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Abstract: This paper describes the implementation of setting up a warehouse for automated nano-
assembly, i.e. the automated registration of the parts processed during the automated assembly. Starting 
with a brief description of the goals of the assembly process, the overall process structure and its 
challenges with respect to the micro- and nanoscale are explained. The warehouse task is used as an 
example for describing the task planning, the necessity to minimize the number of subtasks taking further 
constraints from the experimental setup into account. For controlling such a complex assembly process, an 
intelligent and flexible control and communication system architecture is necessary, which will be 
explained in detail. Based on these considerations, the implementation of the warehouse task and its 
challenges, including the representation of the parts in the control system, object recognition using 
generalized models and methods for part origin determination will be presented. 

 

1. INTRODUCTION 

In contrast to assembly processes on the macro-scale, i.e. 
with critical part size above the mm-range, manual assembly 
on the micro- and nano-scale is hardly feasible due to the 
critical part sizes in the µm respectively sub-µm or nm-scale. 
A growing need for assembly on the micro- and nano-scale 
within the last ten years (Clevy et al., 2006), demands for 
suitable tools to servo (e.g. through teleoperated devices), 
semi-automate or to completely automate assembly 
processes.  
Assembly processes on the nano-scale can be classified in 
two categories. The parallel or bottom-up approach utilizes 
force fields to handle multiple parts at a time (Böhringer et 
al., 1999), where the advantages of batch processing used in 
CMOS or more generally in semiconductor processing 
technology are maintained. For example, electric fields are 
used to position and orientate parts on a silicon wafer. In 
contrast, the serial or top-down-approach transforms the 
conventional assembly principles known from the macro-
scale to micro- and nanoscale. Certainly, as the critical part 
size decreases, more and more attention has to be paid to 
surface effects and parasitic forces (Fearing, 1995). 
Assembly on the micro- and nano-scale following the serial 
approach usually requires a vision sensor, on the one hand to 
allow the operator to observe the process, On the other hand 
they are an essential sensor for gathering information about 
spatial arrangement of the parts (Sievers and Fatikow, 2006) 
and tools. They can be utilized to infer physical properties of 
the observed objects, like forces (Wich et al., 2006). Several 
microscopy technologies can be used as vision sensors in 
nano-assembly processes, e.g. light microscopes, scanning 
electron microscopes (SEM) and scanning probe microscopes 
(SPM). A more detailed overview over their respective pros 
and cons is given in (Wich and Hülsen, 2008). Within this 
paper, a SEM is used as vision sensor, providing adequate 

resolution, fast image acquisition and the electron beam can 
be used as a tool for single tasks in the process  (Wich et al., 
2006). The purpose of this paper is to present a general 
introduction to assembly processes in the SEM. Based on the 
constraints imposed by the geometric scale, specialized 
methods for automation will be introduced by means of an 
example process in the next paragraph. In the following 
section, a detailed planning for the warehouse process will be 
given, which is used for registering the single parts later used 
for assembly. In section two, the control and communication 
system necessary for triggering and evaluating the single 
tasks will be described. An implementation of the system will 
be shown in section three, giving a detailed view on 
automation challenges. In the last section, an outlook towards 
the next steps in assembly automation on the micro- and 
nano-scale will be given. 

1.1 Description of the Automated Process 

Assembly processes are generally composed of different 
tasks as there are: 

• Separation of the parts which should be assembled 
• Parts (and tools) handling 
• Joining of parts by means of material, force or form 

closure 
• Releasing or detaching (e.g. cutting, breaking etc.) 
• Inspection of the (sub-) assembly, e.g. quality 

assurance 

These tasks can be divided into subtasks or primitives (Wich 
and Hülsen, 2008), which are the atomic operations during 
the process.  
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As an example nano automation process we have choosen 
bonding of carbon nanotubes (CNT) to the point of a  
scanning tunnelling microscope (STM) tip. The process 
flowchart is given in Fig. 1.  
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Fig. 1: Process-flowchart for automated bonding of CNTs to 
STM-tips. The symbols are used on basis of the 
“Specification and Description language” (SDL) 

The CNTs used for this assembly process have a predefined 
length of approx. 10 µm and a diameter of 200 nm. They are 
grown by CVD in a predefined matrix on a quadratic silicon 
wafer, and thus are well suited for automated assembly tasks 
(Wich and Hülsen, 2008). The STM-tips are manufactured by 
etching tungsten wires (diameter 0.2 mm, cut to a length of 
about 10 mm) in NaOH. The tips are then put in a holder with 
a 2.54 mm raster (cp. Fig 2a). In the whole process no further 
tools (e.g. grippers) are used. Instead, the parts are directly 
assembled in order to maximize the reliability by reducing 
the number of subtasks (Wich and Fatikow, 2007). Therefore, 
both the wafer with CNTs and the STM-tip holder are 
mounted on a three-axis linear stage each, opposite to each 
other.  
The core process consists of six tasks. However, before the 
process can start, the so-called “warehouse” task has to be 
accomplished, which will be explained in detail in the 
following sections. The core tasks comprehend the 
positioning of the parts relative to each other (Handling I), 
bringing the parts in contact using specialized methods 
(Handling II), bonding of the CNT to the STM-tip (Joining), 
cutting the CNT from its substrate (Releasing), checking the 
stability of the bond connection between CNT and STM-tip 
(Inspection) and finally moving the assembled part to a 
predefined position (Handling III). 

1.3 Motivation, Goals and Challenges for Setting up the 
Warehouse 

The warehouse-task, used for registration of the single parts, 
has until now not been discussed in literature for nano-
assembly automation. Its relevance in the process chain 

emerges especially with regard to the micro- and nano-scale, 
which is based on a couple of reasons:  

Fig. 2: a) Tungsten made STM-tips at low magnification in 
their holder on a linear actuator. b) Single STM-tip observed 
at a higher magnification. The tips tip is referred to as the tool 
center point (TCP). 

• Small position tolerances in relation to the part size 
on the macro-scale lead to huge tolerances on the 
nano-scale. Consequently, the exact position of 
every part has to be measured and recorded 
individually. 

• Parts, which exhibit a high degree of similarities on 
the macro-scale, can exhibit a high degree of 
individuality on the nano-scale. Thus, for finding 
and tracking STM-tips reliably in high 
magnifications, the visual object recognition must 
either know the individual shapes of the tips or it 
must be able to recognize tips by their common 
shape properties. 

• The differentiation between wasted and usable parts 
is often possible only at high magnifications, where 
details of part shape and texture are visible and 
analyzable. 

• The parts tool center point (TCP), i.e. the point on a 
part which is used as the centre of reference for 
assembly, can for nano-assembly only be defined in 
a high-magnification observation, because of the 
limited accuracy in the image recognition (Sievers 
and Fatikow, 2006, Wich and Hülsen, 2008, Wich et 
al., 2006). 

These arguments reveal that for nano-assembly purposes it is 
necessary to provide very flexible but robust tasks and 
subtasks, i.e. precise actuators and sensors on the hardware 
side as well as a robust and flexible control and image 
recognition infrastructure. 
Until now it has been assumed that the registration and 
cataloguing is performed in a separate, the actual assembly 
process preceding, task. This “warehouse” approach has 
several advantages: Based on the recorded information (e.g. 
position, images in several magnification levels etc.), distinct 
rules for collision prevention can be derived. Furthermore, 
the information about the geometric properties of the parts 
can be used for assembly of selected parts which individual 
properties fit to one another (e.g. “compensatory tolerance 
assembly”). Alternatively, it is also possible to split the 
warehouse-task and integrate it separately into the first 
handling task (i.e. task “Handling I” in Fig. 1) for every 

 
a) 

2mm 

 
b) 

10µm 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12752



 
 

     

 

assembly cycle. This “inline”-approach also provides several 
advantages: Firstly, the amount of data provided for the 
whole parts database can be reduced tremendously, i.e. one 
entity per STM-tip respectively CNT can be sufficient. 
Secondly, the inline-recorded dataset is very fresh compared 
to datasets recorded in a warehouse task. Thus, negative 
effects influencing the reliability of the datasets like thermal 
drifts in the actuators, charging effects etc. affect the 
assembly process less. For both the “warehouse” and the 
“inline” approach, the subtask-count is approximately equal, 
with a slight tendency to fewer tasks for the “inline” 
approach, depending on the individual organization of the 
subtasks. 
In order to implement either an “inline” or “warehouse” task, 
a dedicated infrastructure is necessary. Besides the 
requirements like position or measurement accuracy etc. for 
the hardware side, the control systems for the actuators have 
to be flexible with regard to their feedback sensor (e.g. 
onboard position sensor for low magnifications, image 
recognition for high magnifications (Wich and Hülsen, 2008). 
Thus, the data of the various sensors have to be provided to 
multiple control loops, which requires a communication 
system with sufficiently low latency and high data-
throughput. Compared to macro-scale assembly processes, 
the number of subtasks is higher on the micro- and nano-
scale. In order to allow for flexible and robust 
implementation of the process plan, a specialized high level 
control system is necessary. This system will be described in 
the next section. 

2. CONTROL SYSTEM 

2.1 Control System Architecture 

The architecture for the automated bonding of CNTs is the 
distributed control architecture for automated nano-handling 
(DCAAN) (Stolle, 2007). For our purpose the system has 
been adapted to our hardware requirements.  

Sensor
Server

High-level
Control

Vision
Sensor 1FEI SEM

LoLeC SmarAct CU3D

RemoteSEM

Sensor 1CU 3D

 

Fig. 3: DCAAN components involved in the automation 
process with control connections (solid black arrows) and 
sensor data connections (dotted blue arrows).  

The system components (Figure 3) involved in the warehouse 
task for STM tips are:  

• LoLeC SmarAct CU3D – low-level controller 
(LoLeC) for a cartesian (x,y,z) actuator group. It 
receives positioning commands from high-level 
control and executes them closed- or open-loop. 

• Vision – image acquisition software that extracts 
position data from camera / SEM images and sends 
the position data to SensorServer 

• SensorServer – receives sensor data at different 
update rates from sensor programs. LoLeCs and 
high-level control can request these measurements.  

• RemoteSEM – SEM interface for setting and getting 
SEM specific parameters like scan field area, 
brightness, beam shift, etc. 

• High-level Control (HiLeC) – processes user input 
and automation sequences by sending control 
messages to all other components in the network. 

The architecture uses Common Object Request Broker 
(CORBA) of the Object Management Group (OMG) as 
network middleware for communication. So every 
component is a C++ based server. All DCAAN components 
where set up on one dual core PC for the experiments. 
However it is possible to run almost all parts on different PCs 
for better scalability. RemoteSEM is the only exception 
because it requires a direct link to the SEM.  

2.2 Process automation in HiLeC 

HiLeC ist the automation control system. For this pupose it is 
able to process user input (e.g. tele-operation) as well as 
processing sequences of control commands. The automation 
of CNT bonding has very high demands on the automation 
language. Therefore the automation sequence itself is written 
in C++ as part of HiLeC. 
Every DCAAN component specifies its own process 
primitives as a list of commands, parameters and return types. 
This specification is read by HiLeC at connection time. The 
process primitives are called by HiLeC inside the command 
execution scheduler asynchronously. The components 
process these calls and return the result and execution status 
(e.g. successful or failed). In an automation sequence process 
primitives can be used as synchronous or asynchronous 
commands. The commands are triggered by inserting 
command strings into the scheduler, which hides the pure 
asynchronous network communication.   
Tasks or subtasks are defined in HiLeC as C++ functions 
combining several process primitives (Fig. 4). While process 
primitives are single DCAAN component commands, tasks 
can only be applied if the system is in a appropriate state (i.e. 
all preconditions are met). They should provide sufficient 
error checking such that after execution certain 
postconditions do hold.  

Fig. 4: Example task without error checking code that moves 
the actuator using visual feedback. As input magnification 
(mag), the tracking model and the coordinates (x,y,z) are 
given. 

 

sem.GetMagnification(old_mag); 
sem.SetMagnification(mag); 
vision.EnableModel(model,0,0,0); 
stm.StartClosedLoop(x,y,z); 
vision.DisableModel(model); 
sem.SetMagnification(old_mag); 
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2.3 Entities for parts 

In automation sequences like CNT bonding lots of 
information need to be stored (e.g. tool center point (TCP) 
positions, vision models, etc.) for later usage. This 
information is stored directly in HiLeC. The only exception is 
the model data for the vision tracking system, which is too 
much data such that it is not acceptable to transmit it through 
the network on every command. Therefore Vision keeps a 
local model database. In a future step the data might get 
stored in a database management system for better 
accessibility and data consistency. In an offline warehouse 
process most of the data is collected during the initialization 
phase ahead of or as first step of the automation sequence. 
Online algorithms in contrast acquire the data on demand and 
most often do not store them for later usage. During the 
offline warehouse task the following data entities are 
acquired:  

• Magnification level 
• Tip x,y position using axis internal sensors for every 

magnification step 
• A new tracking model for every magnification step 

and tip except for the lowest magnification 
• The position of the upper most part of the tip in the 

model (TCP) 
• Area of each pixel in meters 

This information is stored to be able to address every single 
tip at every magnification step. Similar data will have to be 
acquired for the warehouse step II for CNTs. 

3. IMPLEMENTATION OF THE WAREHOUSE TASK 

3.1 Process plan for the warehouse task  

Fig. 5 shows the flowchart for the “Warehouse task I”, which 
is used for finding and registration of the STM-tips. The first 
important step in this task is the recognition and thus 
localization of the single STM-tips position (“Localization-
step” in fig.5). For recognition of the STM-tips a Region-of-
Interest (ROI) is defined in the SEM image through which all 
the STM-tips are moved with constant velocity. The width of 
the ROI is chosen so that only one tip at a time is visible to 
the object recognition. For recognition and tracking of the 
STM-tips, a generic tip-model is used (cp. Section 4.3). 
These results are stored in datasets providing the estimated 
tip positions in actuator coordinates.   
In the successive “STM-tip”-loop (Fig. 5), every single tip’s 
characteristics, e.g. position, tip shape and orientation is 
recorded. Therefore, a second loop is used for repeated 
magnification and positioning of the tip in the centre of the 
SEM image. This is referred to as the Zoom-and-Center-step 
(ZAC-step) (Wich and Hülsen, 2008), which is repeated m 
times for every tip. In every magnification step, an image of 
the tip is taken, which is stored in the database as a model for 
this individual tip at the respective magnification. For the 
next higher magnification (m+1), the m-th image is scaled 
and stored as initial model.    
The warehouse task generates a complete set of the STM-tips 

characteristics, i.e. their positions on the STM-tip holder 
given actuator coordinates and tracking models for different 
levels of SEM magnification. 

3.2 Object recognition using generalized models 

The Vision program uses Normalized Cross-Correlation 
(NCC) pattern-matching for detecting and tracking objects in 
the SEM video frames. NCC uses model images to search for 
object occurrences in an image. Each occurrence is assigned 
a score (a real value between 0% and 100%), which indicates 
the degree of similarity between the model and the 
occurrence. A score of 100% is given if occurrence and 
model are identical.    
Several factors can have a negative influence on the 
reliability of the NCC-based object recognition: noise in the 
image, overlapping objects, deformations of the object shapes 
caused by non-linear geometry of the image acquisition, 
motion-blur if objects move too fast, vibrations of the tips 
induced by high-frequent motions of the slip-stick drives and 
by accelerations. All these factors decrease the score so that 
the recognition can miss objects it should detect. On the other 
hand, objects that are no model occurrences but yield a high 
score can lead to false detections. To prevent wrong 
detection, optimal score threshold values have to be chosen. 
Other counter measures include the optimization of SEM 
scanning parameters like increasing the beam current to 
reduce noise (see below) and optimizing brightness and 
contrast. 
The shapes of STM-tips are similar enough to use one 
generic model image for the detection of different tips. The 
generic model is a high-quality snapshot image of the upper 
end of an STM-tip that is considered representative and has 
an undistorted, clean shape. The generic tip model should 
yield high scores for a great variety of tip shapes. To improve 
scores for tips that differ greatly from the model, the model 
and video frames can be blurred before the NCC recognition 
is performed. Figure 6 shows the measured scores for six tips 
moved through the image recognition area (ROI) with 
constant velocity. The model image was taken as a snapshot 
of STM-tip 5. The diagram shows the scores of all six tips for 
different degrees of blurring with a Gaussian filter. The 
jagging of the curves at the rising and falling slopes is caused 
by distortions of the SEM scanning at the left and right 
border of the ROI. It is not surprising to see an almost perfect 
score for model 5 if model and tip are sharp, i.e. not blurred, 
since both are identical. The scores for tips 1 to 4 are 
relatively low, especially for tip 3. The situation changes if 
blurring is applied to the model and/or the video frames. The 
score for tip 5 decreases slightly because tip and model are no 
longer identical (the image is blurred with a Gaussian with 
standard deviation 1, the model with s.d. 4). On the other 
hand, the scores for tips 1 to 4 are now considerably higher. 
One reason for this result is that blurring suppresses noise, 
which, as noted above, is one cause for a bad score. Blurring 
also makes objects more similar to each other because it 
eliminates image details. STM-tip images differ mostly in 
details, so their blurred versions are more similar and 
therefore yield a higher correlation score. It should be noted 
that this effect is not always desired in object recognition. 
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Making objects more similar in the image pre-processing 
increases the risk of false detections. A balance between 
improved correct detection and the risk of false detection has 
to be found. Since in the localization-step STM-tips are the 
only objects visible, false detections cannot occur. Blurring is 
therefore risk-free in this task. 

 

Fig. 5: Process-flowchart for of the warehouse task I, i.e. 
automated finding and registration of the STM-tips 
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Fig. 6: Measured scores during the tip localization. The single 
curves are recorded by moving all STM-tips trough the ROI. 

In Fig. 7 the average over the measured scores is plotted 
against the different degrees of blurring. This figure shows 

that STM-tips can be detected during the localization with 
NCC pattern recognition and optimized settings for hard- and 
software. With blurring applied, a score threshold of 60 
should allow a robust detection of tips during the localization 
step. Later on in the assembly process, when every single 
STM-tip is tracked using its original model recorded during 
the warehouse task, a threshold score of 80% is applied. 
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Fig. 7: Comparison of the tracking scores for tip 3 and 5.  
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Fig. 8: The object tracking score plotted against the probe 
current with the sample count, which is proportional to the 
scan time, as a parameter. The black arrows indicate the trend 
for relevant process parameters, i.e. SEM resolution, subtask 
reliability and velocity. 

3.3 The relation between SEM-parameters and object 
recognition and tracking 

During many process subtasks, closed loop positioning based 
on sensor feedback data derived from image recognition and 
tracking is used, utilizing the SEM as vision sensor (Jähnisch 
et al., 2005, Sievers et al., 2006). The noise in SEM-images 
depends on the scan time and the beam current (Reimer, 
1998). The duration the beam stays on the position that is 
mapped to an image pixel is controlled by the sample-count 
parameter. However, also the resolution of the SEM depends 
on the beam current, i.e. the resolution increases with 
decreasing beam current. Image recognition and tracking 
algorithms depend on a certain image quality for reliable 
tracking, although special algorithms have been developed 
for SEM-based recognition and tracking (Sievers and 
Fatikow, 2006) . The general relationships between SEM-
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beam current and its resolution, object tracking score and 
subtask reliability, sample count and subtask velocity are 
shown in Fig. 8. Due to the discrepancy between the above 
requirements, a specialised approach for the warehouse tasks 
has been chosen. In general, the SEM’s beam current is set to 
meet the least necessary resolution in the whole process, e.g. 
a probe current of 4 pA. For low sample counts, i.e. fast scan 
rates, the object tracking score is close to the critical limit of 
80%. Thus, the sample count has to be increased, which 
results in a decreased process velocity, due to the decreased 
update rate of the “vision” sensor system. In the single ZAC-
steps, the specimen current is switched between a high value, 
e.g. 5.2 pA, for low magnification, and 4.0 pA for higher 
magnification. For registering the STM-tips’ TCP, the sample 
count is additionally increased to maximize the tracking 
score. 

4. CONCLUSION 

For automation of assembly tasks on the nano-scale, the 
process of bonding CNTs to STM-tips has been chosen as an 
example. The process flowchart shows the single tasks used 
for accomplishing this process in Fig. 1. The core tasks deal 
with the assembly process itself, however, the need for a 
“warehouse” process for automated localization and 
registration of the parts needed for assembly has been 
derived. Although the warehouse tasks consist of many 
subtasks and can therefore be a source for process failures, it 
has been shown that this task is essential for successful 
process automation on the micro- and nano-scale.  
However, these warehouse tasks also offer chances for 
improving nano-assembly, due to differentiation between 
wasted and usable parts and exact determination of the tool 
center point.  

In the second section, the control system architecture for 
realising assembly tasks on the micro- and nano-scale has 
been presented. The main components are the high-level 
control unit (HiLeC), a sensor server for distributing sensor 
data to the high level control. low-level control units (LoLeC) 
and the image recognition and object tracking software 
transmit measured and computed data to the sensor server. 
The HiLeC is used for the actual implementation of the 
automation routines and for storing the parts entities.   
Emphasis has been laid on the “Localization step” for finding 
the STM-tips using image recognition with generalized 
models. It has been shown how generalized models can be 
created by blurring sharp models. The results of the 
localization step using sharp and blurred models respectively 
object images have been presented for a setup consisting of 
six STM-tips with very different qualities. The measurements 
revealed that localization using blurred models and blurred 
object images is very promising, as the relevant recognition 
score for parts with a high degree of individuality can be 
improved significantly. Moreover, the influence of the SEM’s 
specimen current and scan time on the object tracking score 
has been described. Based on these measurements, the 
consequences on process automation have been described. 
 

As a conclusion it can be said, that the warehouse task is of 
significant importance for successful process automation on 
the micro- and nano-scale. We would like to thank the 
German Ministry for Education and Research (BMBF) for 
funding this project under the number 16 SV 2276. 
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