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Abstract: In this paper, a systematic procedure is proposed for the generalized design of decoupling 

multivariable controller, which may result in a complete decoupling, partial decoupling or no decoupling, 

to achieve a better disturbance rejection response. Before the decoupling, a relative load gain (abbr. RLG) 

is defined to determine which control loops need to be decoupled and which control loops don’t. By a 

transitional design matrix and its adjoint matrix, a completely or partially inverse-based multi-input-multi-

output (MIMO) decoupler with generalized form is presented to decouple the process into the specified 

open-loop process. This decoupled open-loop process is further decomposed into several equivalent single-

loop systems, equivalent open-loop processes and disturbances. Finally, the controller can be synthesized 

based on each equivalent system for disturbance rejection. Stability robustness of the system is tuned with 

measures for the modeling errors in the decoupled open-loop process. Simulation examples are illustrated 

to show that this proposed method is effective for disturbance rejection in MIMO systems. 

 

1. INTRODUCTION 

Most chemical plants belong to multi-input-multi-output 

(MIMO) processes having multiple delays. The main 

characteristic of MIMO process is interaction existence 

between loops and that leads to difficult use for the 

conventional SISO controllers. Because of this, many 

methods have been developed to construct multivariable 

control systems. Lots of them intend to make the system 

strictly or roughly dominated by diagonal elements or to 

reduce the effect from loop interactions. In general, these 

multivariable controllers are considered to have better control 

ability than multi-loop SISO controllers. However, 

Niederlinski (1971) reveals that multiloop SISO controllers 

may give better load rejection than inverse-based 

multivariable controllers for some cases. To analyze 

differences of load responses between multi-loop SISO 

controllers and inverse-based multivariable controllers, 

Stanley et al. (1985) proposed the relative disturbance gain 

(RDG) which is defined as a ratio of the manipulated variable 

under perfect control at steady-state and single-loop control. 

Actually, the control structure that has superior ability for 

disturbance rejection may be neither the multi-loop SISO 

controller nor inverse-based multivariable controller (Chang 

and Yu, 1992; Fragervik et al., 1983). It can be any structure, 

for example, partial decoupling, that is a structure between 

two extreme cases. Some forms of partial decoupling have 

been proposed such as block diagonal decoupling (Linneman 

and Wang, 1993) and triangular decoupling (Gómez and 

Goodwin, 2000). Most of them only discuss the delay-free 

systems which seldom exist in chemical processes. Although 

some one-way decoupling methods (Fragervik et al., 1983; 

Arkun et al., 1984) can be easily applied to TITO systems 

having multiple delays, they are difficult to extend to higher 

dimensional systems. Besides, most methods only pick on 

one control structure and lack a criterion to select a proper 

structure. 

In this paper, a systematic procedure is proposed to design 

the multivariable controller with generalized form to perform 

well disturbance rejection. A relative load gain (RLG) is 

defined to determine the decoupling structure even for the 

partial decoupling case. Moreover, RLG has explicit physical 

meaning and direct connection to control performance. A 

method is proposed to design the generalized decoupling that 

could be a complete decoupling, partial decoupling or non-

decoupling. Furthermore, measures of modeling error are 

given to facilitate the analysis of system robustness. 

2. GENERALIZED DESIGN OF DECOUPLING 

A multivariable control scheme with unity feedback loop is 

shown in Fig. 1. To control this MIMO system, two common 

methods are usually used. One is the complete decoupling 

(i.e. the inverse-based multivariable control) that results a 

fully controller ( )K s  and inverse-based decoupler ( )D s . 

The other is non-decoupling (i.e. the decentralized control) 

that brings ( )K s  decentralized and ( )D s  identity. Consider 

a n n×  system as the following: 

 ( ) ( ) ( ) ( ) ( )
L

Y s G s U s G s l s= +  (1) 

where, ( )Y s  and ( )U s  designate the output and input 

vectors, ( )l s  and ( )
L

G s  represent the load and its transfer 

function vector (abbr. TFV), and ( )G s  is the process transfer 

function matrix (abbr. TFM). Both ( )G s  and ( )
L

G s  are 

open-loop stable. The objective of generalized decoupling is 

to remove loop interactions in some loops but to remain them 
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Fig. 1. A multivariable control scheme with unit feedback 

in the other loops. First, ( )G s  is  factorized into two parts: 
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where { }1 2
min , , ,

i i i in
θ θ θ θ= ⋯ . For explicit explanation, 

( )
o

G s   is permuted to the following form, that is: 

11 12 11 12 need to be decoupled
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where 
11

m m

o
G R

×
∈ , 

( )
12

m n m

o
G R

× −
∈ , 

( )
21

n m m

o
G R

− ×
∈ , and 

( ) ( )
22

n m n m

o
G R

− × −
∈ . The upper m loops need to be decoupled 

but the other loops do not. Define a transitional design matrix: 

 

( ) ( ) ( )

11 12
                  

           

o o

n m m n m n m

G G

A

O I
− × − × −

=

 
 
 
 
 

⋮

⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋮

 (4) 

where ( ) ( )n m n m
I

− × −
 is an identity matrix with dimension 

( ) ( )n m n m− × −  and ( )n m m
O

− ×
 is a zero matrix with 

dimension ( )n m m− × . The dynamics of the upper part of 

( )
o

G s  are preserved in ( )A s  in order to decouple these 

loops. In the non-decoupling part, ( )A s  is designed by 

( ) ( )n m n m
I

− × −
 and ( )n m m

O
− ×

 instead of 
21o

G  and 
22o

G . Based on 

the design matrix ( )A s , an effective design of decoupler is 

proposed as the following: 

 

{ } { }
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=

−
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where { }( ) diag ( )
i

Z s z s= , { } [ ]adj ( ) ( ); , 1, ...,
ji

A s A s i j n= = , and 

( )
ij

A s  is the cofactor of ( )
ij

a s . Notice that each diagonal 

element ( )
i

z s  is given as a simple and stable transfer 

function. The decoupler are open-loop stable, since ( )G s  is 

open-loop stable, as has been mentioned. Then, the 

decoupled open-loop process ( )Q s  is given as: 

{ } ( )

{ } { } { }

{ } ( )

{ } { } { }

11

-1 1

21 11 11 22 21 11 12 11

11

21 11 22 11 21 11 12

11 12

21 22

det
   

det det

det
   

adj det adj
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m m o m n m

o o o o o o o o
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o o o o o o o

o o

o o

Q G D

I G O
Z

G G G G G G G G

I G O
Z

G G G G G G G

Q Q

Q Q

× × −

−

× × −

= Θ

= Θ
−

= Θ
−

= Θ

 
 
 

 
  

 
  

  (6) 

From (6), the partial decoupling is obtained and ( )Q s  are 

open-loop stable. When ( )A s  is specified as the entire 

matrix of ( )
o

G s , (6) results the complete decoupling that is 

{ }det
o

Q G Z= Θ . So, the above derivations show that the 

proposed method can generate either the partial decoupling or 

complete decoupling. 

3. GENERALIZED MULTIVARIABLE CONTROLLER 

DESIGN 

A generalized multivariable controller ( )K s  can be regarded 

as combination of a decentralized controller ( )C s  and a 

generalized decoupler ( )D s , as shown in Fig. 1. As the 

mention of generalized decoupling, a criterion for control 

structure selection is needed to specify the design matrix first 

to design the decoupler in (5). 

3.1 Control Structure Selection 

The effect of load change can be suppressed or amplified via 

process interactions. If interactions amplify the load, the 

decoupling control may be required. On the other hand, 

interactions favour the system for load rejection. Therefore, a 

measure for evaluation the controller structure vs. disturbance 

rejection capability is desirable. Here, a relative load gain 

(RLG) is defined as the following 

 
all loops except  closed

all loops open

  i

i

i

i

y

l

y

l

γ

∂

∂
=

∂

∂

 
 
 

 
 
 

 (7) 

Notice that, theoretically, errors caused by the disturbances 

can only be eliminated after a dead-time period so the error 
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magnitude in the output is proportional to the load gain of the 

system during this period. Thus, RLG is closely linked to the 

control performance. From the definition in (7), RLG can be 

computed as: 

 
(0)

(0)

Li Li

i

Li Li

g k

g k
γ = =  (8) 

where 
Li

k  and 
Li

k  are the gains of ( )
Li

g s  and ( )
Li

g s , 

respectively. ( )
Li

g s  is defined as the effective disturbance 

that means the total effect of load input to the ith loop when 

all loops except i are closed. In order to derive the ( )
Li

g s , the 

matrices in (1) are first permuted and partitioned into the 

following forms: 

( )

( ) 12

( ) ( )

21 22

i

i ii

i i

g G
G

G G
=
 
 
 

; 
( )

( )

2

0
;

0

Cii

C i

C

g
G

G
=
 
 
 

( )

( )

2

Lii

L i

L

g
G

G
=
 
 
 

 (9) 

Then, the effective disturbance of the ith loop is given as: 

( ){ }1 1
( ) ( ) ( ) ( ) ( )

12 22 22 2 2

i i i i i

Li Li C L
g g G G I I G G G

− −

= − − +    (10) 

The RLG can be applied to determine that the loop favours to 

be decoupled or not. Furthermore, the outputs that have their 

absolute value of 
i

γ  more than one can be suggested to be 

decoupled so MISO controllers are used here. On the other 

hand, 1
i

γ ≤ , these loops favour to use SISO controllers. 

The selection of controllers can be based on the following 

criterion: 

1;  MISO controller is preferred for 

1;  SISO controller  is preferred for 

i i

i i

y

y

γ

γ

>

≤





 

Notice that, if both SISO and MISO controller are needed in 

an MIMO process, the controller needed will be a partial 

decoupling controller. 

3.2 Design of ( )D s  

According to the RLG in (7), the design matrix can be 

specified by the following criteria: 

 
{ }
{ }

, ,

, ,

( )  ( )   1
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( ) ( )   1

i oi i

i i i
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A s

A s I s i i
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=
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where 
,

( )
i

A s
•

, 
,

( )
oi

G s
•

, and 
,

( )
i

I s
•

 designate the ith rows 

of ( )A s , ( )
o

G s , and a unit matrix I , respectively. To 

implement ( )D s  of (5), each ( )
ij

A s  is reduced to a simpler 

transfer function, that is, 

( )

( ) ( )

,

1

2

,1 ,2 ,

1

1

ˆ( ) ( )

1 1

n
A s A

r i

ij i

ji p

A A A

p p g i

i

k e s

s A s

s s s

δ τ

φ

τ τ τ

−

=

=

+

= =

+ + +

∏

∏
 (12) 

where n and p are the number of first order leads and lags 

respectively and they obey the inequality of 2 0p n+ − > . 

The parameters in the model of (12) can be obtained by 

solving the following optimization problem: 

 ( ) ( )
2

0

ˆarg min   
f ij ij

A j A j d
ω

ω ω ω= −∫
P

P  (13) 

where 
, , ,1 ,2

=[ , , , , and ]
A A A A

g i r i p p
δ τ τ τ τP , 

f
ω  is a frequency band 

which is chosen as ten times frequency bandwidth of ( )
ij

A s . 

In order to make each element of ( )D s  realizable, a number 

of excess zeros of  ( )iz s  is given as the following: 

 { }[ ( )] min [ ( )],  1, 2,...,
ez ep

i ji
N z s N s j nφ= =  (14) 

where [ ( )]
ep

ji
N sφ   is the number of excess poles in   ( )

ji
sφ . 

From (6), the dynamics of decoupled parts in ( )Q s  are 

dominated by { }11
det

o
G . According to that, the decoupled 

loop in the proposed design can be obtained by a simpler 

expression as the following: 

 { }
1

( )          1
n

ij

ij i

j

w s g A i i γ
=

= ∀ ∈ >∑  (15) 

( )w s  can be implemented by a reduced order form of the 

following, 

( )

( ) ( )

,

1

2

,1 ,2 ,

1

1

( ) ( )

1 1

ex

ex

n
sD D

r i

soi

p

D D D

p p g i

i

k e s

s s e

s s s

θ

θ

τ

ϕ ϕ

τ τ τ

−

−=

=

+

= =

+ + +

∏

∏
 (16) 

Similarly, the parameters in (16) can be obtained by solving 

the optimization problem as in (13) except that ( )sϕ  and 

( )w s  are instead of ˆ ij
A  and ( )

ij
A s . 

f
ω  is chosen as ten 

times frequency bandwidth of ( )w s . Then, by re-allocate the 

pole(s) and zero(s) in ( )sϕ , ( )iz s  provides the availability 

to modify undesirable dynamic characteristics in ( )w s , and 

thus can improve the dynamics resulting from some large 

time constants or excessive lags. The decoupler ( )D s  is thus 

implemented via the transfer functions of the following: 

 ˆ( ) ( ) ( ) ( ) ( ),    ,
ji

ij ij j j
d s s z s A s z s i j nφ= = ∀ ∈  (17) 
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An index is defined to indicate the effectiveness of 

decoupling, 

 
( ) ( )

( )
( ,

ˆ
max       0,

ji ji

ji g i

ii

q j q j

q jω

ω ω
ε ω ω

ω

−
= ∀ ∈   (18) 

where 
1

n
ik

ji jk i

k

q g A z
=

=∑ , 
1 1

ˆˆ
n n

ik

ji jk ki i jk i

k k

q g z g A zφ
= =

= =∑ ∑ , and 

,g i
ω  is the frequency bandwidth of ( )

ii
q s . The index in (18) 

means the relative discrepancy between ( )
ji

q s  and ˆ ( )
ji

q s . 

If this value is too large to be not satisfactory, the model 

orders of ( )sφ  need to be increased. In other words, 
ji

ε  

serves as a tuning factor to improve the stability robustness of 

the system. For good stability robustness, it is recommended 

that 
ji

ε  is less than 0.1. 

3.3 Design of ( )C s  

As the multivariable control scheme in Fig. 1, after the 

decoupling, a decentralized controller ( )C s  is designed for a 

new open-loop process ( )Q s  that is presented as the dotted 

block in Fig. 1. For an inverse-based multivariable controller 

or a multivariable controller with complete decoupling, the 

process is decoupled into several individual open-loop 

processes ( )
ii

q s  so the design of each decentralized 

controller ( )
i

c s  can be simplified as the design in single-

loop system with each open-loop process ( )
i

q s . However, 

the generalized decoupling may give partial results of 

complete decoupling as the upper part of ( )Q s  in (6) and the 

other results of non-decoupling as the lower part of ( )Q s  in 

(6). Because the generalized decoupler may produce two 

different kinds of open-loop processes, the design of ( )C s  

may suffer two design problems. In order to simplify the dual 

design problems to one design problem, this decoupled 

process is decomposed into several effective processes that 

have been presented in elsewhere (e.g. Huang et al., 2003). 

Furthermore, the effective disturbance to each effective 

process can be derived as in (10). The decoupled process is 

first found according to the proposed method, that is: 

 { }( ) ( )adj ( ) ( )Q s G s A s Z s=  (19) 

Next, the matrices are permuted and partitioned into the 

following forms: 

( )

( ) ( ) ( )12

( ) ( )( ) ( )

2 221 22

0
;

0

i

i Lii i iii

Li ii i

L

c gq Q
Q C G

C GQ Q
= = =
     
     

    
;   (20) 

Then, the equivalent single-loop system for the ith loop is 

presented as: 

     

( ){ }
( ){ }

1 1
( ) ( ) ( ) ( ) ( )

, 12 22 22 2 21

1 1
( ) ( ) ( ) ( ) ( )

, 12 22 22 2 2

i i i i i

E i ii

i i i i i

E Li Li L

q Q Q I I Q C Q

g g Q Q I I Q C G

q
− −

− −

= − − +

= − − +

  

  

 (21) 

According to the simplification in Huang et al. (2003), the 

equivalent loop and disturbance can be rewritten to the 

following forms, that is 

 

1
* ( ) ( ) ( ) *( )

, 12 22 21

1
* ( ) ( ) ( ) *( )

, 12 22 2

i i i i

E i ii

i i i i

E Li Li L

q q Q Q Q H

g g Q Q G H

−

−

= − ⊗

= − ⊗

  

  

 (22) 

where 
*( ) * * * * *

1 2 1 1
[ , , , , , , ]

i T

i i n
H h h h h h

− +
= ⋯ ⋯  and each 

*

j
h  is 

designed for ( )
ii

q s  and ( )
Li

sg . Then, the reduced models of  

*

,E i
q  and 

*

,E Li
g  can be found by fitting their frequency 

responses as mention earlier. After these procedures, the 

controller design for ( )
i

c s  becomes one SISO control 

problem. The process output in response to a load ( )l s  is: 

 [ ]
*

, *

, ,*

,

( )
( ) ( ) 1 ( )

1 ( ) ( )

E Li

i E Li E i

E i i

g s
y s g s h s

q s c s
= = −

+
 (23) 

where 
,
( )

E i
h s  is the equivalent complementary sensitivity 

function and is designed for the equivalent system. By the 

method of Huang and Lin (2006), 
,
( )

E i
h s  can be found to 

minimize an integral of the absolute error (IAE) at an 

assigned peak value of sensitivity function. Then, ( )
i

c s  can 

be synthesized by: 

*

, ,

* *

, , , ,

( ) ( )1 1
( )

( ) 1 ( ) ( ) 1 ( ) i

E i E oi

i s

E i E i E oi E oi

h s h s
c s

q s h s q s h s e
θ−

= =
− −

 (24) 

where 
*

i
θ  is the delay time of 

*

,
( )

E i
q s  and 

,
( )

E i
h s , and,  

*

,
( )

E oi
q s  and 

,
( )

E oi
h s  are the delay-free part of 

*

,
( )

E i
q s  and 

,
( )

E i
h s . By applying the first order Pade’s approximation for   

in (24), the controller ( )
i

c s  can be given as: 

*

, ,

* * *

, ,

( ) ( )(1 / 2)
( )

( ) (1 / 2) ( )(1 / 2)

f i E oi i

i

E oi i E oi i

g s h s s
c s

q s s h s s

θ

θ θ

+
=

+ − −
 (25) 

where ( ), ,( ) 1 1
f i

n

f i
g s sτ= +  and 

,f i
τ  is the filter time 

constant and has a default value as 
*

0.05
i

θ . Finally, the 

generalized multivariable controller can be obtained by: 

 ( ) ( ) ( )    ,
ij ij j j

k s s z s c i j nφ= ∀ ∈  (26) 
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4. STABILITY AND ROBUSTNESS 

Assume that m loops are decoupled in an arbitrary n n×  

system, where [ ]1, 2, ,m n∈ … . For convenient analysis, the 

loops the have been decoupled are permuted to the forehead 

loops of the system, hence the open-loop process ( )Q s  and 

the controller ( )C s  are rewritten as the following: 

[ ]

[ ]

[ ]

[ ]

11

21 22 ( )

1

2 ( )

     decoupling part

( )

     non-decoupling part

     decoupling part

( )

     non-decoupling part

m n

n m n n n

m n

n m n n n

Q O

Q s

Q Q

C O

C s

O C

×

− × ×

×

− × ×

=

=

 
 
 
  

 
 
 
  

⋯⋯⋯⋯⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋯⋯⋯⋯⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

 (27) 

where [ ]
1 1,

diag
ii

C c= , [ ]2 2,
diag

jj
C c= , [ ]

11 11,
diag

ii
Q q= , 

[ ]21 21, ji
Q q=  and [ ]22 22, jj

Q q=  for all [ ]1,2,...,i m∈  and 

[ ]1, 2,...,j m m n∈ + + . According to the proposed design, 

the control scheme in Fig. 1 can be regarded as an equivalent 

multivariable control scheme as shown in Fig. 2 that 

conjugates a multivariable decentralized control system with 

some single-loop control systems. Because each element of 

the process ( )G s  in (1) is an open-loop stable function, the 

decoupled open-loop process ( )Q s  in (19) and the 

generalized decoupler in (17) are designed to be open-loop 

stable. Under the conjunctive framework in Fig. 2, the 

stability of the system can be individually discussed by two 

steps: one is 
1
( )C s  stabilizes a diagonal system 

11
( )Q s  and 

the other is 
2
( )C s  stabilizes a full system 

22
( )Q s . However, 

the approximation of ( )D s  in (17) leads to the existence of 

modeling error in the desired process ( )Q s . Thus, the 

nominal stability of the proposed control scheme in Fig. 1 is 

guaranteed by designing ( )C s  to satisfy the following 

conditions: 

(1) ( )C s  stabilizes ( )Q s  in a simple closed loop. 

(a) 
1,

( )
ii

c s  stabilizes 
11,

( )
ii

q s  for all [ ]1, 2,...,i m∈ . 

(b) 
2, 22 ,

1 ( ) ( ) 0
ii E i

c s q s+ =  has no RHP zero, and 
22 ,

( )
E i

q s  

has no RHP pole for all [ ]1, 2,...,i m m n∈ + + . 

(2) 

[ ]{ } [ ]{ }
1 1

( ) ( ) ( ) ;   [0, )
( )

C j I Q j C j
Max Q j

ω

σ ω ω ω ω
σ ω

−
− + ≤ ∀ ∈ ∞

∆

 where 
22 ,E i

q  is the effective process of 
22

Q , and σ  

denotes the largest singular value.  

 

Due to approximation made in (12), ( ) ( )G s D s  may not 

equal to ( )Q s  exactly. As a result, a model error (i.e. ( )Q s∆ ) 

originating from this approximation can be estimated by the 

index 
ij

ε  of (18) in the frequency range of concerned for 

nominal stability, and then the second condition can easily be  

 
 

Fig. 2. An equivalent multivariable control scheme in the 

generalized decoupling 

 

satisfied. As for stability robustness to modeling error of 

( )G s , consider the control system has an additive uncertain, 

where the real process is presented as: 

 ( ) ( ) ( )G s G s s= + ∆ɶ  ;     ( ( )) ( )j jσ ω ω∆ ≤ ℓ  (28) 

where the perturbation ( )s∆  is bounded on ( )jωℓ . And, the 

system will be robust stable iff: 

 [ ] [ )( ) ( ) 1,     0,M j jσ ω ω ω< ∈ ∞ℓ  (29) 

where [ ]
1

( ) ( ) ( ) ( ) ( ) ( )M s D s C s I G s D s C s
−

= − + . Thus, by 

selecting an adequate 
,
( )

E i
h s , the controller ( )

i
c s  is 

synthesized also to satisfy the robust stability in (28).  

Typically, the peak value of sensitivity function, i.e. 

( ),max 1 E ih j
ω

ω− ,  is assigned in the range of 1.2~2.0 for 

stability robustness. 

 

5. ILLUSTRATIVE EXAMPLE 

Consider the following transfer function matrix for the 

process and transfer function vector for load. 

5 5 5

10 10 10

7 4 5

10 1 20 1 30 1
( ) ; ( )

4 6 4

10 1 20 1 30 1

s s s

Ls s s

e e e

s s s
G s G s

e e e

s s s

− − −

− − −

+ + +
= =

−

+ + +

   
   
   
   
      

 (30) 

First, the process TFM is factorized into two parts, that is: 

 

5

10

7 4

0 10 1 20 1

4 60

10 1 20 1

s

s

e s s
G

e

s s

−

−

+ +
=

−

+ +

 
  
  

   
  

 (31) 

The values of RLGs in both loops are computed by (7) as: 

1
1.53γ =  and  

2
0.29γ = . This result indicates that the first 

loop needs to be decoupled but the second loop does not. By 

(11), the transitional design matrix is given as:  

1,

7 4

10 1 20 1
A

s s
•

=
+ +

 
  

 and [ ]2,
0 1A

•
=  
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Table 1. The equivalent single-loop control systems 

To compute (14), a number of excess zeros of 1( )z s  and 

2
( )z s  are zero and one, respectively. Because the first loop 

obeys 1
i

γ >  , (15) gives the following relation: 

 
7

( )
10 1

w s
s

=
+

 (32) 

Based on 
1

[ ( )] 0
ez

N z s =  and 
1

[ ( )] 1
ez

N z s = , 
1

z  is specified 

as one and 
2
( )z s  is selected as (10 1)s +  to compensate the 

undesired pole shown in (32). By (17), the decoupler is 

determined as: 

 

( )4 10 1
1

20 1

0 7

s

D s

− +

= +

 
 
 
  

 (33) 

Then, the equivalent single-loop systems are found for the 

decoupled open-loop process { }adjG A Z . Their reduced 

models are shown in Table 1. Then, the equivalent 

complementary sensitivity functions are found by the method 

of Huang and Lin (2006) while the peak value of sensitivity 

function is assigned as 1.7. Next, controllers can be 

synthesized by (24) and the results are further reduced to the 

PID form as shown in Table 1. For comparison, two extreme 

control systems that mean the complete-decoupling and non-

decoupling are also designed by individually specifying 

( )A s  be ( )
o

G s  and I . Simulation results for a unit-step 

load input and their ISE values are given in Fig. 3. These 

results indicate that the proposed method can give the better 

load rejection than two conventional control methods. 

6. CONCLUSION 

To enhance the utility of decoupling control, a generalized 

design of decoupling is proposed to construct either complete 

or partial decoupling systems. An index of RLG is proposed 

to select the decoupling loops and further to determine the 

control structure. By a transitional design matrix, the 

resulting decoupler can decouple the process into the desired 

structure assigned by the RLG index. Then, a systematic 

method is proposed to construct the generalized multivariable 

 

Fig. 3. Responses of load rejection and their ISE values 

controller, which can provide a suitable controller that may 

be the fully multivariable controller, partially multivariable 

controller or decentralized controller, to achieve the better 

disturbance response. Furthermore, this method can applied 

for the complex processes which have higher dimensions and 

multiple time delays. The stability and robustness of the 

system is also included to take account of modeling errors 

and process errors. Simulation examples have been illustrated 

to show that the proposed method can obtain the 

multivariable controller having a suitable structure and is 

effectiveness in disturbance rejection. 

REFERENCES 

Arkun Y., Manouslouthakis, B., Palazoğlu, A. (1984). 

Robustness Analysis of Process Control Systems. A Case 

Study of Decoupling Control in Distillation. Ind. Eng. 

Chem. Process Des. Dev., 23, 93-101. 

Chang, J. W., Yu, C. C. (1992). Relative Disturbance Gain 

Array. AIChE J., 4, 521-534. 

Fagervik, K. C., Waller, K. V., Hammarström, L. G. (1983). 

Two-Way or One-Way Decoupling in Distillation? Chem. 

Eng. Commun., 21, 235-249. 

Gómez, G. I., Goodwin, G. C. (2000). An algebraic Approach 

to Decoupling in Linear Multivariable Systems. Int. J. 

Control, 73, 582-599. 

Huang, H. P., Jeng, J. C., Chiang, C. H., Pan, W. (2003). A 

Direct Method for Multi-Loop PI/PID Controller Design. 

Journal of Process Control, 13, 769-786. 

Huang, H. P., Lin, F. Y. (2006). Decoupling Multivariable 

Control with Two Degrees of Freedom. Ind. Eng. Chem. 

Res., 45, 3161-3173. 

Linneman, A., Wang, Q. G. (1993). Block Decoupling with 

Stability by Unity Output Feedback-Solution and 

Performance Limitations. Automatica, 29, 735-744. 

Niederlinski, A. (1971). Two-Variable Distillation Control: 

Decouple or Not Decouple. AIChE J., 17, 1261-1263.  

Stanley, G., Marino-Galarraga, M., McAvoy, T. J. (1985). 

Short-Cut Operability Analysis: 1. The Relative 

Disturbance Gain. Ind. Eng. Chem. Process Des. Dev., 24, 

1181-1188. 

 loop1 loop 2 

*

, ( )E iq s  
57

10 1

s
e

s

−

+
 

1058

20 1

se

s

−−

+
 

*

, ( )E Lig s  
55

30 1

se

s

−

+
 

10.31.14

5.14 1

s
e

s

−

+
 

,
( )

E i
h s  5

2

13.25 1

55.63 12.06 1

ss
e

s s

−+

+ +
 

101

4.67 1

se
s

−

+
 

( )
i

c s  

in PID 

form 

( )
( )

2
135.4 18.37 1

0.0375
22.8 1

s s

s s

+ +

+
 

( )
( )

2
100 25 1

0.0012
1.592 1

s s

s s

+ +
−

+
 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9951


