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Abstract: In this research, input/output data of a MIMO nonlinear system are used to create intelligent 

models. Multi layer perceprtrons and neuro-fuzzy networks are utilized for this purpose. For the purpose 

that these models suit predictive control in their best, a variety of subtle points should be considered. 

Recurrent models and subtractive clustering are used in this research, and a pre-processing is exerted on the 

columns of raw data. Then the prepared data are used to train models. A reliable checking process is also 

offered. A Catalytic Continuous Stirred Tank Reactor is used as case study. A computer model is used to 

gather input/data rather than a real one. Finally, the simulation is successfully performed to indicate the 

capabilities of intelligent modeling methods as well as the importance of the points offered through this 

paper.  

 

1. INTRODUCTION 

In feedback control, as the most common type of control, the 

control command is generated using the error which has 

already occurred, whereas, in predictive control the predicted 

error (which is going to occur) is utilized in the determination 

of control command to avoid the error before appearing 

(Camacho and Bordons,2004). Predictive control was initially 

introduced as the classical model predictive control which 

needs a linear state space model of system (Camacho and 

Bordons,2004, Bemporad et al, 2007). However, the 

nonlinearity of many systems is not negligible; so, linear state 

space models can not represent such models properly. In such 

occasions, approximate fully (Li and Christofides,2007, Feng 

et al,2007, Nagy et al,2007) or piecewise (Cervantes et al,2003, 

Magni and Scattolini,2007) linear models may be used. But, in 

general, nonlinear models are needed to predict the output(s) of 

nonlinear system for control purposes. There are some physics-

based methods which define the model of some systems 

entirely (Holenda et al,2007) or partially (Harnischmscher and 

Marquardt,2007) (the structure of model). Artificial neural 

networks (Aggelogiannaki et al,2007, Seyab and Cao,2007  , 

Mohammadzaheri and Chen,2007, Demuth et al,2007) and 

fuzzy inference systems (neuro-fuzzy networks) (Barros and 

Dexter,2007, Karer et al,2007, Na and Upsdhyaya, 2007, 

Ghaffari et al,2007) also can model the systems. These 

methods are categorized as intelligent modelling methods. 

These models should be trained using input-output data after 

initial design.  

In this paper, the case study (for intelligent modelling) is a 

Catalytic Continuous Stirred Tank Reactor (CSTR) which a 

computer model of this system is available (Demuth et 

al,2007), the output-input data of this model are used instead of 

experimental data. The studied CSTR is a dynamic nonlinear 

MIMO system. The purpose of this research is to indicate the 

capabilities of intelligent modelling for nonlinear predictive 

purposes, and offering some helpful subtle points for such 

applications of intelligent systems. The offered methodology 

can be used if a precise mathematical model is not available 

through classical methods (e.g. mass-energy equilibrium 

equations). 

 

2. INTELLIGENT MODELING OF DYNAMIC SYSTEMS 

Intelligent systems which are capable to be trained by input-

output data can be properly utilized in the modelling of 

industrial process plants. There are three main structures for 

intelligent models; perceptron neural networks (Haykin,1999), 

neuro-fuzzy networks (Jang et al,2006) and radial basis 

function networks (Jang et al,2006). The two first structures 

are used in this research. RBF networks are powerful 

modelling tools, but in practice, these neural networks need a 

lot more neurons in comparison two other models (Demuth et 

al, 2007). As a result, RBFNs are rarely practically applicable 

in the modelling of complex nonlinear MIMO systems.  

  In total, in the I/O data based modelling, a system is basically 

defined based on the signal(s) (e.g. temperature, pressure or 

…) which is important to be predicted or estimated. This/these 

signal(s) is/are called the output(s). All other signal(s) which 

influence on the output(s) are considered as the input(s).  

Almost all industrial process plants (including chemical plants) 

are dynamic systems.  In a dynamic system, the current value 

of the system’s output(s) not only is/are affected by the inputs 

of the system, but also is affected by the value(s) of the 

system’s output(s) at previous instants. In order to model 

dynamic systems, dynamic or recurrent models are needed.  

  After modelling of a dynamic system, in the discrete domain, 

output value(s) at previous instants are used as the inputs of the 
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model to predict/estimate the current value of the output. For a 

single input-single output dynamic system, with input of u and 

output of y, a nonlinear recurrent model can be described by 

following equation: 

)1( +kys = f(u(k−nu+1), ..., u(k), y(k−ny+1), ..., y(k))        (1)                                           

r =the order of the model= max(nu ,ny) 

sy is the estimated output and f represents the mathematical 

model. Usually nuny ≥ , therefore, the order of the model is 

often considered as the number of delayed outputs which are 

used for the estimation/prediction. 

 
Fig.1: A scheme of a first order SISO dynamic system and its 

recurrent model, u and y are input and output 

 

Recorded/sensed data of input/output signals are usually 

available in the form of numeric arrays. These data should be 

arranged properly to be used in the training/modelling. To 

achieve the model f (shown in (1) ) through training the 

sensed/recorded raw data of this SISO system is prepared as 

below: 
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Fixed value input signals are not used in the modelling and the 

achieved model is valid while these signals keep fixed. In such 

occasions, fixed value inputs are considered as the parameters 

of the system (instead of input signals). 

In the modelling, using input-output data (training), If some of 

inputs of the model have values with higher magnitudes, their 

relevant connection weights /activation functions may 

influence on the output more than other connection 

weights/activation functions. Consequently, the training 

procedure particularly tends to adjust the connection 

weights/activation functions regarding inputs with the higher 

numeric values, and some parameters may not be subject to 

sufficient modification. In order to avoid the aforementioned 

problem, the numeric arrays, representing the signals, should 

have the magnitudes close to each other. A suitable way to 

guarantee this matter is the normalization of the data arrays so 

that the total sum of squared values of each error is of a 

definite value. 

 

3. CHECKING THE MODEL. A CRITICAL HINT 

After the completion of modelling, the achieved model should 

be checked. It is clear that checking data should be different 

from training data. The model should be able to predict the 

behaviour of system for many future instants; therefore, in 

checking the model, after the very first instants, previously 

estimated values of output should be used as the delayed 

output(s) which are the inputs of recurrent model. Consider (1): 

)1( +kys = f(u(k−nu+1), ..., u(k), y(k−ny+1), ..., y(k))        (1) 

This equation is used at the first estimation; at this step all the 

values of y, in the past instants, are available. Whereas, for the 

prediction of the output at one instant later )2( +kys , y(k+1) is 

needed , but there is no recorded data for this value, so  the 

estimated value at the first step is used for the prediction or : 

=+ )2(kys f(u(k−nu+2), ..., u(k+1), y(k−ny+2), ..., sy (k+1)) 

(4)                             

After ny instants, all the delayed outputs are estimated ones: 

)1( ++ nykys = f(u(k−nu+ny+1), ..., u(k+ny), sy (k+1), …, 

sy (k +ny))                                                                              (5) 

Since, in checking, both input and output data are available for 

the designer/analyser, sometimes the checking data are 

mistakenly arranged same as training data (see (3)) and the 

prepared input data are given to the model (see (1)) and the 

estimated data are used to assess the accuracy of model. Using 

this method, a very high accuracy is usually observed which is 

absolutely unreliable. 

As an example, consider the system of fig.1, and assume a 

series of 500 recorded data sets are available to check the 

model. The estimation/prediction is started at r+1th instant 

(r=1). At very first estimation, the recorded output is used: 

)).1(),1(()2( uyfys =                                                              (6) 

Other recorded values of output (y(k), k=2,…,500) are only 

used to specify the accuracy. In order to predict )3(sy , )2(sy  

should be used (not y(2)):  

)).2(),2(()3( uyfy ss =                                                             (7) 

There are software-packages usable for design and training of 

intelligent models for predictive control, the checking accuracy 

offered by these softwares are sometimes calculated without 

the consideration of the recurrence of the model , that is 

recorded outputs , in checking data, are used as the delayed 

inputs instead of  previously estimated outputs, or only (1) is 
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used for checking. So unordinary high accuracies offered by 

such softwares should be checked by the designer. 

 

4. NONLINEAR PREDICTIVE CONTROL 

In nonlinear predictive controller, usable in the predictive 

control of nonlinear systems, nonlinear models are needed to 

predict the behaviour of nonlinear systems. In a typical 

nonlinear predictive control in discrete domain, at the instant of 

k, the output of system is known ( )(ky ), and the tentative 

control command ( u′ ) is calculated to be applied as the control 

command at the same instant of k. An optimisation method 

defines the control command (represented byu′ ) based on 

minimising a performance function involving the predicted 

error (8) is a typical performance function(represented by J ), 

which is usually used in neuro-predictive control.  

.)]1()([])([)( 22

1

−−′+−+=∑
=

kukuyikykJ d

N

i

s ρ                          (8) 

sy and dy are the estimated and desired outputs of the system 

respectively,  and u′ and u are tentative and actual control 

inputs. Additionally, ρ is a factor defining the importance of 

the constancy of control input.  

As the first stage of the definition of tentative control 

command, the performance function ( J ) should be calculated. 

To do so, the output values should be predicted for N future 

instants (see (8)), so the nonlinear model should be used N 

times. N is named the horizon of prediction. The predicted 

output value of any stage of prediction is applied as one of the 

inputs for the next prediction stage. Figure 2 shows how 

predicted values of output are achieved, for the system shown 

in Fig.1 and the prediction horizon of 4. 

 

 
Fig.2: Prediction of output values with the horizon of 4 

 

Using nonlinear model, predicted output values of system 

( )( ikys + , )~1 Ni =  are known. Using previous and current 

values of the output of system )(y , previous values of control 

input )(u , tentative control input )(u′ and ρ  the value of 

performance function ( J ) is available. 

If current output and previous output/input of the system (as 

the recorded data) and u′  are known, all other arguments of 

J  will be definitely known (see fig.2).  So these arguments 

can not be subject to modification by optimization algorithms. 

However u′  can be changed arbitrarily freely from the 

recorded input/output data and this change affects other 

arguments of J , then the performance function itself. 

Therefore, in the optimisation for control purposes, it can be 

assumed: 

).(uJJ ′=                                                                                (9) 

Finding u′ so as to minimise the performance function is the 

last stage at nonlinear predictive control. 

 

5. CASE STUDY 

The case study is a Catalytic Continuous Stirred Tank Reactor 

(CSTR). A diagram of the process is shown in the following 

figure: 

 
Fig.3: A schematic of the studied CSTR(Demuth et al,2007) 

 

Two flows of liquid enter the reactor with the concentration of 

9.241 =bC (kg/
3

m ) and 1.02 =bC  (kg/
3

m ). The flow rate of 

input flows are named 
1w and 

2w .The reactor outlets another 

flow of liquid with the concentration of bC  and the flow rate of 

0w . Another important variable is the height of liquid in the 

reactor (h).  

A simplified mathematical model of system, achieved by mass 

equilibrium equations, is: 
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If the concentration of outlet flow and the height of liquid are 

considered as the outputs ( hw 2.00 = ), the total system can be 

shown as below: 

 
Fig.4: the studied CSTR as a MIMO system 

 

6. INTELLIGENT MODELING OF CASE STUDY 

In this research, the modelling is performed particularly for the 

purpose of predictive control. The case study can potentially 

have two control inputs, 
1w and

2w . Inasmuch as in predictive 
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control one control command is often used, one of these 

potential control inputs can be fixed. So, the flow rate of the 

second input flow (with the concentration of 24.9 kg/
3

m ) is 

set to the constant value of 0.1
s

m3

. As a result, this value is 

not considered in modelling as an input signal anymore (see 

sec.3). The order of two is considered for the model, and all 

values nu and ny (see (1)) are set to two. So such a model is 

made for the system: 

 
Fig.5: Dynamic model of CSTR, when the flow rate of an input 

flows is fixed 

 

This model (presented in fig.5 and (12)) is used to return the 

first estimated value of bC : 

=++ )]1(ˆ),1(ˆ[ khkCb

)](),1(),(),1(),(),1([ 11 khkhkCkCkwkwF bb −−−                 (12) 

Or 

=+ )1(ˆ kCb )](),1(),(),1(),(),1([ 111 khkhkCkCkwkwF bb −−−  (13)  

=+ )1(ˆ kh )](),1(),(),1(),(),1([ 112 khkhkCkCkwkwF bb −−−    (14)                                    

After very first instants of prediction (see (5) and (12)): 

=++ )]1(ˆ),1(ˆ[ khkCb

)](ˆ),1(ˆ),(ˆ),1(ˆ),(),1([ 11 khkhkCkCkwkwF bb −−−   (15)                  

or 

=+ )1(ˆ kCb )](ˆ),1(ˆ),(ˆ),1(ˆ),(),1([ 111 khkhkCkCkwkwF bb −−−    (16)                                   

=+ )1(ˆ kh )](ˆ),1(ˆ),(ˆ),1(ˆ),(),1([ 112 khkhkCkCkwkwF bb −−− (17)                                 

where variables with hat are estimated/predicted ones. 

Some times, influenced by system shown in fig.4, one of the 

outputs is ignored mistakenly. For instance, it is assumed that: 

=+ )1(ˆ kCb )](ˆ),1(ˆ),(),1([ 11 kCkCkwkwF bb −−                    (18) 

It should be noted; the system is dynamic and even if h is not 

important for the designer as an output to control, it can not be 

ignored in modelling because of its effect (as the representative 

of liquid volume) on the value of
bC . Such a mistake exists in 

some software packages usable in nonlinear predictive control, 

the results of the usage of such incomplete models are also 

shown in this paper.  

After the definition of model’s order, the training data should 

be normalized and arranged. 8000 set of data (including
1w , h 

and bC ) with time interval of 0.2 second are utilized in 

training. These normalized data are arranged as (19). 

Although only one predicted value is often used in predictive 

control, both outputs should be estimated, because system is 

dynamic and the outputs are coupled. Therefore, the estimated 

values of both outputs are needed to predict any of them for a 

period of time in the future. A four-layer recurrent perceptron 

and a couple of recurrent neuro-fuzzy networks are trained 

using the prepared data (see (19)). 

 

 
Fig.6: Incomplete dynamic model of CSTR, without height 

consideration 
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The input layer of the utilized perceptron has six neurons 

(equal to input signals). This ANN has one nonlinear (with 

sigmoid activation functions) and one linear (with linear 

activation functions with slope of 1) hidden layer. Both hidden 

layers have 13 neurons. The output layer also has two neurons 

with linear activation functions with slope of 1. Linear hidden 

layers may seem useless at the first glance, because a linear 

combination of the outputs of nonlinear hidden layer is 

generated at the output layer; however, adding this layer 

improves the accuracy, in practice. It seems, a wider variety of 

adjusting parameters let the model be trained more 

successfully. The training method is Levenberg-Marquardt 

error back propagation .The (batch) training has been 

performed in 100 epochs and the performance function is sum 

of squared errors (MSE). According to (18), another neural 

network is also designed and trained as an incomplete neural 

model. This ANN has a hidden layer including nine nonlinear 

sigmoid neurons. This structure suites best with 

training/checking data among many different attempted 

structures. The training method is similar to the complete 

neural model. 

For neuro-fuzzy modelling, adaptive neuro-fuzzy inference 

system (ANFIS) is used. But ANFIS can learn only single 

output systems. In order to solve this problem, two parallel 

ANFIS are made and trained. Any of them are relevant to one 

of outputs, (see (16) and (17)). In checking, both ANFIS 

models are used simultaneously and the output of any one is 

used as the inputs of both ANFIS models at the next instant.  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12404



     

If three fuzzy values is allocated to any of six inputs of fuzzy 

model, 
63 (=729) fuzzy rules are needed for each ANFIS 

model. In order to avoid having such a big model, subtractive 

clustering is utilized. The parameters of subtractive clustering 

are shown in Table.1. After subtractive clustering, ANFIS1 and 

ANFIS2 are of 17 and 15 fuzzy rules respectively.  

 

 
Fig.7: CSTR dynamic fuzzy model formed by two ANFISs   

 

Table1: parameters of subtractive clustering, used in this 

research 

parameter value 

Range of influence 0.5 

Squash factor 1.1 

Accept ratio 0.3 

Reject ratio 0.1 

   

After subtractive clustering, the model is trained only three 

epochs. It is observed, more rules and more training epochs 

does not have considerable positive effect on the accuracy of 

the model. In both Sugeno-type fuzzy inference systems; AND 

operator is used between different fuzzy values of antecedents; 

product is used as AND. 

To be compared with complete fuzzy model, an incomplete 

fuzzy model is also designed according to (18). This fuzzy 

inference system has 11 rules derived from subtractive 

clustering. 

 

7. SIMULATION RESULTS 

In this research, two different series of checking data are used. 

Both series are entirely different from training data. Figure 8 

shows the responses of actual system and different models for 

the first series of data. Outlet concentration (
bC ) is considered 

as the main output of the system for control. It is observed, as 

stated in sec.8, as the height is ignored, the accuracy decreases 

significantly.  

A criterion is defined for the predictive accuracy of models, 

namely PAN: 

PAN= |)()(ˆ|
1

iCiC b

N

i

b −∑
=

.                                                      (20) 

Table 2 shows PA10 and PA30 (the sum of absolute error of 

prediction for 10 and 30 future instants or next 2 or 6 seconds), 

for two different series of checking data and four different 

models.  

 
Fig.8: Actual and predicted data for the first series of checking 

data 

 

Table2: Prediction accuracy for different trained models 

Criterion PA10 (kg/
3m ) PA30(kg/

3m ) 

Checking data 1
st
 

series 

2
nd

 

series 

1
st
 

series 

2
nd

 

series 
Incomplete Neuro-fuzzy 

model (one ANFIS) 
0.313 0.154 5.568 6.508 

Incomplete  Perceptron 

(single output) 
0. 113 0.131 4.533 5.059 

Complete Neuro-fuzzy 

model (two ANFIS) 
0.060 0.036 0.752 0.658 

Complete  Perceptron 

(double output) 
0.018 0.022 0.051 0.033 

As previously stated in section4, in checking the previously 

estimated data should be used rather than the recorded outputs, 

otherwise, other mistakes may be hidden by false high 

accuracy of the model. For example, using (21) instead of (18): 

=+ )1(ˆ kCb )],(),1(),(),1([ 11 kCkCkwkwF bb −−                    (21) 

leads a very high accuracy. So, the effect of height neglect is 

not observed. Table 3 shows the response of incomplete neural 

model, in case that Eq.(29) is exerted. 

8. CONCLUSION 

In this paper, modelling of dynamic systems for neuro-

predictive purposes is studied. As a basis of nonlinear 

predictive control, accurate and reliable nonlinear models 

should be available to predict the systems’ output(s) (section 

5). Perceptrons and neuro-fuzzy networks (made by subtractive 

clustering) are utilized to perform this task, and a nonlinear 

Catalytic Continuous Stirred Tank Reactor (CSTR) is used as 

the case study. Training and checking data are not 

experimental and they are originally gathered using a computer 

model. This paper shows the capabilities of intelligent tools in 

the prediction of the behaviour of nonlinear MIMO process 

plants. Also, it is indicated that a variety of subtle points 
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should be paid attention both in intelligent modelling and the 

validation of achieved models, especially for predictive control 

purposes, otherwise, the predicted values are not reliable and 

the predictive control system looses its efficiency. Some of the 

most important points in intelligent modelling for predictive 

control purposes are listed below: 

1) Fixed inputs of systems can be ignored in modelling, 

providing that they remain fixed while the model is 

used for prediction (sections 2 and 6). 

2) The magnitude of numbers which represent different 

signals (temperature, pressure or …) should be close 

to each other. Normalization of all the data columns is 

a suitable alternative to guarantee this matter (sections 

2 and 6). 

3) Dynamic systems (including all process plants) can be 

modelled only by recurrent models (sections 2 and 6).  

4) In checking/validating of models, apart from very first 

instants, previously estimated values of system’s 

outputs should be used as the input(s) of model, and 

the recorded data of output(s) should be utilized just 

for comparison (sections 3 and 7).  

5) Even if only one of the outputs of the system is going 

to be predicted, the model should be able to estimate 

all the outputs (outputs of systems are usually 

coupled, sections 6 and 7). 

These points can be useful only in case the inputs and outputs 

of systems are defined properly (sections 2 and 5), no matter 

which intelligent tool (sections 1 and 2) is utilized. 
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