(k) − d+) + b+, v(k) > d+, c+ ≥ 0
0, −d− ≤ v(k) ≤ d+

c−(v(k) + d−) − b−, v(k) < −d−, c− ≥ 0
(4)

where b+, b−, c+, c−, and d+, d− are the corresponding
preloads, slopes, and dead zones, which need to be esti-
mated. This function is shown in Fig. 2

From fig2, we notice that it is nonlinear in the whole
domain but partially asymmetric linear. So we can use
traditional estimation method for linear systems on these
parts. In addition to the above structure assumptions, we
should also assume the following conditions for the proofs
of convergence:

(A.1) The input vector U(k) is an n-dimensional iid
random vector, and U(k) ∼ N(0, I), which means U(k)
obeys a normal distribution;

(A.2) mb > 0 is the lower boundary of all the preloads,
that is, b+ > mb, and b− > mb;

(A.3) Noise vector e(k) is an n-dimensional iid random
vector, and the mathematical expectation and variance of
each dimension are 0 and σe respectively, and | e(k) |< me,
where me is known and 0 < me ≤ mb/2.

-d
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+
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+
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-
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-
)-b

-
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-me

-mb
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b
+

v
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d
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Fig. 2. Nonlinear block

4. ESTIMATION OF THIS WIENER SYSTEM

According to the equations above, in order to identify
this kind of Wiener model, the key problem is to choose
a suitable input vector and q to estimate the unknown
parameters in both the linear and nonlinear subsystems,
that is, (θ) and b+, b−, c+, c−, d+, d− on the basis of the
measurement of the input-output vectors.

By the characteristics of the normal random vector(Rotar
[1997]) we know that, under (A.1),

v(k) = u(k) + θT φ(k)

must be Gaussian stationary and ergodic, and its mathe-
matical expectation, variance and marginal density func-
tion should be:

µv = 0, σ2
v = n+ ‖ θ ‖2, p(v) =

1√
2πσv

e
−

v2

2σ2
v . (5)

For the sake of convenience, we predefine several interim
variables that will be estimated before the unknown para-
meters of the model:

α+ =
d+

σv

, α− =
d−

σv

, β+ = c+σv, β− = c−σv, (6)

h+ = c+d+ − b+, h− = c−d− − b−. (7)

So in this paper, we use a five-step estimation method,
which can be expressed as follows:

Step 1: Estimate the interim variables;

Step 2: Knowing the interim variables, do the estimation
of b+ and b−;

Step 3: Also use the results of step 1 to estimate σvi
;

Step 4: Calculate to get c+, c−, d+, and d−;

Step 5: With all parameters got above, estimate θ using
the Least Squares Algorithm.

Step 1: Estimating the interim variables.

Lemma 1. For the system described by (1)–(4), y(k)>me

is equivalent to v(k) > d+, and similarly, y(k) < −me is
equivalent to v(k)<−d−, where i = 1, 2, . . . , n.

Proof: On the one hand, supposing v(k) > d+, by the
definition of f(·) and Fig. 1 together with (A.2) we can
see that it must be correct that f(v(k)) > b+ > mb.
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Considering (A.3), we know that| e |< me, and then it is
clear that

y(k) = f(v(k)) + e(k) > mb + (−me) = mb − me > me.

On the other hand, let us assume that y(k) > me. Since
c+ ≥ 0 and c− ≥ 0, which is to say, in the intervals
(−∞,−d−) and (d+,∞), respectively, f(·) is an increasing
function, so it is inevitably right that v(k) > d+. Because
if not, we should have

y(k) = f(v(k)) + e(k) < 0 + me = me,

which contradicts the assumption y(k) > me.

Through these two aspects, we can conclude that y(k) >
me is equivalent to v(k) > d+. In the same way it can be
obtained that y(k) < −me is equivalent to v(k) < −d−.

Define

g+(k) = (1 − k)g+(k − 1) +
1

k
I[y(k)>me], (8)

g−(k) = (1 − k)g−(k − 1) +
1

k
I[y(k)<−me]. (9)

These will be used to estimate α+ and α−.

It is clear that with the arbitrary initial values g+(0) and
g−(0), g+(k) and g−(k) can be obtained. Then according
to the characteristics of the normal random vector, we can
figure out α+(k) and α−(k) by using the following two
equations, and later we will prove that they converge to
their true values respectively.

g+(k) = 1 − Φ(α+(k)), g−(k) = Φ(−α−(k)). (10)

Lemma 2. For the system described by (1)–(4), if (A.1)–
(A.3) are satisfied, when k → ∞, we have

α+(k) → α+, α−(k) → α− a.s. (11)

where α+(k) and α−(k) are calculated by (10).

Proof: As mentioned earlier, v(k) is a Gaussian stationary
and ergodic normal random vector, and the noise vector
e(k) is also ergodic. Therefore the sum of the two which is
the output of the whole system y(k), is ergodic too. Then
we have

g+(k) = (1 − k)g+(k − 1) +
1

k
I[y(k)>me]

=
1

k

k
∑

l=1

I[y(l)>me]
k→∞−→ EI[y(1)>me], (12)

g−(k) = (1 − k)g−(k − 1) +
1

k
I[y(k)<−me]

=
1

k

k
∑

l=1

I[y(l)<−me]
k→∞−→ EI[y(1)<−me]. (13)

Furthermore, according to lemma 1 and the characteristics
of the normal random vector,we can have:

EI[y(1)>me] = P (y(1) > me) = P (v(1) > d+)

=

+∞
∫

d+

p(v)dv = 1 − Φ(α+), (14)

EI[y(1)<−me] = P (y(1)<−me) = P (v(1)<−d−)

=

d−
∫

−∞

p(v)dv = Φ(−α−), (15)

where p(v) is shown in (6).

Since Φ(x) is continuous and increasing, then from (12)–
(15) we know that

α+(k)
k→∞−→ α+, α−(k)

k→∞−→ α− a.s.

where α+(k) and α−(k) are calculated by (10).

Let us continue to estimate β+, β−, h+, and h−. Simi-
larly, we need to define:

ȳ+(k) = (1 − k)ȳ+(k − 1) +
1

k
y(k)I[y(k)>me], (16)

ȳ−(k) = (1 − k)ȳ−(k − 1) +
1

k
y(k)I[y(k)<−me], (17)

y
¯

+(k) = (1 − k)y
¯

+(k − 1) +
1

k
y2(k)I[y(k)>me], (18)

y
¯

−(k) = (1 − k)y
¯

−(k − 1) +
1

k
y2(k)I[y(k)<−me]. (19)

Then β+(k), h+(k), β−(k), and h−(k) can be obtained
by solving the following (20)–(23).

ȳ+(k) =
β+(k)√

2π
e−

(α+(k))2

2 − h+(k)g+(k), (20)

y
¯

+(k) = (β+(k))2(
α+(k)√

2π
e−

(α+(k))2

2 + g+(k)) − 2√
2π

×β+(k)h+(k)e−
(α+(k))2

2 + ((h+(k))2 + σ2
e)g+(k), (21)

ȳ−(k) =
β−(k)√

2π
e−

(α−(k))2

2 − h−(k)g−(k), (22)

y
¯

−(k) = (β−(k))2(
α−(k)√

2π
e−

(α−(k))2

2 + g−(k)) − 2√
2π

×β−(k)h−(k)e−
(α−(k))2

2 + ((h−(k))2 + σ2
e)g−(k). (23)

The calculation results are as follows.

h+(k) =
1

g+(k)
(β+(k)γ+(k) − ȳ+(k)), (24)

β+(k) =

√

y
¯
+(k)− (ȳ+(k))2/g+(k)− σ2

eg+(k)

α+(k)γ+(k) + g+(k)−(γ+(k))2/g+(k)
, (25)

h−(k) =
1

g−(k)
(β−(k)γ−(k) − ȳ−(k)), (26)

β−(k) =

√

y
¯
−(k)− (ȳ−(k))2/g−(k)− σ2

eg−(k)

α−(k)γ−(k) + g−(k)−(γ−(k))2/g−(k)
. (27)

where

γ+(k) =
1√
2π

e−
(α+(k))2

2 , γ−(k) =
1√
2π

e−
(α−(k))2

2 .
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Lemma 3. If the conditions of Lemma 2 holds, then we
have the following results about the above β+(k), h+(k),
β−(k), and h−(k).

h+(k)
k→∞−→ h+, β+(k)

k→∞−→ β+,

h−(k)
k→∞−→ h−, β−(k)

k→∞−→ β− a.s.

Proof: Since we have determined that y(k) is ergodic, from
the definition in (16)–(19) we have:

ȳ+(k) =
1

k

k
∑

l=1

y(l)I[y(l)>me]

k→∞−→ Ey(1)I[y(1)>me] a.s., (28)

y
¯

+(k) =
1

k

k
∑

l=1

y2(l)I[y(l)>me]

k→∞−→ Ey2(1)I[y(1)>me] a.s. (29)

Note that e(k) and v(k) are independent of each other, so
we have:

Ey(1)I[y(1)>me]

= E(c+v(1) − h+ + e(1))I[v(1)>d+]

=
β+

√
2π

e−
(α+)2

2 − h+(1 − Φ(α+)), (30)

and
Ey2(1)I[y(1)>me]

= E(c+v(1) − h+ + e(1))2I[v(1)>d+]

= (β+)2[
α+e−

(α+)2

2

√
2π

+ (1 − Φ(α+))] − 2√
2π

β+

×h+e−
(α+)2

2 + ((h+)2 + σ2
e)(1 − Φ(α+)). (31)

Then from the above four equations and Lemma 2 it is
clear that

β+(k)
k→∞−→ β+, h+(k)

k→∞−→ h+ a.s.

In the same way we can obtain

β−(k)
k→∞−→ β−, h−(k)

k→∞−→ h− a.s.

Step 2: Estimating b+ and b−.

Now we have completed the estimation for all the interim
variables. Then from (6) and (7) it is clear that

b+(k) = α+(k)β+(k) − h+(k), (32)

b−(k) = α−(k)β−(k) − h−(k). (33)

Theorem 4. According to Lemmas 2 and 3, it is clear
that b+(k) and b−(k) calculated by (32) and (33) are the
consistent estimates of b+ and b−, respectively, that is

b+(k)
k→∞−→ b+, b−(k)

k→∞−→ b− a.s.

(The proof is obvious and omitted.)

Step 3: Estimating σv.

Now that we have obtained β+, β−, α+, and α−, according
to (6), for estimating the rest unknown parameters of the

nonlinearity(c+, c−, d+, and d−), we should calculate σv

next. For this we need the help of the kernel function
described in(Chen [2006]).

First define the kernel function as follows.

ω(k) = k2εe−k4ε(
∑

n

i=1
ui(k))2 , ε ∈ (0,

1

4
) (34)

And define

G(k) =
1

k

k
∑

l=1

ω(l)y(l)I[y(l)>me]

= (1 − k)G(k − 1) +
1

k
ω(k)y(k)I[y(k)>me]. (35)

Lemma 5. Under the conditions of Lemma 2, we have

lim
k→∞

G(k) =
−h+

√
2

(1 − Φ(
d+

‖ θ‖ ))

+
c+‖ θ‖
2
√

π
e−

1
2 ( d+

‖θ‖
)2 a.s. (36)

Proof: By Lemma 1, (2)– (4) and (34) we have

ω(k)y(k)I[y(k)>me] = k2εe−k4ε(
∑

n

i=1
ui(k))2 [c+

n
∑

i=1

ui(k)

+c+θT φ(k) − h+ + e(k)]I[v(k)>d+]. (37)

Introduce G to denote the right side of (36). Since

1

k

k
∑

l=1

l2εe−l4ε(
∑

n

i=1
ui(l))

2

[c+
n

∑

i=1

ui(l) + c+θT φ(k)

−h+]I[v(l)>d+]
k→∞−→ G a.s. (38)

which has been proven in the Appendix of (Chen [2006]),
then we only need to prove that

1

k

k
∑

l=1

l2εe−l4ε(
∑

n

i=1
ui(l))

2

e(l)I[v(l)>d+]
k→∞−→ 0 a.s. (39)

Suppose φ(k) is generated by the σ-algebra {U(1), U(2),
. . . , U(k), e(1), e(2), . . . , e(k)}. Since

sup
k

E[(kεe−k4ε(
∑

n

i=1
ui(k))2e(k))2

· I[
∑

n

i=1
ui(k)>d+−θT φ(k)] | Fk−1]

=
k2ε

2πσe

√
n

+∞
∫

d+−θT φ(k)

+∞
∫

−∞

e−k4εx2

e−
x2

2n e
−

y2

2σ2
e ydxdy

≤ 1

2πσe

√
2n

+∞
∫

−∞

+∞
∫

−∞

e−
s2

2 e−
k−4εs2

4n e
−

y2

2σ2
e ydsdy < ∞ (40)

and
∑

∞

k=1(1/k1−ε)2 < ∞, then by the Convergence
Theorem for Martingale Difference Sequences(Chen et al.
[1991]), we have
∞
∑

k=1

1

k1−ε
{kεe−k4ε(

∑

n

i=1
ui(k))2e(k)I[

∑

n

i=1
ui(k)>d+−θT φ(k)]

−E[kεe−k4ε(
∑

n

i=1
ui(k))2e(k)I[

∑

n

i=1
ui(k)>d+−θT φ(k)]
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| Fk−1]} < ∞. (41)

By the Kronecker Lemma(Chen et al. [1991]) we know

1

n

n
∑

k=1

k2ε{e−k4ε(
∑

n

i=1
ui(k))2e(k)

· I[
∑

n

i=1
ui(k)>d+−θT φ(k)] − E[e−k4ε(

∑

n

i=1
ui(k))2e(k)

· I[
∑

n

i=1
ui(k)>d+−θT φ(k)] | Fk−1]} k→∞−→ 0 a.s. (42)

Noting that e(k) is independent of θT φ(k) and ui(k), then

E[k2εe−k4ε(
∑

n

i=1
ui(k))2e(k)I[

∑

n

i=1
ui(k)>d+−θT φ(k)]|Fk−1]

k→∞−→ 0. (43)

Thus, by (42) and (43), (39) can be obtained, then with
(38), (36) follows.

Let us consider the following equation with respect to x.

G(k) +
h+

√
2
(1 − Φ(α+(k))x) − β+(k)

2
√

πx
e−

(α+(k))2x2

2 = 0.(44)

According to Lemma 5, we know that G(k) converges to
the G. Then if we can find the root x(k) of (44), it surely

converges to
√

n/ ‖ θ ‖2 +1, so the consistent estimates

of ‖ θ ‖ and σv(k) =
√

n+ ‖ θ ‖2 can be obtained in
succession.

The existence and uniqueness of the solution x(k) has
been given in (Chen [2006]). Thus, we can use a numerical
method to find the solution x(k).

Step 4: Estimating c+, c−, d+, and d−.

Now we have consistently estimated σv. With the help of
the results in step 1, it is easy to calculate the values of
c+(k), c−(k), and d+(k), d−(k) as follows:

c+(k) =
β+(k)

σv

, d+(k) = α+(k)σv, (45)

c−(k) =
β−(k)

σv

, d−(k) = α−(k)σv. (46)

Theorem 6. By Lemmas 2, 3, and 5, we can easily
conclude that if the conditions of Lemma 2 holds,
c+(k), c−(k), d+(k), and d−(k) calculated by (45) and
(46) are the consistent estimates of c+, c−, d+, and d−,
respectively. (The proof is obvious and omitted also.)

Step 5: Estimating θ.

At this point, we have obtained all the unknown parame-
ters in the nonlinearity. As in (Chen [2006]), with these
results and the output y(k), we can calculate the estimate
of the unmeasurable signal v(k) as follows.

v̂(k) =



















1

c̄+(k)
(h+(k) + y(k)), y(k) > me

0, −me ≤ y(k) ≤ me

1

c̄−(k)
(y(k) − h−(k)), y(k) < −me

(47)

where

c̄+(k) = c+(k) ∨ (1/k), c̄−(k) = c−(k) ∨ (1/k)

are the modifications of c+(k) and c−(k) and have the
same limits as them respectively.

Define

z(k) = (v̂(k) −
n

∑

i=1

ui(k))I[y(k)>me∪y(k)<−me]

= [θT φ(k) + ε]I[y(k)>me∪y(k)<−me]

= θT φ̂(k) + ε(k)I[y(k)>me∪y(k)<−me] (48)

where
φ̂(k) = φ(k)I[y(k)>me∪y(k)<−me],

ε(k) = v̂(k) − v(k).

Then we can estimate the linear subsystem using the
Least Squares Algorithm. With arbitrary initial θ(0) and
P (0) > 0, the coefficient vector θ can be estimated as:

θ(k) = θ(k − 1) + a(k)P (k)φ̂(k)(z(k)

−θT (k − 1)φ̂(k)) (49)

P (k + 1) = P (k) − a(k)P (k)φ̂(k)φ̂T (k)P (k) (50)

a(k) = (1 − φ̂T (k)P (k)φ̂(k))−1 (51)

5. SIMULATION

In this section, we apply the above identification algorithm
to a numerical simulation with the help of Matlab. Con-
sidering the following Wiener system with n = 2, q = 4:

y(k) = f(v(k)) + e(k),

where
f(v(k))

=







c+(v(k) − d+) + b+, v(k) > d+, c+ ≥ 0
0, −d− ≤ v(k) ≤ d+

c−(v(k) + d−) − b−, v(k) < −d−, c− ≥ 0

=

{

1 × (v(k) − 1.8) + 5, v(k) > 1.8
0, −(−1.75) ≤ v(k) ≤ 1.8

3.6(v(k) + (−1.75)) − 2.36, v(k) < −(−1.75)

and

v(k) =
n

∑

i=1

ui(k) + θT φ(k),

θ = [BT
1 , BT

2 , . . . , BT
q ]T = [b11, b12, . . . , bqn]T

= [0.95, 0.8, 0.5, 0.5, 0,−0.1,−0.45,−0.6]T

Here we let the parameters σe = 1, and me = 0.5, which
are mentioned in (A.3). With regard to the ε used in (34),
we choose the same value (1/13500) used in(Chen [2006]).

On account of the close parameters in θ, in order to make
the results appear more clearly, we use two figures to show
the estimates of the linear subsystem, as we can see in
Fig. 3 and Fig. 4. Fig. 5 shows the estimation results of
the nonlinear subsystem. In these pictures the solid lines
are the real values as indicated, and the dotted lines are
the estimated ones. From these figures we can see clearly
that the estimated values in both the nonlinear and linear
subsystems all converge to their corresponding real values
fast, which confirms the validity of this recursive algorithm
for the estimation of Multi-Input Wiener systems in noisy
environments.
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Fig. 5. True values and estimates of the nonlinearity

6. CONCLUSION

Inspired by (Chen [2006]), we have proposed a recursive
estimation algorithm in this paper, which proved to have
good results for the identification of disturbed Multi-Input
Wiener systems with the nonlinearity being a discontinu-
ous asymmetric piece-wise linear function. Although the
system we studied is single output, but this method can
also be applied to system with multi-dimensional outputs
which are independent with each other. However, this
method has strong restrictions on the noise signals, so
further study is needed to find a better solution.

REFERENCES

W. Greblicki. Nonparametric approach to Wiener system
identification, IEEE Transactions on Circuits and Sys-
tems. I: Fundamental Theory and Applications 44(6),
pages 538–545, 1997.

L. Ljung. System Identification: Theory for the User,
Upper Saddle River, NJ: Prentice-Hall, 1999.

T. C. Hsia. System identification Least squares methods,
Lexington Books, Toronto, 1977.

A. D. Kalafatis, L. Wang and W. R. Cluett. Linearizing
feedforward-feedback control of pH processes based on
Wiener model, J. Process Control, volume 15, pages
103–112, 2005.

H. H. J. Bloemen, C. T. Chou, T. J. J. Boom, V. Verdult,
M. Verhaegen, and T. C. Backx. Wiener model iden-
tification and predictive control for dual composition
control of a distillation column, J. Process Control,
volume 11, pages 601–620, 2001.

A. Visala, H. Pitkanen and H. Aarne. Modeling of
chromatographic separation process with Wiener-MLP
representation, J. Process Control, volume 78, pages
443–458, 2001.

H. W. Kang, Y. S. Cho and D. H. Youn. Adaptive
precomensation of Wiener systems, IEEE Trans. Signal
Process, volume 46, pages 2825–2829, 1998.

S. A. Billings and S. Y. Fakhouri. Identification of systems
containing linear dynamic and static nonlinear elements,
Automatica, volume 18, pages 15–26, 1982.

E. W. Bai. Frequency domain identification of Wiener
models, Automatica, volume 39, pages 1521–1530, 2003.

J. C. Gomez and E. Baeyens. Identification of block-
oriented nonlinear systems using orthonormal bases, J.
Process Control, volume 14, pages 685–697, 2004.

W. Greblicki. Recursive identification of Wiener systems,
Int. J. Appl. Math Comput. Sci., volume 11, pages 977–
991, 2001.

M. Verhaegen and D. Westwick. Identifying MIMO Wiener
systems using subspace model identification methods,
Signal Peocess, volume 52, pages 235–258, 1996.

A. Janczak. Instrumental variables approach to identifi-
cation of a class of MIMO Wiener systems, Nonlinear
Dynamics, volume 48, pages 275–284, 2007.

J. Vörös. Parameter Identification of Wiener Systems
with discontinuous nonlinearities, Systems and Control
Letters volume 44(5), pages 363–372, 2001.

J. Vörös. Parameter identification of Wiener systems with
multisegment piecewise-linear nonlinearities, Systems
and Control Letters volume 56(2), pages 99–105, 2007.

H. F. Chen. Recursive Identification for Wiener Model
With Discontinuous Piece-Wise Linear Function, IEEE
Transactions on Automatic Control volume 51(3), pages
390–400, 2006.

A. D. Kalafatis, L. Wang and W. R. Cluett. Identification
of Wiener-type nonlinear systems in a noisy environ-
ment, International Journal of Control, volume 66(6),
pages 923–941, 1997.

V. Rotar. Probability Theory, London: World Scientific,
1997.

H. F. Chen and L. Guo. Identification and stochastic
adaptive control, Boston, MA: Birkhauser, 1991.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10245


