
Verification of Fault Tolerance of
Discrete-Event Object-Oriented Models

using Model Checking

Marcello Bonfè ∗ Cesare Fantuzzi ∗∗ Cristian Secchi ∗∗

∗ ENDIF, Università di Ferrara, via Saragat 1, Ferrara, Italy
∗∗ DISMI, Università di Modena e Reggio Emilia, via Amendola 2,

Reggio Emilia, Italy.

Abstract: The Object-Oriented (O-O) approach has been recently used in the industrial
automation to design logic control systems, thanks to the features of specification languages
(e.g. UML) that can help to describe event-based behavioral requirements. In this paper, we
aim to formalise an O-O framework for the design of modular logic controllers, in which faults
occurring in the plant can alter the behavior of closed-loop system. Given the formal model of
the system in terms of Kripke structures, it is possible to verify with model checking that even
in case of faults the system do not violate given safety and liveness properties. Moreover, we will
consider the case in which an O-O logic controller is refined applying the so-called “design-by-
extension” mechanism, in which case it is important to verify that the fault tolerance property
is inherited by the refined system.

1. INTRODUCTION

Object-Oriented (O-O) Modeling and Design methods
are more and more used in several application domains,
not only related to business software development, which
is their original birthplace. Standard tools for modeling
requirements and design specifications, like for example
the graphical notations defined by the Unified Modeling
Language (UML, O.M.G. (2005)), include many features
that can be related to Discrete Event Systems (DES)
Theory. For example, behavioral specifications for Object-
Oriented Systems are often given by means of Statecharts
(Harel (1987)), an enriched kind of hierarchical state
machines, or Message Sequence Diagrams, a graphical
representation of system traces. For these reasons, UML
and similar languages have been recently used also in
the industrial automation to design logic control systems.
Translating UML design models into software code for
Programmable Logic Controllers (PLCs) is not a difficult
task with modern development tools (i.e. IEC 61131-3
languages and IEC 61499-1 Function Blocks). Morevoer,
even if UML is not a formal language, in a proper sense,
it is always possibile to formalize at least a subset of the
language, with a domain-specific semantics, in order to
apply formal verification methods, i.e. model checking and
theorem proving (Clarke and Wing (1996)), and analyse
the correctness of the control design against some given
requirements specification.

The application of formal methods to logic control prob-
lems for industrial automation is a relevant research topic,
as shown in the review of Frey and Litz (2000). The most
recent results are related to fault diagnosis and fault toler-
ant design (Paoli and Lafortune (2005); Wen et al. (2007)).
In this paper, we address the problem of fault tolerance
by means of a domain-specific adaptation of the object-
oriented modeling language UML and its formalization in

order to apply model checking algorithms. Moreover, the
concept of inheritance between classes, which is central in
object-oriented design, is studied in detail and formalised
at the behavioral level. By means of inheritance, it is
possible to apply design by extension mechanisms, which
means that new classes of objects are defined as refine-
ments of existing ones. With this approach, we aim to
address also the problem of fault tolerance, considering
it as a behavioral property that must be preserved (i.e.
inherited) after refinement.

2. BACKGROUND ON FAULT TOLERANCE

The concepts of dependability for automated and com-
puting systems have been investigated since the very first
generation of calculating systems (e.g. Babbage’s Engine)
(Avizienis et al. (2001)). Dependability is even more criti-
cal when humans may be directly threatened by incorrect
services of computing systems, as is commonly the case
in industrial automation and embedded control. In these
applications, which constitute the so-called mechatronic
domain, a fault (i.e. change in a system that may cause
an error and, consequently, a failure) can rise up from
electronics hardware, from software (i.e. “bugs”) or from
the controlled plant (e.g. a mechanical damage). Whatever
is the nature of a sub-system considered, the design of fault
diagnosis or fault tolerance techniques is mostly based
on redundancy, either physical or analytical, of operating
parts and some kind of (reliable) supervisor. For exam-
ple, hardware or software for safety-critical systems often
includes design patterns like watchdog timing, multiple
computation with final voting, etc. (Douglass (1999)),
while mechanical systems may have dual actuators, paral-
lel structured modules or redundant manipulators (Sree-
vijayan et al. (1994)). The level of fault tolerance achieved
with these solutions is generally classified as fail-safe,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5095 10.3182/20080706-5-KR-1001.0969

nonmasking or masking, on the basis of the preservation
of safety and/or liveness properties.

In mechatronics, analysis and design tools based on DES
models are very useful, especially considering diagnosis
and faults handling. In fact, DES allow to represent
quite complex systems by abstracting their main operating
modes and driving stimuli. Faults can be represented as
(uncontrollable and unpredictable) events, wherever they
may be generated. Moreover, DES tools are quite adequate
to design and verify logic control systems (i.e. PLC pro-
grams), whose primary function in industrial automation
is actually to detect faulty situations and to guarantee
safety of plants and human operators. As said before,
fault tolerant design or fault tolerance verification has been
addressed in a DES framework by many authors (Dal Cin
(1997); Wen et al. (2007)), but the impact of these works
on the industrial community is currently quite limited. On
the other hand, O-O methods are instead quite appreci-
ated by control engineers, thanks to the advantages they
provide in terms of modularity and reusability of design
patterns and software implementation. Fault tolerance can
be easily incorporated in an O-O design framework ex-
ploiting concepts like incremental design, refinement and
inheritance, as shown for example by Johnsen et al. (2001).
In fact, fault tolerance in either DES or O-O models is
generally based on some definition of bisimulation between
faulty and non-faulty systems. Similar notions of refine-
ment (see Harel and Kupferman (2002)) can be defined
to formalize the concept of inheritance between classes
in O-O languages. Therefore, in the following sections we
adopt as a unifying approach the O-O one, describing first
a modeling language based on UML, whose application is
primarily thought as logic control design for industrial au-
tomation, then we give a formal definition of inheritance,
with the aim to introduce model checking as a means
to verify behavioral conformity between classes inheriting
from others and checking their tolerance to faults.

3. OBJECT-ORIENTED MODELING AND
INDUSTRIAL CONTROLLERS

The use of UML for logic control design is not a novelty
(see for example Thramboulidis (2004). Here, we briefly
recall the UML extension proposed by Bonfé and Fantuzzi
(2004), which has been successfully applied in several in-
dustrial projects to design complex software programs for
PLCs. The language is tailored to ease code generation for
IEC 61131-3 and IEC 61499-1 targets, therefore structural
specifications, described by UML Class Diagrams, empha-
size class interfaces defined in terms of Input/Output signal
ports, eventually distinguished into data I/Os (the only
supported by IEC 61131-3) and events I/Os (supported by
IEC 61499-1), while behavioral specifications are given by
UML State Diagrams, whose textual expressions are made
syntactically compatible with IEC 61131-3 languages.

The extension mechanism that allows UML to include
domain-specific concepts is called stereotyping : the ele-
ments of UML’s meta-model, (i.e. classes, relations, etc.)
can be stereotyped by addying properties and constraints,
which are peculiar of a given application domain. A consis-
tent set of stereotypes is called a profile. In order to define
an industrial control profile, it is important to specify

structural aspects from a mechatronic perspective, which
means that software modules must be considered in a
tight aggregation with the physical sub-systems that they
control, making this aggregate a mechatronic object. The
UML stereotypes that we have defined permit to describe
classifiers for mechatronic objects as �mechatronic�
classes, which have an interface of public properties, in
their turn stereotyped as �input� or �output�. The
part of a �mechatronic� class related to the connec-
tion with physical components is specified with the help
of classes stereotyped as �hardware�. Classes of this
kind are always related by means of a composition link
with a �mechatronic� class and their �input� and
�output� properties represent the hardware I/O ports
as a private part of the �mechatronic� class. Figure 1
shows the graphical representation of the proposed stereo-
types in a UML Class Diagram.

<<hardware>> Class_Name2

<<input>>
Input1 : TYPE1
...
<<output>>
Output1 : TYPE2

Plant's behaviour

Outputs
of the
controller

Inputs
of the
controller

<<mechatronic>> Class_Name

<<input>>
+ Input_Port1: TYPE1
+ Input_Port2: TYPE2
...
<<output>>
+ Output_Port1: TYPE3
...

Controller's behaviour

Fig. 1. UML stereotypes for mechatronic models

The behavioral specification of a mechatronic system is
described by associating each class with a UML State
Diagram (derived from Statecharts of Harel (1987)). Of
course, the statechart of a �mechatronic� class repre-
sents the behavior of the controller, while the statechart
of a �hardware� class models the plant’s behavior. In
the proposed UML extension, transitions are labeled with
strings having the format:
trigger[guard]/actions

where events in the trigger can be inputs of the stereo-
typed class or outputs of its contained instances, explicitly
typed as EVENT. The guard must also be a valid boolean
expression, and actions will follow the same rules of the
similar string included in a state action, which is specified
by a textual expression like:
entry (or exit) / actions [guard]

where guard is an optional boolean expression that must
be verified to enable actions’ execution, and actions is an
ordered list of operations that can: set or reset a boolean
variable, assign the value of an expression to a variable of
a non-boolean data-type, or emit an event.

With regard to inheritance, we assume that a class that
is related to another one by a UML generalization link
inherits the statechart of the base class. This statechart
may be refined by design with the addition of transitions
or elaborating substates in inherited states, but inherited
states or transitions should not be deleted, in order to
preserve behavioral substitutability between the base class
and the derived one.

4. FORMALIZATION OF MECHATRONIC MODELS

The semantics of the modeling language described in
previous section has been formalized taking into account

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5096

the peculiarities of the application domain, which make
the (informal) UML semantics inadequate. In particular,
O.M.G. (2005) describes a Run-To-Completion execution
algorithm for Statecharts, based on an event-queue for
each object, in which events are processed one at a time.
This interpretation is not consistent with both IEC 61131-
3 and IEC 61499-1, which instead allow simultaneous
management of multiple events. Moreover, we aim to
include a definition of inheritance in terms of behavioral
conformity and substitutability of state-based behaviors,
with an approach similar to that of Harel and Kupferman
(2002).

For this aim, we define the instantiation of the top-level
class in a UML mechatronic model as a mechatronic
system

MS = (M, t,Γ) (1)

where M is a set of instances of mechatronic classes,
t ∈ M is the top-level one and Γ : M → 2M is a
function that retrieves for each instance the ordered set
of its components. The composition of MS is univocally
determined by multiplicity of aggregation links in the
UML model and each Mi ∈ M is an univocally referrable
instance of a mechatronic class Cj . A mechatronic class
is defined as

C = (S, T, P, r, γ) (2)

where S is a set of states, T is a set of transitions, P
= P I ∪ PO is a set of “port” variables, each one of a
given data type (including event), r ∈ S is the root state
and γ is an ordered set of contained instances of other
mechatronic classes. Here, we do not introduce distinctions
between �mechatronic� or �hardware� classes. In
next sections, hardware components will be assumed the
only ones prone to faults and nondeterministic behavior.

To define the hierarchical structure of a statechart, we
assume that each s ∈ S is typed as an AND-state,
OR-state or basic, and that def(s) and chldn(s) are
functions retrieving, respectively, the default state of each
OR-state and the set of immediate substates of s, while
chldn�(s) is the reflexive-transitive closure of chldn(s).
A configuration is a subset of S which is maximally
consistent (i.e. all of its elements can be simultanously
active) and compl(X) retrieves a configuration which is
the default completion of a consistent set X. We also
define as B the set of boolean expressions over variables in
P I ∪⋃

Mi∈γ PO
i , as A the set of assignments over variables

in PO ∪ ⋃
Mi∈γ P I

i and as E the set of event expressions
over variables P I ∪ ⋃

Mi∈γ PO
i , which consists of boolean

expressions that contain only variables typed as events.
These definitions permit to associate with each transition
tr ∈ T the following attributes: src(tr) ∈ S, the source
state, trig(tr) ∈ E , the trigger expression, grd(tr) ∈ B, the
guard expression, act(tr) ∈ 2A, a set of assignment actions,
and targ(tr) ∈ S, the target state. In order to formalize the
set of states which are exited when a transition tr is fired,
we define scope(tr) as the smallest OR-state containing
both src(tr) and targ(tr), maxsrc(tr) as the unique child
of scope(tr) such that src(tr) ∈ chldn�(maxsrc(tr)). In
this way, when tr is fired the state maxsrc(tr) and all
of its descendents (chldn�(maxsrc(tr))) are de-activated,

while targ(tr) and the states in its default completion are
activated.

A transition is enabled if the predicate
en(tr) = in(src(tr)) ∧ trig(tr) ∧ grd(tr) (3)

is true (in(src(tr)) means that the source state is active),
but is firable only if an additional predicate conflict(tr)
is false, which happens if no other transition with a
priority higher than that of tr is enabled. We assume
higher priority for transitions exiting higher level states
and explicit ordering (fixed by design) of transitions with
the same source state. To conclude, we assume that states
s ∈ S have an associated list of actions, each defined as a
tuple (w, a, g), where w ∈ {entry, exit}, a ∈ 2A is a set of
assignments and g ∈ B is a guard expression.

The reaction of a mechatronic class instance to external
stimuli is defined as a step, in which the next state
configuration and the next value of each variable are
computed. Each instance in a mechatronic system MS

performs its step when it is marked as active, instead
of idle, by a given scheduling function. The most simple
scheduling function would cyclically mark active each
Mi ∈ M according to a fixed sequential order (i.e. the
typical PLC scan cycle). In any case, input ports of an
instance Mi ∈ M typed as events retain their truth
value until Mi becomes active and are immediately set
false when Mi has terminated to compute its step. Each
instance of a generic mechatronic class C is initialized
in the configuration Sc0 = compl(r), with given initial
assignments to variables in P ∪⋃

Mj∈γ Pj , and each one of
its steps is performed as follows:

(1) compute the set of firable transitions
Fi = (tr ∈ Ti|en(tr) ∧ ¬conflict(tr));

(2) compute the next configuration
Sc′i = compl((Sci −

⋃
tr∈Fi

chldn�(maxsrc(tr)))
∪⋃

tr∈Fi
targ(tr));

(3) execute exit actions related to exited states, actions
associated with each tr ∈ Fi and entry actions related
to entered states.

The execution of a step tranforms the status of an instance
Mi from σi = (Sci,Vi) to σ′

i = (Sc′i,V ′
i), in which Vi

and V ′
i are current and next values of each variable in

Pi ∪
⋃

Mj∈γi
Pj . The observable status of an instance is

defined as obsVi and is composed by the values of variables
in Pi. The global status of a mechatronic system MS is
given by:

σG = (σ1, .., σn) (4)

where n is the cardinality of M , and its behavior, given a
scheduling function, is determined by the set LMS

of all
the possible sequences

σ0
G, σ1

G, σ2
G, ... (5)

in which the change between σk
G and σk+1

G is determined
by the step of one of the instance in M .

In order to formalize the concept of behavioral confor-
mity between mechatronic classes, we must consider their
behavior within a mechatronic system that contains in-
stances of those classes. In fact, according to the Liskov

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5097

Substitution Principle Liskov (1988), one should be al-
lowed to say that a class is a subtype of another one if
the behavior of an object-oriented system, defined in terms
of the base class, is not affected by the substitution of all
the instances of the base class with instances of the derived
class. Since the instances of a class can influence the global
behavior of a mechatronic system only by means of their
input/output ports, it is necessary to analyze the traces of
the system focusing on that kind of variables. Therefore,
we define as the observable behavior of a mechatronic
class C in a mechatronic system MS , which contains r
instances of C with indexes between l and l + r, the set
LC

MS
of all the sequences

σ0
C , σ1

C , σ2
C , ... (6)

that can be extrapolated from LMS
, in which σi

C is
composed by the observable status of all the instances of
C, that is (obsVi

l , ...,
obsVi

l+r).

It is now possible to give the following:

Definition: A mechatronic class C1 is substitutable
with another class C2 having a compatible external in-
terface (i.e. P1 ≤ P2), if for any mechatronic system MS ,
with the same scheduling function,

LC1
MS

⊆ LC2
MS

(7)

that is the observable behavior of C2 can extend the
observable behavior of C1, without deleting any observable
sequence.

This definition is related to inheritance as described in
Section 3: the refinement of an inherited statechart must
always be checked against behavioral substitutability, by
using formal verification tools.

5. TOOLS FOR CHECKING SUBSTITUTABILITY

Formal verification can be used to analyze the sub-
stitutability of mechatronic classes, thanks to specific
tools like Cadence SMV (CaSMV, McMillan (1999)), that
adopts Symbolic Model Checking (McMillan (1993)) to
verify refinement of components in modular transition sys-
tems. In fact, the underlying formal model which is actu-
ally model checked (i.e. the Kripke structure), is described
in CaSMV using a high-level textual language supporting
modularity, reusability, boolean and integer arithmetic, so
that automatic code generation from UML tools can be
easily implemented. In this section, we describe how to
translate in the input language of the CaSMV tool the
behavioral specification of mechatronic classes, in order
to exploit the tool’s feature for refinement verification as
a way to test their behavioral conformity. A mechatronic
class can be translated as a CaSMV module as follows:

MODULE Mech_Class(Active, I1, I2, O1, O2){

INPUT Active, I1,I2 : boolean;

OUTPUT O1, O2 : boolean;

Instance1 : Mech_Class1(..);

...

}

where Active is a boolean input set true according to the
scheduling function, the other parameters represent the

observable interface and Instance1 is one of the contained
instances of other modules. The statechart specification
will be translated encoding the hierarchy of states into
variables with enumerated values:

Root : {State1, State2, ..., StateN};

SUBState1 : {State11, ..., State1N};

and evaluating the configuration and the set of enabled
and actually firable transitions with predicates defined as
follows:

INState1 := (Root = State1);

INState11 := INState1 & (SUBState1 = State11);

ENTrans1 := INStateXX & Trigger & Guard;

CONFLTrans1 := ENTrans2 | ENTrans3 | ..;

FIRABLETrans1 := ENTrans1 & !CONFLTrans1;

Finally, initialization and execution of a step can be
translated as follows:

init(Root) := State1; -- default state

init(SUBState1) := State11; -- default state

default{

next(Root) := Root; -- no change

next(SUBState1) := SUBState1;

next(O1) := O1;

...}

in case{

Active & FIRABLETrans1 : {

next(Root):= State2;

...

next(O1) := true;} -- set action

Active & FIRABLETrans2 : {

...}

...}

which states that if no transition is firable the sta-
tus of the module remains unchanged (default state-
ments), otherwise it changes accordingly. As mentioned
before, the difference between a �mechatronic� and a
�hardware� class of the UML model, is that the latter
is allowed for nondeterminism, related to faulty behavior.
In CaSMV, nondeterministic assignments are written as
follows: next(Var) := {Value1, Value2}, which means
that Var can take either Value1 or Value2. Moreover, we
assume that the Active input of hardware components is
always true.

A CaSMV program is completed by the declaration of a
main module (i.e. the top-level) and by the specification of
desired properties of the system, expressed with CTL or
LTL temporal logics (Allen Emerson (1996)) or in terms of
refinement maps. In the latter case, CaSMV will explore
the computational paths of the system to check that the
assignments to a given set of variables are compatible with
those specified in a so-called abstract layer. In practice,
CaSMV can verify that every possible behavior of a
model representing a system’s implementation is also a
possible behavior of a model representing the system’s
specification. In our case, in order to check that two classes
are substitutable, we have to define the base class as the
implementation layer and the derived class as the abstract
specification layer, since we admit that the derived class
can extend the behavior of the base class, but not restrict
it. This is translated in CaSMV as follows:

module main(){

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5098

I1, I2, .. : boolean;

O1, O2, .. : boolean;

C1 : Base(1, I1, I2, .., O1, O2); --Active = 1

layer derived : {

C2 : Derived(1, I1, I2, .., O1, O2);}

}

When CaSMV opens a similar program, it automatically
defines as properties to check formulas written as:
Oi//derived

where Oi is an output signal in both C1 and C2. Each
one of these properties is verified if the values taken
by Oi along any computational path of the instance C1
are compatible with those taken along the paths of the
instance C2, declared in the layer derived. The inputs of
both instances are assumed free variables, which means
that they are allowed to range over any possible value of
their types. If these properties are all verified, then the
observable behavior of any instance of the base class is
contained in the observable behavior of any instance of
the derived class, for any possible external stimulus that
they can receive, which ensures substitutability of the base
class with the derived class in any mechatronic system.

6. EXAMPLE

In this section, we present an example to illustrate the
conceptual approach. Let us consider a generic parts
loading system for a manufacturing machine, whose main
actuator is a pneumatic cylinder with a dual solenoid
valve and two endstroke sensors. This kind of actuators
is typically prone to mechanical faults, due to dirt and
other environmental conditions, in which case they may
get stuck in a given position.

In order to develop a full UML model of the mechatronic
system, it is first necessary to specify a model of the basic
components of the plant. In this case, we can represent
the behavior of the pneumatic cylinder considered, in
response to control system’s command on the solenoids,
with the simple statechart shown in Fig. 2. In order to
keep the picture clear, several textual labels have been
omitted. As can be seen, we assume that if the cylinder
get stuck, it is always possible to return to the initial
state. This transition may, for example, be fired because a
human action that forces the cylinder to move. Of course,
the model admits only one direction for this manual
movement. In any case, nondeterminism is due only to
the transitions exiting from “automatic” movement states
(i.e. Moving1 and Moving2).

The logic controller for this kind of actuators, that will
be designed as a �mechatronic� class in UML, should
include a fault detection mechanism based on a watchdog
timer: if the cylinder is actuated in one direction, it must
reach the endstroke before the watchdog timer elapse,
otherwise the controller will raise an alarm and stop the
operation. If this happens, human operators are required
to manually inspect the status of the pneumatic system,
which in case of a parts loading mechanism may get
stuck also because of parts jamming, remove the cause
of cylinder’s fault, reset the alarm on the control system
and restart the machine.

- End1 -

[SOL2]

[SOL1]

END2 END1

SOL1 SOL2

- Moving1 -

- End2 -

- Moving2 -

- Stuck -

[SOL1]

[SOL2]

Fig. 2. Model of a pneumatic cylinder

Watchdog timing can be considered as a design pattern
which allows to reach fail-safe fault tolerance. In fact,
the watchdog timer allows the logic controller to maintain
safety properties, but not liveness: if manual reset is not
considered, the system is deadlocked and cannot perform
any other (automatic) operation. However, watchdog timer
must be correctly managed by the logic controller, in order
to avoid false alarms and to deadlock the system in a
safe state. This means that the timer must be activated
only when really necessary, at the beginning of potentially
dangerous operations, and reset when the operations are
completed without errors.

A schematic statechart model of the logic controller for
the mechatronic system considered is shown in Fig. 3.. For
the same reason mentioned before, several textual labels
have been omitted. We assume that the mechatronic class
has an external interface composed by the input events
Start, Stop, LoadPart, AlarmReset and the output
events Operating, PartLoaded, Alarm.

- Operating -

- Off -

- Parts loading -

- Alarm -

Start Stop

- S1 -

- S2 -

- Watchdog Init - - Counting - - Elapsed -
Tick

[IN(Elapsed)]

AlarmReset

AlarmReset

[IN(S2)]

[IN(S4)]

- S3 -

LoadPart

- S4 -

EMIT(PartLoaded)

Fig. 3. Logic control of the loading mechanism

According to the graphical syntax of UML State Dia-
grams, the design model adopts concurrency (AND-states)
within the Operating state, to manage the watchdog
timer and the operations of the pneumatic cylinder. The
timer must be enabled to count when the system starts a
part loading operations and actuates a command on the
cylinder. Therefore, the transition from WatchdogReset
to Counting is fired by the condition IN(S2) (true when
S2 is) active). The timer increments at each Tick event
(we assume that there is a system’s clock provinding this
event) and if it is not reset before a given deadline, an
alarm is raised. If this happens, human operators are
required to acknowledge the alarm, manually remove the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5099

cause of fault and reset the alarm, a common procedure in
industrial automation.

In order to verify fault tolerance, it is necessary to guaran-
tee that whenever the pneumatic cylinder gets stuck, the
controller raises the alarm, therefore the following CTL
formula must be verified with CaSMV:
AG (INStuck -> AF (INAlarm))

since AG means “for all paths, globally”, while AF means
“for all paths, in a future state”. Similarly, it is required
that the deadlock states can always be exited thanks to
the manual recovery procedure described before, checking
the formula:
!EG (AG (INAlarm))

in which EG means “exists a path, (in which) globally”.

If the the class modeling the control logic is refined,
by inheriting the base statechart and modifying it, for
example in the way shown in Figure 4, the refinement
verification procedure described in previous section must
be applied in order to guarantee:

• first, that the behavior of the derived class is compat-
ible with the behavior of the base class;

• then, that fault tolerance is inherited by the derived
class.

- Operating -

- Off -

- Parts loading -

- Alarm -

Start Stop

- S1 -

- S2 -

- Watchdog Init - - Counting - - Elapsed -
Tick

[IN(Elapsed)]

AlarmReset

AlarmReset

[IN(S2)]

[IN(S4)]

- S3a -

LoadPart

- S3b -- S4 -

Fig. 4. Refined control logic of the inherited statechart

7. CONCLUSION AND FUTURE WORK

The paper has described a domain-specific extension of the
modeling language UML which can be easily adopted by
industrial control engineers to design programs for PLC-
based mechatronic systems. The concept of inheritance,
characterizing the object-oriented approach to software
and systems design, has been formalized in a definition
specifically studied for the application domain. The model
checking tool CaSMV has been adopted in the design
framework to verify both behavioral substitutability be-
tween classes in a design model and fault tolerance of
the mechatronic system. In the future, we aim to address
more general kind of fault tolerance (i.e. masking fault
tolerance), with fully developed cases of study taken from
real industrial problems.

REFERENCES

E. Allen Emerson. Automated temporal reasoning about
reactive systems. In F. Moller and G. Birtwistle, editors,

Logics for Concurrency: Structure versus Automata,
number 1043 in LNCS, pages 111–120. Springer–Verlag,
1996.

A. Avizienis, J. Laprie, and B. Randell. Fundamental
concepts of dependability. Research Report N01145,
LAAS-CNRS, April 2001.

M. Bonfé and C. Fantuzzi. An application of object-
oriented modeling tools to design the logic control
system of a packaging machine. In Proc. IEEE Int. Conf.
on Industrial Informatics (INDIN’04), Berlin, Germany,
June 2004.

E. M. Clarke and J. M. Wing. Formal methods: State
of the art and future directions. ACM Computing
Surveys, 28(4):626–643, December 1996. Also available
as Carnegie Mellon University’s Technical Report CMU-
CS-96-178.

M. Dal Cin. Verifying fault-tolerant behavior of state
machines. In Proc. Second IEEE High-Assurance Sys-
tems Engineering HASE 97, Bethesda, Maryland, Au-
gust 1997.

B.P. Douglass. Doing Hard Time: developing Real–Time
systems with UML, objects, frameworks, and patterns.
Addison Wesley Longman, 1999.

G. Frey and L. Litz. Formal methods in PLC program-
ming. In Proc. IEEE Conf. on Systems Man and Cy-
bernetics (SMC) 2000, pages 2431–2436, Oct. 2000.

D. Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8:231–274,
1987.

D. Harel and O. Kupferman. On object systems and
behavioral inheritance. IEEE Trans. on Software En-
gineering, 28(9):889–903, Sept. 2002.

E.B. Johnsen, O. Owe, E. Munthe-Kaas, and J. Vain.
Incremental fault-tolerant design in an object-oriented
setting. In Proc. 2nd Asian Pacific Conference on
Quality Software, APAQS, pages 223–230, 2001.

B. Liskov. Data abstraction and hierarchy. ACM SIG-
PLAN Notices, 23(5), May 1988.

K.L. McMillan. Symbolic Model Checking: an Approach
to the State Explosion Problem. Kluwer Academic
Publishers, 1993.

K.L. McMillan. The SMV language. Cadence Berkeley
Labs., 2001 Addison St., Berkeley, USA, March 1999.

O.M.G. UML, v. 2.0, superstructure specification. Docu-
ment N. formal/05-07-04, 2005. www.omg.org/uml.

A. Paoli and S. Lafortune. Safe diagnosability for fault-
tolerant supervision of discrete-event systems. Automat-
ica, 41:1335–1347, 2005.

D. Sreevijayan, S. Tosunoglu, and D. Tesar. Architectures
for fault-tolerant mechanical systems. In Proc. of 7th
Mediterranean Electrotechnical Conference, volume 3,
pages 1029–1033, Antalya, Turkey, April 1994. IEEE.

K. Thramboulidis. Using UML in control and automation:
a model driven approach. In Proc. of INDIN’04, Berlin,
Germany, June 2004.

Q. Wen, R. Kumar, J. Huang, and H. Liu. Fault-tolerant
supervisory control of discrete event systems: Formu-
lation and existence results. In Proc. of Dependable
Control of Discrete Systems, Paris, France, June 2007.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5100

