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Abstract: We consider the problem of reducing interaction in the closed-loop response of model
predictive control (MPC). Interaction in MPC may be caused by diagonal weighting of inputs
in the MPC cost function that are not diagonally related to the outputs. If instead of weighting
the plant inputs a suitable decoupled input signal is used in the MPC cost function, then
a significant reduction in cross coupling can occur. In the case where the plant has a static
interaction matrix, complete decoupling occurs. Simulation examples show that the procedure
can be implemented via a simple modification to standard MPC algorithms, and is applicable
to ill-conditioned and non-minimum phase plants.

1. INTRODUCTION

Decoupling (by which we mean diagonalisation), or ap-
proximate decoupling, has a long history in multivariable
control systems design, going back at least to the 1960s.
It is particularly valuable as a tool to permit extension of
classical SISO control techniques to multivariable systems
(see for example more ‘recent’ texts such as Maciejowski
[1989], Morari and Zafiriou [1989]). More recently, opti-
misation techniques have been applied to multivariable
system to deal with the complexity and interactions that
may be present, and these offer a powerful way of achieving
robust, stable, high performance control.

One such optimisation technique is Model Predictive Con-
trol (MPC). MPC is a process control strategy which
has been studied extensively for dealing with complex,
interacting, multivariable systems (see for example the
survey article Rawlings [2000], and texts such as Comacho
and Bordons [1995]). It has also seen widespread adoption
by the process industry with many commercially available
implementations. However, MPC, as with many other
optimisation-based control approaches, does not directly
consider ‘interaction’ as part of the cost to be optimised.

Decoupling of the closed-loop response of a multivariable
system may be desirable even when using optimisation-
based techniques, such as MPC, to design robust feedback
controllers. In particular, since it is almost always the case
that there is a hierarchy of control actions, decoupling at
intermediate or lower levels, such as those utilising MPC,
will simplify the job of higher level (e.g. supervisory) con-
trols. Furthermore, from a process operator’s viewpoint,
decoupled (or approximately decoupled) responses greatly
simplifies their tasks, and may improve their ability to
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diagnose and respond appropriately to plant disturbances.
Reducing interactions may also enable processes to operate
closer to their economic limits. In this paper, we therefore
seek to design and simulate modifications to MPC that
improve the level of decoupling achieved.

A number of other researchers have studied problems of
decoupling in model predictive control, or it’s close allies.
Demircioglu and Gawthrop [1992] study a continuous time
version of predictive control and show that in the limit, as
the control weighting (λ in (Demircioglu and Gawthrop
[1992])) vanishes, decoupled control is achieved. In Chai
et al [1994], a technique for introducing a decoupling
compensator to the reference signals is described. Other
authors (for example Niemi et al [1997], Lu and Tsai
[2001]), for specific applications, give decoupling schemes
suitable for their particular application.

Our aim here is to propose a scheme which

• is generically applicable;
• significantly reduces the cross coupling (or ideally

achieves perfect decoupling);
• requires only simple modification to the regular MPC

cost function (and is therefore compatible with con-
strained control); and

• applies to systems without zero input weighting (and
therefore can reasonably be applied to non-minimum
phase systems).

The outline of this paper is as follows. Section 2 introduces
some notation, presents the general MPC problem under
consideration. Section 3 describes a well-known decoupling
method based on state variable feedback (SVF), and some
recent alternatives. Section 4 describes the re-formulation
of the SVF decoupling method (from Section 3) as an
MPC problem, and also describes some approximations
and extensions. Section 5 presents some simulations of the
new method, and Section 6 concludes the paper.
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2. MODEL AND PROBLEM FORMULATION

We begin by considering a stabilisable and detectable,
square, multivariable discrete-time state space plant model,
with state x

p
k ∈ R

np , input uk ∈ R
m and output yk ∈ R

m:

x
p
k+1

= Apx
p
k + Bpuk (1)

yk = Cpx
p
k.

Frequently, this model is augmented with additional state
variables to incorporate integral action, with the new ‘con-
trol’ variables as being effectively the control ‘increments’
or control ‘moves’:

(δu)k := uk − uk−1. (2)

Combining (2) with (1) we obtain the extended state space
model:

[

x
p
k+1

uk

]

=

[

Ap Bp

0 I

] [

x
p
k

uk−1

]

+

[

Bp

I

]

(δu)k (3)

yk = [ Cp 0 ]

[

x
p
k

uk−1

]

.

For simplicity, (3) can be written in the standard state
space form

xk+1 = Axk + B(δu)k

yk = Cxk (4)

with augmented state xT
k =

[

(xp
k)T uT

k−1

]

. Provided the
original plant model, (1) has no transmission zeros at
z = 1, and has at least as many outputs as inputs, then
the augmented model (3) retains the stabilisability and
detectability properties of the original model.

2.1 MPC Formulation

For simplicity, consider an unconstrained model predictive
control problem, where at a particular time step, the
inputs to be computed are denoted by:

U =









(δu)k

(δu)k+1

...
(δu)T

k+Nu−1









∈ R
mNu . (5)

Similarly we define

Y =









yk+1

yk+2

...
yk+Ny









, R =









rk+1

rk+2

...
rk+Ny









∈ R
mNy (6)

for the output vector and reference vector respectively. We
also define the error vector as E = R − Y . The output
vector, Y can computed from the plant equation:

Y = PU + H0xk (7)

where xk are initial conditions based on current/past
inputs and outputs, and P, H0 are given by

P =

























CB 0 . . . 0
CAB CB . . . 0

...
. . .

. . .
...

CANu−1B . . . CAB CB

CANuB CANu−1B . . . CAB
...

. . .
. . .

...
CANy−1B CANy−2B . . . CANy−NuB

























(8)

H0 =
[

CA CA2 · · · CANu CANu+1 · · · CANy

]T
(9)

2.2 Coupling in Model Predictive Control

A common choice of cost function in MPC takes the form:

J(U) = ET ΛE + UT βU (10)

where both Λ and β are diagonal weighting matrices. In
particular, typically, we would have

Λ = Blockdiag [ λ λ ... λ ] (11)

where λ > 0 is a diagonal weighting matrix specifying the
penalty on each error variable, and similarly:

β = Blockdiag [ βu βu ... βu ] (12)

where βu > 0 is a diagonal input weighting matrix. In this
case, the cost function, (10) can be rewritten as

J =

k+Ny
∑

ℓ=k+1

eT
ℓ λeℓ +

k+Nu−1
∑

ℓ=k

(δu)T
ℓ βu(δu)ℓ. (13)

Since the weightings are diagonal, it might be expected
that the optimisation will tend to reduce cross couplings.
However, in general this is not the case. In particular, the
unconstrained minimisation of (10) over possible inputs,
U leads to

U =
(

β + PT ΛP
)−1

PT Λ (R − H0xk) (14)

and

Y =P
(

β + PT ΛP
)−1

PT Λ (R − H0xk) + H0xk

=P
(

β + PT ΛP
)−1

PT ΛR

+
(

I + Pβ−1PT Λ
)−1

H0xk. (15)

We denote by HY R the implied closed-loop transfer matrix
from R to Y :

HY R = P
(

β + PT ΛP
)−1

PT Λ. (16)

We now consider some of the implications surrounding (15)
and (16). Note that in general, if β and Λ are diagonal
and positive definite (that is, fully decoupled), it does
not follow that HY R is diagonal, which leads to cross
coupling in the MPC implementation. If, however, we have
equal control and output horizon, and we let the control
weighting become small, then for CB invertible, (and
hence P invertible) we obtain HY R = I which is therefore
decoupled. More generally, however, with P invertible we
have

HY R =
(

I + Λ−1P−T βP−1
)−1

. (17)

From (17), we see that unless the blocks of P are diagonal
(that is, the Markov parameters CB,CAB,CA2B, ... are
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diagonal, or equivalently, the plant is diagonal), then
generically, the blocks of the closed loop response, HY R,
will be coupled.

Before giving a proposed solution in MPC for this cross
coupling, we briefly review decoupling in multivariable
control.

3. DECOUPLING IN MULTIVARIABLE CONTROL

3.1 The Method of Falb and Wolovich

In Falb and Wolovich [1967], the problem of taking a
multivariable continuous-time system in state space form,
and generating a static state feedback decoupled system,
is considered. These results extend immediately to discrete
time state space systems, (1). In particular, it is desirable
to find (if possible) nonsingular G ∈ R

m×m and F ∈ R
m×n

so that if the control is computed as

(δu)k = Fxk + Gwk (18)

where wk is an external reference signal, then combining
(18) with (1) gives a decoupled system from wk to yk.

In special cases, we may select F , G in a straightforward
manner. In particular, suppose that

det(CB) 6= 0. (19)

Under (19), one example of a decoupling set of matrices (in
fact, this is the pair F ∗, G∗ described in Falb and Wolovich
[1967]) for this case is

G = (CB)−1, F = −(CB)−1CA. (20)

Combining (1) with (18) and (20) gives

xk+1 =
(

I − B(CB)−1C
)

Axk + B(CB)−1wk. (21)

Note that since C
(

I − B(CB)−1C
)

= 0, then whenever
the state dimension n exceeds the number of output
variables, m, the particular decoupled state space model
(21) is not observable from the output yk = Cxk. In
particular, it can be shown that the eigenvalues of Ad :=
(

I − B(CB)−1C
)

A are precisely: m eigenvalues at the
origin (since C is rank m and CAd = 0) together with
n − m eigenvalues that are transmission zeros 1 of the
original transfer function matrix. Clearly therefore, the
choice (20) is not suitable for non-minimum phase systems.

3.2 Alternative Methods

Alternative methods of decoupling have been described in,
for example, Wittenmark et al [1987], where for a specific
class of Multivariable ARMA Systems, a moving average
(MA) input decoupler can be constructed. This technique
could also be utilised in our context. However, it turns out
that it may not be desirable to implement full dynamic
decoupling of multivariable systems, since this suffers from
robustness problems [Morari and Zafiriou, 1989, §13.3.2]
and may also exacerbate problems due to non-minimum
phase transmission zeros [Goodwin et al, 2001, Chapt.
24]. We therefore prefer to use a static decoupler, aimed
at approximately decoupling the transient response of the
system, rather than more complex, and potentially less
robust, dynamic decoupling techniques.
1 To see this, let ζ be a transmission zero of the system with v1, v2

such that Av1 = ζv1 − Bv2 and Cv1 = 0. Then Adv1 = ζv1.

4. REFORMULATION OF MPC WITH DECOUPLING

We now wish to combine the earlier MPC formulation, of
Section 2.1 with the insights into decoupling of multivari-
able systems described in Section 3. The key here is that by
using diagonal weightings of decoupled variables, wk and
yk, in the MPC cost function, we are able to achieve decou-
pling, without having to resort to zero control weighting
β.

Using the standard dynamic decoupling relationship (18)
we obtain

wk = G−1(δu)k − G−1Fxk. (22)

We now stack into vector form the decoupled inputs as
WT =

[

wT
k wT

k+1 . . . wT
k+Nu−1

]

. Then extending (22), it
follows that

W = DU −Hxk (23)

where D =











G−1 0 . . . 0
−G−1FB G−1 . . . 0

...
. . .

. . .
...

−G−1FANu−2B −G−1FANu−3B . . . G−1











and H =
[

G−1F G−1FA · · · G−1FANu−1
]T

. We then
consider optimising the modified cost function JW defined
as follows:

JW (U) = ET ΛE + WT βW W (24)

where βW in (24) is a diagonal weighting matrix to
be defined (E = R − Y as before). The unconstrained
minimisation of JW gives the control

U =
(

DT βW D + PT ΛP
)−1

×
(

PT ΛR − PT ΛH0xk + DT βWHxk

)

. (25)

Note that use of JW as proposed in (24) is equivalent to
appropriate selection of a non-diagonal β in (10), together
with cost terms depending on cross coupling between
control increments and states (in the case F 6= 0 in (22)).

From (25)),

HY R =
(

I + Λ−1P−T DT βDP−1
)−1

. (26)

With similar analysis to that in Subsection 2.2, if we have
equal control and output horizon then P is square; it is
already assumed to be invertible, and so HY R becomes
diagonal due to the design of D (i.e. DP−1 = I).

4.1 Selection of βW

Given an initial selection of the control weights, β that
is diagonal, we would like to select weights for βW that
preserve some of the features of the original cost term
UT βU (see (10)) in the revised cost term WT βW W
(see (24)). One such selection would be to take βW =
diag

(

D−T βD−1
)

which corresponds to considering only

the quadratic term in U in the expansion of WT βW W ,
and ignoring off-diagonal terms in this expression.
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4.2 ‘Static’ Decoupling

To avoid problems with robustness and with non-minimum
phase systems, it may be preferable simply to take a
‘static’ relationship between uk and wk. For example, it
may make sense to use F = 0. We are then concerned
with the choice of G. Note that we would not normally
choose G according to the steady-state plant gain matrix,
since steady-state decoupling is achieved by integral action
in the controller. Therefore, it seems more important to
decouple the transient response of the system. For this
reason, and under the assumption that the control signal
will not vary too greatly from one sample to the next, one
possible selection for the decoupling matrix is to sum the
first k Markov parameters of the multivariable system:

G−1 = CB + CAB + CA2B + . . . + CAk−1B (27)

The choice of k is dependent on the desired accuracy.

So with G−1 defined as in (27), and F = 0, D is
obtained such that βW will deliver an approximate level
of decoupling for many systems.

4.3 Reduced Decoupling

If the approximate (static) decoupling scheme requires
more control energy and other compromises than is de-
sirable, then it is a simple matter to choose a convex com-
bination of the weightings for the two cases. In particular,
take α ∈ [0, 1] and define the compromise cost function:

Jα(U) = ET ΛE + αWT βW W + (1 − α)UT βU. (28)

Unconstrained optimisation then gives the control se-
quence

U =
(

αDT βW D + (1 − α)β + PT ΛP
)−1

×
(

PT ΛR − PT ΛH0xk + DT βWHxk

)

. (29)

4.4 Triangular Decoupling

Triangular decoupling refers to the case where outputs
are ranked according to some criteria (with y1 being the
highest priority), and changes affecting a lower priority
output (e.g. setpoint changes, output disturbances) are not
transferred to any higher priority outputs.

If triangular decoupling is desired, then it is sufficient to
let βW = tril

(

D−T βD−1
)

, where tril(.) is an operation

that selects the lower triangular terms of D−T βD−1. With
HY R = (Λ + βW )

−1
Λ (from considering D = P ), the

relationship from R to Y is triangular, which is the desired
result.

5. EXAMPLES

We consider three examples that illustrate the perfor-
mance of the proposed algorithm.

5.1 Static Coupling, Ill-Conditioned Plant

We first consider a simple 2 × 2 example of a plant with
very simple dynamics and an ill-conditioned static cross-
coupling.

y(t) =
1

(s + 0.1)

[

4 5
3 4

]

u(t). (30)

Note that the static coupling matrix in (30) is almost
singular and has condition number 65.98. This precludes
the use of a simple inversion of the D.C. gain as a static
decoupling element.

The following simulations were performed using the algo-
rithm suggested in Section 4.2, with parameters: sampling
time, 1 second; Nu = 5, Ny = 20, β = 300I and λ = I.
Results for these simulations are shown in Figures 1 and
2.
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Fig. 1. Output responses for Example 5.1, with and with-
out decoupling.
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Fig. 2. Control responses for Example 5.1, with and
without decoupling.

Note from Figures 1 and 2 that we are able to achieve
complete decoupling in this case, with very little increase
in control effort, a slower initial rise time, but similar, if
not superior, settling time behaviour.

The triangular (partial) results are shown below in Figures
3 and 4. The triangular decoupling is clearly evident; even
though the diagonal responses are similar, the main benefit
is in the reduced control effort for input 1.

5.2 Non-minimum Phase Example

We now consider a 2 × 2 non-minimum phase example.
This is based on a continuous-time plant model, Pc(s),
composed of individual SISO transfer functions
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Fig. 3. Output responses for Example 5.1, with triangular
and diagonal decoupling.
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Fig. 4. Control responses for Example 5.1, with triangular
and diagonal decoupling.

Pc(s) =







−5

25s + 1

0.995s − 0.005

s2 + s
1

25s + 1

−0.0023s − 0.0023

s2 + s






. (31)

The McMillan degree of Pc(s) is 3, with poles at s =
0,−0.04,−1 and a transmission zero at s = +0.0168,
which is therefore non-minimum phase. We use a 20
second sampling period, control horizon Nu = 20 samples,
output horizon Ny = 50 samples, input weights β =
diag{500, 2000} and output weights λ = diag{1, 5}. The
results are shown below in Figures 5 and 6.

In this case, we have not attempted to obtain perfect
dynamic decoupling. Note that we obtain a substantial re-
duction in cross-coupling (for example, the peak coupling
in the (1,2) element dropping from approximately 73% to
21%) with almost no change in control effort used, and a
similar response time.

With absolute input limits of ±0.2 units introduced, the
results are shown below in Figures 7 and 8. Observe
how the decoupling is preserved when the controls are
constrained.

The triangular (partial) results are not shown due to the
minor reduction in overall control effort.
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Fig. 5. Output responses for Example 5.2, with and with-
out decoupling.
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Fig. 6. Unconstrained control responses for Example 5.2,
with and without decoupling.
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Fig. 7. Output responses for Example 5.2, with and with-
out decoupling (constrained inputs).

5.3 3 × 3 Example

We lastly consider a 3 × 3 example, which exhibits signif-
icant time delay elements. The plant model is
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Fig. 8. Constrained control responses for Example 5.2,
with and without decoupling.

Pc(s) =
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50s + 1
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50s + 1
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44s + 1
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19s + 1















. (32)

We use a 1 second sampling period, control horizon Nu = 3
samples, output horizon Ny = 40 samples, input weights
β = I and output weights λ = I. There are rate limits on
the inputs of ±0.05 units per second, and absolute input
limits of ±0.5 units. The results are shown below in Figures
9 and 10.
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Fig. 9. Output responses for Example 5.3, with and with-
out decoupling.

Note that the 3×3 system has been decoupled significantly,
with little change in the closed-loop response for diagonal
terms, and only small increases in control effort.

Triangular (partial) decoupling is also possible with this
system, but the reduction in overall control effort is minor.
Thus the results are not shown.

6. CONCLUSIONS

This note has shown how to modify the cost functions used
in MPC in order to achieve approximate output decou-
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Fig. 10. Control responses for Example 5.3, with and
without decoupling.

pling. Using the concept of an input decoupling matrix, a
simple modification of the MPC cost function used yields
a decoupled (or less coupled) closed-loop response. The
examples illustrate that this decoupling is achieved with
little additional cost in terms of control energy, and with
similar overall closed-loop response times. The scheme is
applicable to a broad range of plants including those that
are ill-conditioned and non-minimum phase. It is possible
to achieve greater levels of decoupling in MPC, at the cost
of less robustness.
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