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Abstract: The stringent quality requirement of petroleum products in highly competitive markets makes 
on-line controlling of distillation composition essential. In this paper, a novel method using sensitivity 
matrix analysis and kernel ridge regression to implement on-line estimation of distillation compositions is 
proposed. In the approach, the sensitivity matrix analysis is presented to select the most suitable secondary 
variables to be used as the estimator’s inputs. The kernel ridge regression is used to build the composition 
estimator. The influence of measurement noise on the estimator’s performance is also investigated. 
Application to a simulated distillation column demonstrates the effectiveness of the method. 

 

1. INTRODUCTION 

The stringent quality requirement of petroleum products in 
highly competitive markets makes on-line controlling of 
distillation composition essential. But unfortunately few 
hardware sensors are available on-line to distillation 
compositions. Many hardware sensors such as gas 
chromatographs and NIR (Near-InfraRed) usually possess 
significant time lags and high investment and maintenance 
costs (Kano, 2000, 2003). The best way to solve this problem 
is building composition estimators or soft sensors (Joseph 
and Brosilow, 1978; Mejdell and Skogestad, 1991a, b; Kano, 
2000, 2003; Zamprogna, Barolo, and Seborg, 2004, 2005). 

There are two methods to build the composition estimators. 
One way is to build the mechanism model on-line. However, 
it is often difficult in refineries, due to the complexity of 
industrial distillation processes. Physical modelling can be 
very time-consuming and significant parameters are generally 
unknown. The other way is to adopt empirical model. There 
are many algorithms have been used to build the estimator on 
this way, including using multivariate regression analysis 
(Mejdell and Skogestad, 1991a,b; Jie Zhang, 2001; Kano, 
2000, 2003), artificial neural networks (Bhartiya and 
Whiteley, 2001), support vector machine regression (Yan and 
Shao, 2004) etc.  

Due to the strong correlation among tray temperature 
measurements of the distillation column, composition 
estimators based on principal component analysis (PCA) and 
partial least squares (PLS) regression have been widely used. 
However, large samples are needed in these methods, and 
models are insensitive to measurement errors. Moreover, due 
to the nonlinear of composition estimators, many 
composition estimators based on artificial neural networks 
have been proposed and successfully applied in industrial 
processes. However, there are no guarantees of avoidance of 
local minima, the overfitting phenomenon and the number of 
hidden units in general neural networks are usually difficult 
to choose (Yan and Shao, 2004). 

Optimal selection of the secondary variables is very 
important to the composition estimator. Joseph and Brosilow 
(1978) suggested an iterative selection method based on the 
addition of temperature measurements to the optimal set, one 
at a time. However, when the number of secondary variables 
is large, this method may be time consuming. In order to 
optimally select the secondary variables for the composition 
estimator, Zamprogna, Barolo, and Seborg (2005) present 
principal component analysis to choose the secondary 
variables in a batch distillation column. They defined a 
sensitivity matrix to measure the sensitivity of temperatures 
and the batch time is discussed. 

In this paper, we focus on the algorithm of optimal selection 
of the secondary variables and building the composition 
estimator for a continuous distillation column. We take a 
novel method base on sensitivity matrix analysis and kernel 
ridge regression (KRR) to build the composition estimators. 
Ridge regression (RR) is a classical statistical algorithm 
which have been known for a long time (Hoerl and Kennard, 
1970a,b). However, when RR deals with the nonlinear 
regression, it will encounter the “curse of dimensionality” 
problem (Saunders, 1998). We describe a nonlinear version 
of the RR, which allows the use of kernel functions. 
Compared to the traditional RBF neural network, using the 
same sample data, the simulation results show that the 
composition estimator based on kernel ridge regression has 
better abilities of model generalization. 

The paper is organized as follows. Section 2 presents the 
distillation process model and the conditions of dynamic 
simulation. The sample data for the composition estimator is 
collected. Section 3 states the sensitive matrix analysis 
algorithm and section 4 provides details on the novel kernel 
ridge regression algorithm. Section 5 presents the optimal 
selection of the secondary variables for the composition 
estimator. Then the most sensitive variables are chose to 
build the composition estimator by using the KRR algorithm. 
Moreover, we discuss the effect of measurement noise on the 
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estimator’s performance. Finally, conclusions are given in 
Section 6. 

2. THE DISTILLATION PROCESS 

2.1 First-principles dynamic model of distillation column 

In this paper, a continuous distillation column is chosen as 
the research object which is well known for being used in 
composition estimator performance studies (Mejdell and 
Skogestad, 1991a). The schematic diagram of the continuous 
distillation column is shown in Fig. 1.  

The column consists of 41 theoretical trays including a total 
condenser and a reboiler. A first-principles dynamic model is 
considered as the representation of the continuous distillation 
column. Unlike other models used for similar studies 
(Quintero, Luyben, and Georgakis, 1991), this model 
considers varying molar holdups on each tray, that is, it 
includes liquid flow dynamics. The internal liquid rate mL on 
stage m  is determined by means of the linearized 
relationship: 

0 0 1 0, 1( ) / ( )i i i i L i iL L M M V Vτ λ− −= + − + −           (1) 

Where 0iL [Kmol/min] and 0iM [Kmol] are the nominal 
values for the liquid flow and holdups on stage i . This 
means that it takes some time from we change the liquid in 
the top of the column ( TL ) until the liquid flow into the 
reboiler ( BL ) changes. The energy balances are not included 
in the dynamic model; therefore, the vapor rate is constant 
( 1 0, 1i iV V− −= ) inside the column. Other assumptions are ideal 
trays, well-mixed capacities, boiling feed, total condensation 
with no subcooling, negligible heat losses, and constant 
pressure operation. The base stead-state condition is 
summarized in Table 1. 

 

Fig 1. Schematic control scheme of distillation column 

Table 1. Stead-state conditions of distillation 
column 

No. of theoretical stages 
Feed tray 

41 
21 

Feed flow rata F 1.0 (kmol/min)
Top product rata D 0.5 (kmol/min)

Bottom product rate B 0.5 (kmol/min)
Reflux rate L 2.7063 

(kmol/min) 
Steam rate V 3.2063 

(kmol/min) 
Feed composition 0.5 

Top composition Dx  0.99 
Bottom composition Bx  0.01 

 

2.2 Dynamic simulation conditions and process data 
collection 

The data sets needed to develop the composition estimators 
of the distillation column were generated by running the first-
principles dynamic model under these operating conditions. 

To generate data for building the composition estimator 
models, random perturbations within 10%± of the steady-
state value were added to the feed composition during 
simulations. In addition to these random disturbances, the 
total feed flow rate changes stepwise by 1%± every 2 h, 
while the fluctuation of the total flow rate is restricted within 

2%±  of its steady-state value. Measurement noises of the 
distribution (0 ,0.1 )o oN C C were added to the tray 
temperatures measurements. Simulated data for validating 
composition estimators are obtained under the almost same 
conditions as described above. The differences are the seeds 
of the random signals. The sampling period of the 
compositions as well as other process variables is set at 1 min. 
The total simulation time is set at 6 h.  

By this way, we collected 360 sampling data as the training 
and testing data sets. The first 300 data were used as training 
data while the last 60 data were used as testing data. Fig.2 
shows the 360 data of top product compositions. 

 

Fig 2. Top product compositions 
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3. SENSITIVITY MATRIX ANALYSIS 

The choice of the secondary variables is one of the key 
technique of composition estimators. Proper secondary 
variables selection can make the estimator be built based on 
the right relation of the input and output sample data. In this 
paper, we choose the most sensitive secondary variable from 
the sensitivity matrix directly and application it for 
composition estimators of the continuous distillation column.  

The sensitivity matrix analysis is described as follows. The 
sensitivity matrix is defined as the partial derivative of each 
secondary variable with respect to each primary variable to 
be estimated. The sensitivity matrix calculated for all the 
available process variables are collected in a gain matrix S : 

1 1 1

1

1

1
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i m
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                                        (2) 

Where jT  is the j th secondary variable, ix represents the 
i th primary variables, n is the number of available 
secondary variable, and m is the number of primary variable 
to be estimated. 

The m n×  sensitivity matrix S  can be determined from 
simulations based on a first-principles process model. In this 
paper, the sensitivity matrix is calculated by the following 
approximation: 
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                                     (3) 

Where ( ) ( )i i ix x t t x t∆ = + ∆ −  indicates the variation of the 
i th primary variable during the selection time interval t∆ , 
and ( ) ( )j j jT T t t T t∆ = + ∆ − represents the variation of the 
j th secondary variable in the same period t∆ .  

In order to get the most sensitive secondary variable directly 
in this matrix Ŝ , the absolute value of every element is used: 

ˆS S=                                                                                   (4) 

The sensitivity matrix analysis method to choose the optimal 
secondary variables directly as the composition estimator 

inputs is described as follows. Because the largest value ,i js  

in the sensitivity matrix S  is a measure of the sensitivity of 
the j th secondary variable, the secondary variable having 
the largest value of ,i js  could be considered as the most 
suitable estimator input. Similarly, the location having the 
secondary largest value of ,i js  is the second most appropriate 
estimator input, and so on. 

4. KERNEL RIDGE REGRESSION ALGORITHM 

The kernel ridge regression algorithm is described as follows. 

Suppose we have a training set 1{ , }l
i i iS x y == , where 

n
ix X∈ ⊆ , iy Y∈ ⊆ , and 1, ,i l= … . 

Assume φ  is a nonlinear mapping ( : n Fφ → ), which 
transform the vectors in the input space into vectors in some 
high dimensional feature space, where { ( ) | }F x x Xφ= ∈ . 

1 1( , ) ( ) ( ( ), ( ))l lx x x x x xφ φ φ= → =                                 (5) 

In the high dimensional feature space F , the goal is to 
estimate a model of this form 

1

( ) ( )
l

i i
i

y w x b w x bφ φ
=

= + = 〈 ⋅ 〉 +∑                                          (6) 

The optimization problem is defined as this: 

2

1

( ) ( ( ) )
l

i i
i

L w w w y w x bλ φ
=

= 〈 ⋅ 〉 + − 〈 ⋅ 〉 −∑                             (7) 

Where w wλ〈 ⋅ 〉 is the regularization term and λ is the 
regularization parameter. 

Assume that 0b = , so we can express (7) as follows: 

' '( ) ( ) ( )L w w w y Xw y Xwλ= + − −                                          (8) 
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Differentiating (8) in w , we obtain 

' 1 '0 ( )l
L w X X I X y
w

λ −∂ = ⇒ = +
∂

                                         (9) 

With the application of Mercer’s theorem on the kernel 
matrix (Vapnik, 1999) ( , ) ( ) ( )ij i j i jK K x x x xφ φ= = ⋅ , it is not 
required to compute explicitly the nonlinear mapping φ  as 
this is done implicitly through the use of positive definite 
kernel functions K . 

By elimination of w , the following nonlinear kernel ridge 
regression model is obtained as 
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1( ) ( ) '( )i ly f x w x y K I kφ λ −= = 〈 ⋅ 〉 = +                                (10) 

There are some typical kernel functions (Vapnik, 1999): 

1) Polynomial kernels: ( , ) [( 1]d
k kK x x xx= + ; 

2) Radial basic function kernels: 

 2

-
( , ) e x p

2
k

k

x x
K x x

p
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

; 

3) Network kernels: ( , ) ( ( , ) )k kK x x S x x cν= + . 

5.  COMPOSITION ESTIMATOR 

5.1 Optimal selection of estimator inputs 

In order to gain the sensitivity matrix S , firstly, we should 
get the (3). In this paper, the sample time interval t∆ is 
defined as 1t∆ =  s. In section 2.2, the sampling period of the 
compositions as well as other process variables is set at 1 min. 
That is to say, we also collect the sample data with the 
sampling period at 61 s. Computing every element /j iT x∆ ∆  
of (3) and the absolute value of every element, we get the 
sensitivity matrix S .  

In this distillation column, the temperatures on 41 trays are 
used as the secondary variables and the top product 
composition is used as the primary variable. We can directly 
analysis the matrix S  to get the optimal secondary variables. 

Fig. 3 shows the locations of the most sensitive temperatures 
identified from the matrix S .  

 

Fig 3. The most sensitive input 

Because the largest value ,i js  in the sensitivity matrix S  is a 
measure of the sensitivity of the j th secondary variable, the 
secondary variable having the largest value of ,i js  could be 
considered as the most suitable estimator input. We can select 
out the location of the largest value from the matrix S  and 
the Fig. 3 shows the most sensitive location with the sample 
time. We can see that the most sensitive temperature changes 
with the sample time. But in Fig.3, we can find that the 
frequency of temperature on the 21 tray appears more than 

the others. So the temperature on the 21 tray is considered as 
the most sensitive variable to the top composition.  

Moreover, Fig. 4, Fig. 5, Fig. 6 shows the 2nd, 3rd and 4th 
most sensitive tray to the top composition. The same as we 
choose the most sensitive tray from Fig. 3, the temperatures 
on 20, 22, 19 trays are chosen as the 2nd, 3rd and 4th most 
sensitive tray to the top composition. 

 

Fig 4. The 2nd most sensitive input 

 

Fig 5. The 3rd most sensitive input 

 

Fig 6. The 4th most sensitive input 

Quintero, Luyben and Georgakis (1991) suggested that 
2cN +  temperature measurements should be considered, 

where cN  is the number of chemical components in the feed 
flow. Because the components 2cN = in this paper, followed 
them, the temperatures on 21, 20, 22, 19 trays are chosen as 
the sensitive variables to the composition estimator inputs. 

5.2 Development of composition estimator using kernel ridge 
regression 

In this paper, the radial basic function kernel is chosen as the 
kernel function: 
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The optimal selection of kernel parameter p  and 
regularization parameter λ  are very important to the KRR 
estimator. In this paper, the cross-validation technique is used.  

The composition estimator is evaluated on the basis of root 
mean squared error (RMSE) of prediction, which is 
calculated by applying the model to the validation data, 

1
2 2

1

1 ˆ( ( ( ) ( )) )
N

n
RMSE x n x n

N =

= −∑                                          (11) 

where x is a measurement of product composition, x̂ is its 
prediction, and N  is the number of measurements.  

As a result, the parameters of KRR estimator are defined 
as 2.7p = , 71 10λ −= × . The prediction results of KRR 
estimator for training data and the prediction results for 
testing data are shown in Fig. 7. As a comparison, the 
prediction results of RBF neural networks estimator for 
training data and the prediction results for testing data are 
shown in Fig. 8. In the Fig. 7 and Fig. 8, the solid lines 
represent the true simulated distillation compositions while 
the dashed lines represent the KRR model predictions and the 
RBF model predictions. The statistical results of the two 
models in the testing data set are summarized in Table 2. 

 

Fig 7. Prediction from the KRR estimator 

 

 

Fig 8. Prediction from the RBF estimator 

Table 2. Comparison of composition estimators 

Model RMSE ( 410− ) 
RBF 1.4680 
KRR 1.0371 

 

From Fig. 7, it is found that the KRR estimator has good 
performance in estimation of the top composition. Estimated 
outputs of estimator based on KRR to the top composition 
match real values of the top composition and follow the 
varying trend of the top composition very well. From Fig. 8, 
we also find that RBF estimator has the good performance in 
the first 300 training data, but in the last 60 testing data its 
prediction performance is bad. From Table 2, it is shown that 
KRR estimator has good performance of generalization. 
Compared with the RBF estimator, statistical results in Table 
2 show that the KRR estimator predicts more accurate in the 
last 60 testing data. 

5.3 Influence of measurement noise 

In subsection 5.1 and 5.2, the noise added to the temperature 
measurement is (0 ,0.1 )o oN C C , the variance 2 0.1oCσ = . In 
order to consider the effect of measurement noise to the 
estimator, in this subsection, the variance 2 0.5 oCσ =  of the 
Gaussian noise is added to the temperature variables. The 
other dynamic conditions are the same as subsection 2.2. The 
parameters of KRR estimator are chosen 
as 2.7p = , 71 10λ −= × . Fig. 9 shows the prediction results 
from the KRR and RBF estimator. The statistical results of 
the two models in the testing data set under this high-level 
noise are summarized in Table 3. 

 

Fig 9. Prediction from the KRR and RBF estimator 

Table 3. Comparison of composition estimators 

Model RMSE ( 410− ) 
RBF 1.7235 
KRR 1.2795 
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From Fig. 9, we also can see that the KRR estimator of the 
top composition match actual values of the top composition 
and follow the varying trend of the top composition very well. 
From Table 3, it is shown that the performance is a little 
deteriorated by measurement noise. However, it seems to be 
acceptable, the KRR estimator has good performance of 
generalization. Furthermore, the influence of measurement 
noise can be suppressed by filtering or scaling data 
appropriately. The simulation results demonstrate that the 
estimator based on the sensitivity matrix analysis and KRR is 
effective and robust. 

6. CONCLUSIONS 

This paper does research on estimating of distillation 
composition on-line based on a novel method of sensitive 
matrix analysis and kernel ridge regression. Through the 
optimal choice of the second variables and building the KRR 
composition model, the simulation result shows that this 
method is efficient. 

With the development of composition estimators, our work 
makes it possible to implement advanced control of quality 
variables of the distillation process on-line. In summary, 
successful installation of the composition estimators in an 
existing refinery can ensure better product quality control 
with higher productivity. 
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