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Abstract: This paper highlights the importance of considering especially individual differences in 
intelligence when designing systems and interfaces due to their impact on operator performance in new 
and unfamiliar situations. For this purpose, an approach is introduced which allows assessing performance-
relevant abilities of the operators on the basis of their performance on everyday life tasks. In order to 
increase the overall human-machine system dependability, guidelines are derived about appropriate 
reconfigurations of the technical system and/or its interface on the basis of the assessed performance-
relevant abilities. The impact of this new approach to dependable system and interface design is discussed. 

 

1. MOTIVATION: HUMAN-CENTERED TECHNOLOGY 

Research in the field of human-centered technology is often 
motivated by developing technical systems which optimize 
the overall system performance in normal situations, in 
unanticipated circumstances and during system breakdowns. 
Two approaches to achieve this goal can be distinguished and 
are described in the following.   

1.1 Definition of an optimal “ level of automation”  

Some human-centered technology researchers aim at defining 
an optimal “level of automation”, i.e., the level of autonomy 
with which the technical system pursues its functions and at 
which the human-machine system performs best (e.g., 
Endsley & Kaber, 1997; Parasuraman, Sheridan, & Wickens, 
2000). Other researchers focus on specifying when the 
operator should be supported with automated functions to 
balance his/her current workload and, therewith, achieve a 
high overall performance level (e.g., Byrne & Parasuraman, 
1996; Hancock, Chignell, & Lowenthal, 1985), which is 
defined on the basis of the task’s degree of fulfillment. Both 
fields, i.e., the static definition of an ideal level of automation 
and the adaptive allocation of functions to the human 
operator or the machine, have also been combined (see e.g., 
Kaber & Endsley, 2004).  

1.2 Interface design 

Other approaches to enhance the performance of human-
machine systems aim at ameliorating the communication 
between the user and a machine. For this purpose, various 
guidelines for optimal interface design have been published. 
Examples are the Direct Manipulation Interface (DMI, 
Shneiderman, 1983), the Ecological Interface Design (EID, 
Vicente & Rasmussen, 1992), the Intuitive Interfaces 
(Baerentsen, 2000) or the Delegation-Type Interfaces (e.g., 

Parasuraman, Galster, Squire, Furukawa & Miller, 2005). 
The DMI has been defined by Shneiderman (1983) as an 
interface allowing the user to directly manipulate objects 
presented on the display. This manipulation should 
correspond at least loosely with the according manipulations 
in the physical/real world. The overall goal of the DMI is to 
make the interaction easier to learn, to give the operator 
incremental and rapid feedback, to complete tasks in less 
time and to make the overall system more dependable by 
reducing the number of human errors performed.  
The EID (Vicente & Rasmussen, 1992) extends the DMI and 
aims at providing optimal support for each level of cognitive 
control. The concept of cognitive control is based on the 
Skills, Rules, and Knowledge (SRK) model introduced by 
Rasmussen (1983), who distinguished three ways of 
interaction between human beings and their environment 
depending on the degree of novelty of a situation:  
1) Skill-based behavior (SBB) is highly automated, 

unconscious behavior, representing fluid sensory-motor 
performance. The perceptual-motor system controls the 
human behavior.  

2) Rule-based behavior (RBB) is controlled by rules or 
procedures, which are rules of thumb or effective know-
how. These rules are empirically derived informal cues 
that discriminate between the perceived action 
possibilities and allow choosing the supposedly best one 
without investigating great cognitive effort.  

3) Knowledge-based behavior (KBB) takes place in 
unfamiliar, unanticipated situations, in which no rules 
are available (Vicente & Rasmussen, 1992). In such new 
situations, the human being formulates goals based on 
analyzing the environment and the overall aims. Based 
on these goal formulations, plans are developed and 
selected to achieve the goals. The effects of different 
plans are tested based on internal representations or by 
experiments.  
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To support these three levels of cognitive control, the 
following guidelines are provided by the EID (Vicente & 
Rasmussen, 1992): 
1) SBB can be supported best if the interface provides the 

means to act directly on the display. The information on 
the display should be isomorphic to the structure of 
corresponding movements.  

2) In order to support RBB, the interface should provide 
cues or signs which optimally map the constraints of the 
work domain in question.  

3) To support KBB, the interface should display the 
relational properties of the work domain in the form of 
an abstraction hierarchy, which serves as an externalized 
mental model (see e.g., Vicente & Rasmussen, 1990). 
This mental model provides appropriate support for 
planning activities and thought experiments.  

The applicability of these guidelines have e.g. been 
empirically tested by Vicente, Christoffersen, and Pereklita 
(1995), and yielded experimental support.  

1.3 Relevance of individual differences 

The known interface design guidelines and approaches to 
statically or dynamically adapt the automated functions to 
optimize the performance of the human-machine system only 
consider the user in a very general way but ignore differences 
between users (but see research on dynamically allocating 
automated functions to the machine or the operator 
depending on his/her current level of workload as conducted 
e.g., by Parasuraman, 1990).  
The importance of considering individual differences is 
especially at hand when discussing the EID: The three levels 
of cognitive control proposed by the SRK model closely 
resemble the three phases of skill acquisition (see e.g., 
Fleishman, 1972): 
The first phase of skill acquisition takes place when the user 
is confronted with a situation the first time: Attention is 
focused on thoroughly understanding the task in question, 
building a cognitive representation, and working out a 
(potentially successful) solution. Performance is slow and 
error-prone. The description of this phase resembles the 
KBB. When an adequate cognitive representation of the task 
has been built, the learner proceeds to the second phase of 
skill acquisition and easier ways of achieving the same result 
are defined. Rules are worked out and fine-tuned. RBB takes 
place. In the last phase of the skill acquisition process, 
performance is fast and accurate. The task is fully automated 
and can be completed without much attention. SBB is 
controlling human behavior.  
Ackerman (1988) explained the performance of human 
beings in these three levels of cognitive control (according to 
Rasmussen, 1983) or phases of skill acquisition (according to 
Fleishman, 1972) on the basis of individual differences in 
relevant abilities (see Fig. 1). The author proposed that 
performance in the first phase of skill acquisition (or KBB) is 
determined by general intelligence, performance in the 
second phase, i.e., the RBB by perceptual speed and the 
performance in the third phase, i.e., the SBB by motor 

abilities.  
General intelligence was defined by Ackerman (1988) in 
accordance to Humphreys (1979), as the ability to acquire, 
store, retrieve, combine, compare, and use information in 
new, other contexts. The core cognitive activity of perceptual 
speed is to generate rules to effectively solve easy tasks; 
hence, perceptual speed is the speed with which such simple 
rules can be implemented and compiled. Last, psychomotor 
abilities are independent from information processing and 
represent individual differences in the speed/accuracy of 
motor responses to tasks without information processing 
demands.  
Hence, highly intelligent operators will be advantaged, and 
make less serious errors when having to deal with an 
unknown and unanticipated situation compared to a less 
intelligent operator (see also Fig. 1): The ability/performance 
correlation is greater for the more intelligent users. This is 
especially important, as, according to Vicente and Rasmussen 
(1992) the problem solving behavior is particularly safety-
critical when confronted with new situations. Ackerman’s 
skill acquisition theory (1988) implies that the new situation 
is less safety-critical for highly intelligent users but reducing 
the complexity of the situation and, thus, the need for general 
intelligence to be involved in working out the best solution, 
will also make the situation less safety-critical (Ackerman, 
1988). This advantage of the highly intelligent users will 
disappear with the degree of familiarity of the situation, as 
other abilities will then determine performance.  
The relationship between the impact of errors and the higher 
cognitive processes involved has e.g., been shown 
empirically by Hammond, Hamm, Grassia, and Pearson 
(1987).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Phases of skill acquisition adapted from Ackerman 
(1988) and the impact of general intelligence on the 
performance/ability correlation. 

As intelligence is not considered a single ability construct 
(see also Section 4.1), but a complex structure of cognitive 
abilities, not only general intelligence but also the operator’s 
structure of intelligence is to be considered. The content 
abilities (i.e., verbal, numerical and figural intelligence) will 
impact the quality of interaction between the operator and the 
system’s interface, while the operation abilities (i.e., 
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reasoning, perceptual speed, memory, creativity) will 
determine the quality of interaction between the technical 
system and its operator when being confronted with a new 
situation.  

2. PROBLEM STATEMENT  

For a human-machine system it is required to find a method 
to assess the dependability-relevant characteristics of the 
operator (such as e.g., intelligence) and adapt the human-
machine system/interface such that the overall system-
performance is increased.  

3. SOLUTION APPROACH 

In order to be able to reconfigure the technical system and/or 
its interface based on its user’s abilities, two steps are 
necessary: First, an algorithm must be developed which is 
capable of assessing the dependability-relevant characteristic 
of the user in an automated manner on the basis of the 
operator’s performance on his/her everyday life tasks (see 
Section 3.1). Second, guidelines must be defined specifying 
how the system/interface should be reconfigured depending 
on the level of the relevant ability of the current user and the 
demands of the system (see Section 3.2). This general 
procedure is derived from psychological diagnostics (see e.g., 
Amelang & Schmidt-Atzert, 2006), which aims at 
systematically collecting and processing data in order to 
make decisions about appropriate actions.  

3.1 Automated assessment of relevant user characteristics 

Traditional tests to measure the individual levels of abilities 
such as intelligence (e.g., Jäger, Süß, & Beauducel, 1997) 
could be applied in this context as well. Although these tests 
exist in computer-based versions, they have the following 
disadvantages:  
- Automated assessment is not possible. 
- Applying the existing tests requires lots of time. 
- An investigator is required to explain and guide the test 

procedure.  
- Tests are not highly accepted by users.   
- Tests consist of artificial tasks.  
Hence, a new and especially automated testing procedure 
needs to be developed, which, first, should give a valid 
measurement of the characteristic of interest and, second, 
should make use of data from tasks the user already executes 
in everyday life.  
This proposed testing procedure is based on the item response 
theory IRT (Hambleton, Swaminathan, & Rogers, 1991). IRT 
assumes that a behavior (i.e., the response RAji on the task Aj, 
j=1..m from person i=1..n) is an indicator of a latent 
dimension/characteristic such as intelligence I=1..g (i.e., ξIi 
with -∞ < ξIi < +∞). As mentioned before, different types of 
intelligences I can be distinguished (see also Section 4.1).  
The distinction between behavior and latent dimensions is 
necessary, as the latter cannot be measured directly and can 
only be assumed based on the “observable” or manifest 
variables RAji and their correlations. RAji is coded as follows:  

wrongisanswertheif
correctisanswertheif

RAji 0
1

 

The relationship between the manifest variables and latent 
dimensions is given by the item characteristic curve ICC. The 
ICC is a function (1) of the latent characteristic ξIi, the 
difficulty σIj of the current task j, to which solution the latent 
dimension of the relevant ability ξIi contributes (with -∞ < σIj 
< +∞). It describes the probability of whether the task will be 
achieved by the person or not. While σIj is referred to the task 
parameter, ξIi is also named the person parameter.  

),()1( IjIiji FRAP σξ==                                             (1) 

Depending on the characteristics of the task j, the properties 
of the responses RAji and the latent dimension ξIi in question, 
different ICCs and underlying mathematical functions can be 
distinguished.  
An example is the “Rasch Model” (see e.g., Hambleton, 
Swaminathan, & Rogers, 1991), which is a logistic function 
(2) predicting the probability of a correct answer RAji = 1 to a 
task j with the task difficulty σIj from a person i with the 
ability ξIi. 
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The function implies that for a person i, for whom ξIi < σIj, the 
probability that he/she will solve the task j successfully is p < 
.50 (see Fig. 2). If, the task difficulty σIj equals the person 
parameter ξIi the probability that the task will be solved 
successfully by person i equals p = .50. Last, if ξIi > σIj, the 
probability that the task j will be solved by person i is p > .50.  

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  Item Characteristic Curve of the Rasch Model for 
three tasks j, k and l with the difficulty σIj, σIk, σIl (adapted 
from Hambleton, Swaminathan, & Rogers, 1991) visualizing 
the relationship between the probability of a correct answer 
and the person parameter ξIi. 

The Rasch Model is currently used most often in 
psychological diagnostics (Hambleton, Swaminathan, & 
Rogers, 1991). Other examples of ICCs for unidimensional 
tasks are e.g., the Birnbaum model or the three-parameter 
logistic model. The assumption of the unidimensionality, 
which underlies all these three models, requires that the 
solution of the task j only depends on one latent dimension or 
ability I. As, in this application, everyday tasks and no 
artificially constructed tasks will be applied to assess relevant 
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abilities, it is expected that this assumption does not hold. 
Instead, it is assumed that the solution of an everyday task 
depends on the solution of a set of items, each of which is 
based on one single intelligence or any other latent user 
characteristic. This means that for each item, the Rasch 
model is still valid and can be applied. The overall task 
solution depends on a combination of the solutions of the 
items.    
In order to judge on the dependability-relevant user 
characteristics, the assessment of this ability needs to be 
automated. As, with new tasks with unknown characteristics, 
neither the person parameters ξIi, the task parameters σIj nor 
the impact of an item of a task on the task’s solution qij are 
known, a two-step identification procedure e.g., on the basis 
of an Artificial Neural Network is required to estimate ξIi. 
In the first step, a preferably heterogeneous number of 
persons will be tested with a traditional ability test to assess 
the ability vector ξi = (ξ1i..ξgi) for the sample at hand. The 
results of these traditional tests will be fed into a function Aj 
= F(ξi, σij, qij), which represents a task Aj and which will 
estimate RAji, i.e., whether a person i will succeed when 
performing a given set of tasks. This function will be based 
on the Rasch model. The impact of an task’s item on the 
solution of the overall task is qij. The parameters of the 
function (i.e., qij and σij) will be trained using the error 
between the estimated RAji and the actually measured RAji. 
In order to derive these reference values RAji, the sample at 
hand will repeatedly execute a (preferably heterogeneous) set 
of tasks.  
In the second step, the answers RAji of a (new) sample on a 
given set of tasks is known and what is required is their 
ability structure ξi. The corresponding function F(RAji), 
which determines ξi, will be approximated by an Artificial 
Neural Network. 
This described two-step procedure is depicted in Fig. 3.  
 

 
 

                                                                       iξ̂  
 
 
 
 
 
 
 

Fig. 3. Block diagram of the proposed automated user 
assessment on the basis of the latent ability structure ξi and 
the tasks Aj. 

If the original ability vector ξi is heterogeneous and 
influences the tasks solutions RAji, the trained Artificial 
Neural Network can be used to estimate ξi. These estimated 
person parameters ξIi can be taken as a reliable and valid 
predictor of how well the operator will be able to deal with 
the interface and/or system in question.  

3.2 Reconfiguration of the task allocation and/or interface 
properties  

In order to be able to predict how well the operator will be 
able to manage the technical system and the interface 
especially in unfamiliar situations, will enable to reduce the 
error probability and the response time of the operator in an 
unfamiliar situation by reconfiguring the parameters of the 
system and/or of the interface.  
This can be realized, for example, based on a quality measure 
of the ability structure of the current operator. The more 
heterogeneous tasks the operator has conducted and the more 
RAji will be available, the greater the reliability of the person 
parameters will be. The relationship between the number of 
tasks available and the quality of the person parameter 
estimation is nonlinear and has e.g., been described by the 
Spearman-Brown Formula. Based on such a quality or 
reliability measure, a confidence interval can be put around 
the assumed person parameter ξIi. Within this interval, the 
true value is located with a given probability. The worse the 
quality of the estimation of the ability score, the larger the 
confidence interval will be.  
To derive rules for the system and/or interface 
reconfiguration, two procedures can be assumed: 
First, a critical person parameter can be determined, which 
the operator must have in order to be able to safely run the 
technical system in question. This parameter can be used in 
order to do personnel selection.  
Second, the confidence intervals of different ability 
dimensions of one operator and the difficulty parameters of 
various tasks can be compared and the task chosen, which 
matches the ability structure of the operator in question. This 
procedure is only valid, if the confidence intervals for the 
abilities of the ability structure indicate that the values are 
significantly different from each other. If, for example, the 
confidence intervals of two abilities overlap, it cannot be 
assumed that the operator’s true values on these two abilities 
differ. However, if the abilities are different from each other, 
the task, which will evoke less human errors, is the one which 
requests the user to apply his/her more gifted abilities, when 
solving the task. The latter assumption is based on research 
results about Ackerman’s skill acquisition theory (see e.g., 
Jipp, Pott, Wagner, Badreddin, & Wittmann, 2004).  

4. EXAMPLE  

The example is given to demonstrate and highlight the effect 
of the proposed dependable system and interface design. For 
this purpose, first, a multidimensional intelligence model is 
introduced (see Section 4.1), as well as the practical steps 
required to perform the proposed automated user assessment 
of the intelligence abilities (see Section 4.2) and the deduced 
system and/or interface reconfigurations (see Section 4.3.).  

4.1 Berlin intelligence structure model  

The Berlin Intelligence Structure Model (BIS) is a 
hierarchical model of intelligence (Jäger, 1982) and depicted 
in Fig. 4. 
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At the top level, general intelligence is composed of two 
facets, which are categories for factors/latent dimensions on 
the next level: contents and operations. The first subsumes 
content abilities, which refer to how a person deals with 
different types of contents. The facet contents consists of a 
verbal ability factor (V), a numerical ability factor (N), and a 
figural-spacial ability factor (F). The facet operations 
subsumes what is cognitively done with the given material of 
a special content type. Human processing capacity (P), 
memory (M), creativity (C) and perceptual speed (S) have 
empirically been determined by Jäger (1982). Human 
processing capacity is explained as the ability to solve 
relative complex problems (Jäger, Süß, & Beauducel, 1997). 
Memory tasks demand the operator to memorize pieces of 
information and retrieve them from the short-term memory or 
recognize them after a short period of time. Creativity refers 
to the ability to produce different ideas controlled by the task 
in question. The last operation, perceptual speed, expects the 
operator to work as fast as possible on simple, cognitive 
tasks. Hence, general intelligence is defined based on a linear 
combination of M, C, R, S, V, N, and F. All these 
“intelligences” are latent dimensions as introduced in Section 
2.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Berlin Intelligence Structure Model (adapted from 
Jäger, 1982).  

4.2 Automated user assessment of intelligence  

Each real-life task j has a mixed set of cognitive 
requirements, especially when the situation is unfamiliar. For 
example, choosing the correct action alternative when 
confronted with a so-far unknown situation in a nuclear 
power station requires the operator to apply processing 
capacity (P) in order to reason about the possible causes of 
the situation and his/her numerical abilities (N) due to the 
format of the displayed data. Hence, its successful handling 
depends on the individual levels of the relevant ability vector 
ξi = (ξPi, ξNi), and on their impact on the task’s solution (qij) 
and the task difficulty parameter (σIj). Another task might 
require the operator to apply other intelligences, such as 
memory M, processing speed S and verbal abilities V. If the 
intelligence structure ξIi (i.e., the individual level of P, M, C, 

S, V, N, and F) is known, as well as the impact of each 
intelligence level on solving the task successfully (qIj) and the 
task difficulty (σIj), the probability of a correct or incorrect 
reaction (P(RAji)) is given based on the relevant ICC.  
To measure the intelligence structure ξIi the operator will 
work on his/her everyday tasks. The reactions will be fed in, 
for example, an artificial neural network (see Fig. 3), which 
will, based on the already adapted weights of each 
intelligence level on the task solution (σIj and qij) and the 
theoretically proposed ICC, estimate the person parameters 
ξPi, ξMi, ξCi, ξSi, ξVi, ξNi,and ξFi. 

 4.3 Reconfigurations of the system and its interface 

If the intelligence scores ξPi, ξMi, ξCi, ξSi, ξVi, ξNi, and ξFi of 
person i are known, the system design can be adjusted to 
reduce the error probability in the following manner:  
It is expected that the operational abilities and especially the 
human processing capacity ξPi influence the performance of 
the operator when cooperating with the technical system. The 
error probability will be increased if operating the system 
requires a higher level of human processing capacity as the 
one of the current operator. This is, e.g., the case, when an 
operator’s assessed ability level of P is ξPi = 100 and 
operating the system’s current configuration requires ξPi = 
110. Then, the system should be reconfigured and the 
necessity to apply human processing capacity should be 
reduced. This can, for example, be achieved by enhancing the 
level of autonomy of the automation system. Endsley and 
Kaber (1997) define various “levels of automation” 
depending on what function (i.e. monitoring, generating an 
action alternative, selection and implementation) is 
automated. To reduce the required level of human processing 
capacity, the technology should take over functions such as 
retrieving information from memory, combining and 
comparing new and old pieces of information and using the 
result (Jäger, 1982). Hence, the technical system should 
provide high levels of automation in respect to generating and 
selecting appropriate action alternatives (in terms of Endsley 
and Kaber, 1997), this is the case at the higher levels of 
automation. Then, the probability that the operator makes an 
error is reduced. This is an example of the first type of system 
reconfiguration according to Section 3.2. 
In contrast especially to the impact of ξPi on the optimal 
“level of automation”, the content abilities ξVi, ξNi, and ξFi are 
expected to influence the cooperation with the system’s 
interface. For example, an interface with lots of numerical 
contents will require a high level of numerical abilities by the 
operator in order to process the information. However, if the 
operator’s numerical abilities are less compared to, e.g., the 
figural abilities (e.g., ξNi = 90 < ξFi = 100), the interaction 
with the operator would be less error-prone if the system 
displayed the same information in a figural format. This is an 
example of the second type of interface reconfiguration as 
described in Section 3.2. 

5. DISCUSSION AND CONCLUSIONS  

This paper presents a novel approach to dependable human-
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centred system design: First, it stresses the importance to 
consider individual differences in especially intelligence in 
order to enhance operator performance. A thorough literature 
review regarding human-centered system development 
research and interface design has demonstrated that the 
individual differences in intelligence have not yet been 
considered sufficiently although their consideration yields 
high potentialities in reducing the probability and severity of 
operator errors. The latter conclusion is based on research 
results about Ackerman’s (1988) skill acquisition theory. 
Second, based on psychological diagnostics and especially 
the item response theory, a method has been proposed to 
allow the technical system to assess relevant abilities of its 
user based on the basis of 
- the difficulty of everyday tasks,  
- the person’s reactions towards these tasks,  
- and a function specifying the relationship between the 

person parameters, task parameters and the probability of 
correct or wrong responses to these given tasks.  

An artificial neural network approach has been discussed as 
one possible method to automate the assessment. Third, 
guidelines for reconfiguring the system and/or the interface 
have been derived. Last, a hypothetical example has been 
introduced to stress the practical relevance of the proposed 
dependable system design methodology. The example made 
use of the Berlin intelligence structure model.  
The described procedures can also be applied to assess other 
abilities, such as, e.g., the motor abilities of the operator.  
Whether the proposed system design will work and actually 
meet the goal to enhance dependability will depend on the 
following:  
- First, the artificial neural network needs to be trained 

with a representative set of person parameters.  
- Second, the relevant ICC functions must be valid.  
- Third, the solution of the task must depend on the 

measured abilities.  
- Last, the reconfigurations of the system and/or the 

interface must ensure that the intelligences required 
operating both match the ones the human beings are 
most talented in.  

Future work will aim at demonstrating that, if these 
prerequisites are given, the proposed system and interface 
design will actually have an impact on the overall 
dependability of the human-machine system. Further, the 
approach will be expanded to also cover other dependability-
relevant abilities, such as working memory, attention or 
psychomotor abilities, which are more real time critical, as 
they are not as stable as is intelligence. It will demonstrate 
the impact of a very close and inter-disciplinary interaction 
between psychological diagnostics research, human factors 
research, dependability research, and automatic control. 
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