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Abstract:
This paper presents a novel approach to capture the development of dynamic voltage instability
caused by the dynamics of different power system devices, such as loads, generators, automatic
voltage regulators (AVR), overexcitation limiters (OXL), power system stabilizers (PSS), and on-
load tap changing (OLTC) transformers using an accurate time-domain analysis. A small power
system model is presented which allows one to analyse combinations of these effects, showing
how different major forms of long-term and short-term dynamic voltage instability occur. Effects
of line tripping, sudden change of load, and fault clearing time on dynamic voltage instability
will also be discussed. Finally, advantages of the dynamic analysis over the static analysis will
be investigated.

1. INTRODUCTION

Dynamic operating modes in interconnected power sys-
tems are initiated whenever abrupt changes occur to
otherwise steady operating conditions. They arise from
momentary imbalances in system operation, which can
project the system or individual items of a plant within
the system into unplanned operating regions. Continued
and safe operation is then momentarily at risk. The nature
of the risk is one of operating instability. There are two
approaches to the study of the voltage instability problem,
namely the static approach and the dynamic approach.
The static approach using power-flow analysis and sensi-
tivity studies has been extensively studied over the past
two decades, whereas the dynamic approach where power
system components are modelled by appropriate dynamic
equations is still an active area of research.

For a general power system, static voltage stability in-
volves the determination of the system load ability limit
under pre-disturbance conditions and post-disturbance
conditions, the identification of weak buses from the P-
V curves, and the determination of the amount of cor-
rective measures required at some of these weak buses
for a specified system Lof et al. [1995], Gao et al. [1992],
Custem and Vournas [1998], Kundur [1994]. The amount
of corrective measures and application time to be applied
for a specified system following a large disturbance cannot
be obtained using static analysis. The aim of the dynamic
analysis is to obtain the critical control application time
for the corrective measures. Many researchers have dealt
with the problem of voltage collapse as a loss of equilibria
or noting the singularity of the Jacobian at the onset
of the phenomenon. In these approaches, the problem is
characterized as a quasi-static bifurcation occurring in
response to a slowly varying increase or decrease in voltage
depended load. Lee and lee [1991] considered the voltage
stability problem using the synchronous motor as load
and investigated the eigenvalues of the linearized system

matrix for the dynamic voltage stability. Thomas and
Tiranuchit [1987] analysed the dynamic voltage instability
as a quasi-bifurcation using an induction motor (IM) load.
Tripathy [2000] suggested to use Hopf bifurcation method
to determine oscillatory voltage instability. It was shown
that as the reactive power load is increased slowly from a
small value, the eigenvalues, which were originally in the
left-half s-plane move to the right-half s-plane and again
return to the left-half plane.

However, in many voltage incidents 38-02-10 [1993] expe-
rienced so far, instability occurred following large distur-
bance, such as short circuits, line outages, or generator
tripping, which cannot be analysed accurately using the
bifurcation theory. Time domain analysis is mainly used to
investigate the instability mechanisms induced by abrupt,
large variations in the structure and the parameters of the
system. Some research has been done in the area of voltage
instability caused by large disturbance. Vu and Liu [1990]
explained the dynamics of voltage collapse using generator
excitation limit, load dynamics and on-load tap-changer.
The modelling of generator dynamics was neglected in Vu
and Liu [1990] on the assumption that generators do not
lose synchronism; rather, the subsequent voltage decreases
to a low level over a considerably long period. But this is
not always true. Begovic and Phadke [1990] investigated
the dynamic voltage stability using a slightly modified
transient stability program. The general structure of the
system model used in that reference is similar to that
for transient stability analysis. Sekine and Ohtsuki [1990]
analysed the dynamic phenomena of voltage collapse us-
ing induction motor models. Potamianakis and Vournas
[2006] presented different voltage stability scenarios for
short-term voltage instability caused by synchronous and
induction machines. The existing papers on dynamic volt-
age instability analysis mainly focus on voltage instability
caused by the loss of post-disturbance equilibrium and use
static load in the long-term voltage analysis.
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Fig. 1. Power system model

However, for voltage stability analysis, special attention
should be paid to the instability mechanism of the power
system caused by (i) the loss of post-disturbance equi-
librium, i.e., post fault system has no equilibrium point,
(ii) lack of attraction towards the stable post-disturbance
equilibrium of short and long-term dynamics, which occurs
due to slow fault clearing or delayed corrective action to
restore a stable equilibrium but not soon enough for the
system to be attracted by the stable post-control equilib-
rium, and (iii) loss of short-term equilibrium caused by
long-term dynamics i.e., the slow degradation due to long-
term instability leads to a sudden transition in the form
of a collapse. Although different approaches have been
proposed and employed for voltage collapse analysis till
now, the literature dealing with the latter two mechanisms
of voltage instability in large interconnected power systems
is scarce.
The objective of this paper is to develop a power system
model to allow one to capture all possible forms of in-
stability mechanism caused by dynamics of the different
devices, comprising a typical power system, such as, loads,
generators, automatic voltage regulators, power system
stabilizers, overexcitation limiters, and OLTCs with high
accuracy using an accurate time-domain technique. In this
paper, long-term voltage analysis will be carried out using
both static and dynamic loads. Comparisons between the
static and dynamic analysis will also be presented. An
understanding of the dynamic voltage instability should
enable the development of appropriate analytical tools
to study this phenomenon and provide corrective control
strategies.The paper is organized as follows: Section 2
describes briefly the model of the power system devices
comprising the model and Section 3 presents main results
of the paper as different voltage instability scenarios and
their interpretations. Finally Section 4 presents the con-
clusions.

2. POWER SYSTEM MODEL

Fig.1 shows the power system model, which will be used
to analyse the dynamics of different systems under con-
sideration, such as, generator, loads, automatic voltage
regulator, power system stabilizer, overexcitation limiter,
nominal transformer, and on load tap changer. The local
generator is equipped with AVR, OXL, and PSS. Voltage
collapse studies and their related tools are typically based
on the following general mathematical description of the
system consisting of a set of algebraic and differential
equations:

ẋ = f(x, y, z),

ż = h(x, y, z), (1)

0 = g(x, y, z),

where x ∈ Rm represents the short-term state variables
corresponding to fast dynamic states of generators, IM
loads, FACTS (Flexible AC Transmission System) and
HVDC (High Voltage DC) controllers, etc; y ∈ Rn corre-
sponds to the algebraic variables, usually associated with
the transmission system and steady-state element models,
such as voltage magnitudes and phases at nodes, some
generating sources and loads in the network; z ∈ Rk

represents the long-term dynamic state variables of slow
acting devices, such as OLTC , OXL, and secondary volt-
age controls (if any), etc. The differential equations repre-
sent the dynamic behaviour of the system, while algebraic
equations represent the interaction of dynamic elements.

The remote system is characterized by its short-circuit
level at Bus 1 and is represented by its Thevenin equiva-
lent. Basically, there are two kinds of load models: static
model and dynamic model. In this paper the load is made
of: (i) one part represented by an exponential load; (ii)
another part represented by an equivalent induction mo-
tor including rotor dynamics, and (iii) a shunt capacitor,
for compensation purposes. The function of the AVR is
to maintain the generator terminal voltage at the preset
value. Any change in the terminal voltage from the desired
value is detected and is used as the actuating signal to
control the excitation. The primary objective of a PSS is
to introduce, via the AVR, a component of electrical torque
in the synchronous machine rotor that is proportional to
the deviation of actual speed from the synchronous speed.
When the rotor oscillates, this torque acts as a damping
torque to counter the oscillation. The overexcitation lim-
iter protects the field winding of a synchronous machine
from overheating. Under a sufficiently stressed state, the
loss of the transmission line and subsequent OXL action
can cause machines to reach excitation limits. This action,
along with other control actions and the characteristics
of the system loads, can drive the system into a voltage
collapse, which will be analysed in this paper. The limiter
used in this paper allows excitation overload as an inverse
function of time Vu and Liu [1990]. OLTCs are used in the
power system to maintain bus voltages near a constant
value.

2.1 Generator Dynamics

Under typical assumptions, the synchronous generator
with a AVR can be modelled by the following set of
nonlinear differential equations Kundur [1994], Bergen
[1986]

δ̇1 = ω1ωs − ωs, (2)

ω̇1 =
1

2H1

[

Pm1 − E′

q1Iq − D1ω1

]

, (3)

˙E′

q1 =
1

T ′

d01

[Ka(Vref − Vo1 + Vs1)

−E′

q1 − (Xd1 − X ′

d1)Id], (4)

˙Vo1 =
1

Tr1

[Vt1 − Vo1] , (5)

where δ1 is the power angle of the generator, ω1 is the
rotor speed with respect to a synchronous reference, E′

q1
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is the quadrature-axis transient voltage behind transient
reactance, Vo1 is the output of the terminal voltage trans-
ducers, and Vs1 is the stabilizing input signal for the AVR.
The mechanical power Pm1 and the reference voltage Vref

are parameters that set the operating point, and therefore
are constant for each operating condition considered in
the design. Furthermore, ωs is a constant representing the
absolute value of the synchronous speed in radians per sec-
ond, H1 is the inertia of the generator, D1 is the damping,
Tdo1 and Tr1 are the time constants of the rotor, stator
circuit and terminal voltage transducer, respectively, Ka

is the AVR gain, and Xd1 and X ′

d1
are the synchronous

and transient reactance respectively.

2.2 PSS Dynamics

The dynamic response of the PSS is modelled by the
following equation

Vpssi = Kpssi

sTw

1 + sTw

(1 + sT1)(1 + sT3)

(1 + sT2)(1 + sT4)
(6)

where the noation carries their standard meaning as in
Sauer and Pai [1998].

2.3 On-Load Tap-Changer Dynamics

A tap changer is governed by its step size, time constant,
reference voltage, and deadband. In this model, a tap
changing takes place (after some built-in time delay) if the
load voltage rms V falls beyond a voltage range [V ref −

D − ǫ, V ref + D + ǫ]

nk+1 = nk + d × (Vref − V ), (7)

where nk+1 and nk are the turns-ratios before and after a
tap change, ǫ, D and d are the hysteresis band, deadband
and step size of tap respectively.

2.4 Load Model

The static load in this paper is modelled as

P (V4) = zP0(
V4

V40

)α (8)

Q(V4) = zQ0(
V4

V40

)β (9)

where α = β=constant=2, P , Q, z , V 4 are real power,
reactive power, load demand and voltage at bus 4 respec-
tively 0 represents inial value.

With the stator transients neglected and the rotor wind-
ings shorted, a simplified transient model of a single cage
induction machine is described by the following algebraic-
differential equations written in a synchronously-rotating
reference frameTaylor [1994]

(vd + jvq) = (Rs + jX ′)(idm + jiqm) + j(e′qm − je′dm),

ṡ =
1

2Hm

[Te − TL] , (10)

T ′

dom
˙e′qm =−e′qm + (X − X ′)idm

−T ′

domωs(s − 1)e′dm, (11)

T ′

dom
˙e′dm =−e′dm − (X − X ′)iqm

+T ′

domωs(s − 1)e′qm, (12)

where

X ′ = Xs +
XmXr

Xm + Xr

,

X = Xs + Xm,

T ′

dom =
Xr + Xm

ω0Rr

,

Te = e′qmiqm + e′dmidm,

In (10-12) δm is the angle of q-axis w.r.t. system reference,
s is the slip, E′

dm and E′

qm is the motor quadrature-axis
transient voltage referred to system axis, TL is the output
load torque, T ′

dom is the time constant, X ′, Xs, and Xm is
the transient reactance, stator reactance and magnetizing
reactance respectively , Hm is the inertia of the motor.

3. DYNAMIC VOLTAGE INSTABILITY

To test if the proposed model can serve as a benchmark
for various voltage instability scenarios, several analyses
were performed. These analyses involved (a) outage of one
transmission line, (b) change in the mix between static
and dynamic loads, (c) analysis with nominal transformer
and OLTC, (d) analysis with and without AVR and PSS
dynamics taken into account, and (e) sudden change of
load.

3.1 Scenarios I: Short- term voltage instability

In the case of short-term voltage instability, the driving
force of instability is the tendency of dynamic load to
restore consumed power in the time frame of a second
after a voltage drop caused by a contingency. A typical
load component of this type is the induction motor. In this
scenario the OLTC is considered as a nominal transformer
and the OXL is switched off. The proposed power system
model is simulated first with only constant impedance load
and then with combinations of constant impedance and
induction motor load. Fig.2 shows the effect of tripping
one circuit only with (a) constant impedance and (b)
50% constant and 50% induction motor load. It is clear
from Fig.2 that the system reaches new stable equilibrium
at a reduced voltage in case (a) but the equilibrium
disappears when 50% IM load is incorporated in case (b).
The instability occurs due to the dynamics of induction
motor. When the motor is subjected to a voltage dip,
the motor demands reactive power at a certain rate to
maintain the voltage as shown in Fig.3. If the reactive
power demand is not met, the deficit of power results in a
decline in voltage and the motor stalls, which can be seen
from Fig.4 in which it’s mechanical and electrical torque
curve do not intersect after the disturbance, leaving the
system without a post-disturbance equilibrium.

The short-term voltage instability can also occur for delay
in fault clearing. The motor mechanical and electrical
torque curves intersect in this case, but at fault clearing the
motor slip exceeds the unstable equilibrium value. Next a
three phase short circuit fault is considered at bus 3. Fig.5
shows the effect of fault clearing time on voltage stability.
If the fault is cleared rapidly the system is attracted by
the equilibrium but for a delayed clearance, the stability
will be lost because the motor will decelerate beyond the
stable region and will be unable to reaccelerate even after
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the fault is cleared. The slip response of IM as shown in
Fig.6 proves the instability of IM.

From the above analysis, it is clear that short-term volt-
age instability mainly occurs due to the loss of post-
disturbance equilibrium and lack of attraction towards the
stable post-disturbance equilibrium of short-term dynam-
ics.

3.2 Scenarios II: Long- term voltage instability

In the long-term voltage analysis, it is assumed that the
system has survived the short-term period following the
initial disturbance. From there on the system is driven
by the long-term dynamics captured by the z variables
in equation (1). The contingency in this scenario is the
outage of one transmission line and the local generator
is equipped with AVR, PSS and OXL. The outage of one
transmission line results in an increased reactive loss on the
transmission line and thus largely reduces the transmission
capability. As a consequence, system voltages drop. To
keep the terminal voltage magnitude constant, the AVR
of local generator boost its field current to increase their
reactive power output. With the increase in reactive power,
the system becomes transient stable. Fig.7 depicts the
effects of OLTC on voltage stability with and without
AVR dynamics, where OXL is not activated. The initial
fast transient caused by the disturbance dies out, showing
that short-term dynamics are stable. Thus a short-term
equilibrium is established, with V4 settling down to 0.96
pu. After this point the mechanism driving the system
response is the OLTC, which tries to restore the load-side
voltage by lowering its tap ratio n. The operation of the
OLTC starts after an initial time delay of 40s. After several
tap changes, it succeeds in bringing the voltage back into
dead-band. The required reactive power is supplied by the
local generator. It can be concluded that a disturbance to
initially stable operating conditions initiates a dynamic
transition from an initial state towards a final state.
In the transient period immediately subsequent to the
disturbance, a restoring action is released by the deviation
from steady operation. When stability is maintained, the
restoring action returns operation to a steady equilibrium
condition. Without the dynamics of AVR, the OLTC is
unable to restore the voltage to its pre-contingency value,
which can be seen from Fig.7.

The effect of OXL on voltage stability is shown in Fig.8.
At about t = 120s, the generator OXL is activated which
causes the voltage to drop with the subsequent change of
tap. If the system voltage goes to very low level, the system
may be unstable. The instability is occurred due to the
field current limitation of local generator. It is clear that
the initial departure from planned operation is counter-
balanced by the inherent recovery capabilities of stable
operating conditions. But as these must have upper limits,
circumstances may arise in which stable operating condi-
tions are exceeded thereby leading to unstable operating
modes.

The time available for taking a corrective measure aimed
at restoring a long-term equilibrium is limited by attrac-
tion considered. Fig.9 shows the effect of delayed corrective
actions, where the system becomes stable if the load is shed
after 1s of generator tripping and equilibrium condition is

lost if it is delayed more 0.1s. From the above scenarios,
it can be concluded that long-term voltage instability
occurs due to the attempt of recovering load to their
pre-disturbance value through OLTC action or delayed
corrective action, which restores a stable equilibrium but
not soon enough for the system to be attracted by the
stable post-control equilibrium.

3.3 Scenarios III: Short- term voltage instability caused by
long-term dynamics

We now consider the case where the evolution of long-
term variables, usually after a long-term instability, leads
to a short-term instability. In this case, the long-term
instability is the cause, the short term instability being the
ultimate result. The system initial conditions are modified
by increasing the local generator active production to
full rated turbine power. At first the load is considered
as constant impedance type and the contingency is the
outage of one transmission line. Fig.10 shows the response
of the transmission-side voltage V3 as a function of time.
This time the generator field current gets limited at
about t = 100s. As the OLTC keeps reducing the tap
ratio, the generator eventually loses synchronism at about
t = 220s as shown in Fig.10. In the second case the
dynamic induction motor load is included and same fault
is applied. The transmission-side voltage response is shown
in Fig.11, where 33.33% of the load is made of IM. The
local active generation is reduced below 50% of rated
turbine power. The circuit tripping causes a more severe
generator over excitation problem due to the increased
reactive consumption of the induction motor at lower
voltage. The increased overload forces the OXL to act
faster. The loss of short-term equilibrium takes on the form
of motor stalling as shown in Fig. 11. So the short-term
instability caused by long-term dynamics may result in
both motor stalling and generator loss of synchronism.

3.4 Comparison between static and dynamic analysis

To compare the dynamic analysis and static analysis, two
cases are considered. In first case the load is modelled as
constant impedance load and dynamic IM load and only
constant impedance load in the second case. The local
generator is equipped with AVR and PSS, and contingency
in first case is sudden change of load and outage of one
transmission line in the second case. The responses of load
voltage using static and dynamic analysis with sudden
5% change in load power are shown in Fig.12 and Fig.13
respectively. From the static analysis, it can be seen that
the final steady voltage reduces somewhat but the system
is stable. A different scenario is obtained from dynamic
analysis where the system is unstable due to the dynamics
of the load. The response of load voltage by static and
dynamic simulation due to the outage of one transmission
line is shown in Fig.14 and Fig.15 respectively. The outage
is stable for dynamic simulation and unstable by V − Q
analysis using conventional power-flow models. Because
there is no operating point for the for the unstable V −Q
curve cases, results at the end of stable dynamic simulation
cannot be compared with the power flow results. The
difference in results in both cases occurs because dynamics
of generator, AVR, PSS and IM load is neglected in static
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analysis. We can judge the acceptability of the dynamic
simulations by the post-fault voltage levels, the remaining
reactive power reserves at generating plants, and the
time available for operation. Dynamic simulation results
provide more information to judge acceptability.
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4. CONCLUSION

In this paper, we have discussed different aspects of the
voltage instability problem, both static (P −V and Q−V
analysis) and dynamic analyses. We have explored the
effects of the inclusion of dynamics of generator, AVR,
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Fig. 13. Load voltage with dynamic analysis due to change
in load power
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PSS, OXL, IM and OLTC on the voltage stability charac-
teristics of power system using time domain analysis. In
particular in this paper, the mechanism of voltage collapse
phenomenon was analysed from the physical point of view
rather than from the mathematical point of view, and some
meaningful physical interpretations are given.

This paper presents a number of possible voltage collapse
mechanisms to provide a deeper insight into the dynamical
mechanism of voltage collapse phenomenon. Although
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Fig. 15. Load voltage with dynamic analysis due to outage
of one transmission line

static methods based on the power flow analysis is very
suitable for screening loadability, final decisions regarding
the system planning and operation should be confirmed by
more accurate time-domain simulation in which different
characteristics of multiple controllers, protection relays
must be taken into account.
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