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Abstract: In this paper, we consider a closed-loop subspace identification problem without using
probing inputs; but we assume that there is a measurable disturbance which can be used as a test
input for identification. Deterministic and stochastic subsystems are derived by applying the orthogonal
decomposition (ORT) of the joint input-output process and realization methods. We develop a new ORT-
based closed-loop subspace identification method, consisting of identification of the two subsystems.
Some numerical results are included to show the applicability of the present method.
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1. INTRODUCTION

Closed-loop identification has been an important topic for
decades (Ljung, 1999; Söderström and Stoica, 1989), because
in many industrial plants, open-loop experiments are prohib-
ited due to safety and efficiency of operation. Key issues in
closed-loop identification have been discussed in the literature
(Van den Hof, 1998; Forssell and Ljung, 1999). Moreover,
closed-loop subspace identification problems have received
much interest; see e.g. Ljung and McKelvey (1996), Jansson
(2003; 2005), Chiuso (2007), Chiuso and Picci (2005a; 2005b),
Qin and Ljung (2003; 2006), Wang and Qin (2006).

By using the orthogonal decomposition (ORT) method (Picci
and Katayama, 1996), we have developed subspace closed-
loop identification methods; one is the joint input-output ORT
method (Katayama et al., 2005), and the other one the two-
stage ORT method (Katayama and Tanaka, 2007). In these
methods, we have used the so-called deterministic component 1

of the joint input-output process, under the assumption that
some test signals are available for identification. The two-stage
ORT method has also been applied to identification of a waste
power plant (Ase et al., 2006), for which there was a mismatch
between the model used and the plant, because injection of
probing inputs was not allowed for data gathering. In view
of this fact, we consider a closed-loop subspace identification
problem without using test signals; but, we assume that there is
a measurable disturbance to be used as a test input for closed-
loop identification. Since control systems are usually subjected
to random disturbances, we exploit information brought by both
measurable and unmeasurable disturbances, i.e. both determin-
istic and stochastic components of the joint process.

In this situation, we can regard the plant as receiving two
control inputs where the first input has feedback from the
output, while the second input is feedback-free. Thus, the

1 The deterministic component is the part of the input-output process linearly

related to the exogenous input, while the stochastic component is the orthogonal

complement.

methods of SSARX (Jansson, 2005) or PBSID (Chiuso and
Picci, 2005a) can be applied. But, in this paper as a continuation
of Katayama and Tanaka (2007), we develop an alternative way
of identifying the plant by using measurable disturbances.

The rest of the paper is organized as follows. Section 2 states
the problem formulation. In Section 3, we briefly review the
technique of ORT and derive the deterministic and stochastic
subsystems, together with their state space realizations. In
Section 4, we introduce a compatibility condition between the
deterministic and stochastic subsystems. Section 5 derives a
state space innovation model for the plant. Section 6 describes
the basic idea of the ORT method in the present closed-loop
setting. Section 7 includes two numerical results, where the
first example includes a comparison with PBSID (Chiuso and
Picci, 2005a). Section 8 concludes the paper.
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Fig. 1. Closed-loop system.

2. PROBLEM FORMULATION

We consider a closed-loop system shown in Fig. 1, where
y ∈ Rp is the plant output, u ∈ Rm the control input, and
r ∈ Rq the measurable disturbance. Also, the processes ν ∈ Rp

and η ∈ Rm, generating stochastic disturbances, are mutually
uncorrelated white noises with mean 0 and covariance matrices
Λν > 0 and Λη > 0, respectively.

Let the LTI plant be given by

y(t) = Pu(z)u(t) + Pr(z)r(t) + Hp(z)ν(t) (1)
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where Pu(z) and Pr(z) are the p ×m and p × q transfer matrices
of the plant from u to y and r to y, respectively, and the noise
filter Hp(z) is a minimum phase p× p transfer matrix satisfying
Hp(∞) = Ip. Also, the control signal is generated by

u(t) = C(z)(y∗ − y(t)) + Hc(z)η(t) (2)

where y∗ ∈ Rp is the set point or desired value, which is
assumed to be constant, and C(z) is the m × p transfer matrix
of the controller and the noise filter Hc(z) is a minimum phase
m × m transfer matrix satisfying Hc(∞) = Im.

The following assumptions are made on the closed-loop sys-
tem, the measurable disturbance and noises.

A1: The plant Pu is strictly proper, i.e. Pu(∞) = 0. This implies
that the feedback system is well-posed in the sense that the
joint input-output (y, u) are determined uniquely if all the
external signals are given.

A2: The feedback system is internally stable, and there are no
pole-zero cancellations in Pu(z) and C(z).

A3: The exogenous input r satisfies PE condition.

A4: The exogenous input and noises are mutually uncorrelated
2nd-order jointly stationary processes with mean zero.

A5: The desired value is y∗ = 0.

The identification problem in this paper is stated as follows.

Identification of Closed-Loop Systems: We derive a subspace
method of identifying state-space models of the plant P(z) =
[Pu(z) Pr(z) Hp(z)] based on a finite data set {r(t), u(t), y(t), t =
0, 1, · · · ,T }, where the controller C(z) is unknown.

It follows from Fig. 1 that

Tyr(z) = (Ip + Pu(z)C(z))−1Pr(z) (3a)

Tur(z) = −C(z)(Ip + Pu(z)C(z))−1Pr(z) (3b)

and that

Tyν(z) = (Ip + Pu(z)C(z))−1Hp(z) (4a)

Tyη(z) = Pu(z)(Im +C(z)Pu(z))−1Hc(z) (4b)

Tuν(z) = −C(z)(Ip + Pu(z)C(z))−1Hp(z) (4c)

Tuη(z) = (Im +C(z)Pu(z))−1Hc(z) (4d)

where Tab(z) denote the transfer matrix from b to a.

3. DETERMINISTIC AND STOCHASTIC SUBSYSTEMS

3.1 Orthogonal decomposition

The joint input-output process and joint noise process are

respectively expressed as w =

[

y
u

]

∈ Rl and χ =

[

ν
η

]

∈ Rl,

where l = p + m. Let R be the Hilbert space generated by
exogenous input r. Let the orthogonal projection of w onto R
and its complement R⊥ be given by wd(t) = Ê{w(t) | R} and
ws(t) = Ê{w(t) | R⊥}, respectively. We call wd the deterministic
component and ws the stochastic component.

Under the assumption that the exogenous input r is feedback-
free, we can show (Picci and Katayama, 1996) that the joint
input-output process w has the orthogonal decomposition

w(t) = wd(t) + ws(t) (5)

where the deterministic and stochastic components are uncor-
related, i.e. E{ws(t)w

T
d
(τ)} = 0 holds for all t, τ = 0, ±1, · · · .

We write wd :=

[

yd

ud

]

and ws :=

[

ys

us

]

. Then, we see from (5) that

y(t) =yd(t) + ys(t) (6a)

u(t) =ud(t) + us(t) (6b)

where (yd, ud) and (ys, us) are the deterministic and stochastic
components of (y, u), respectively.

Applying the above decomposition results to the feedback
system described by (1) and (2), we see that the deterministic
and stochastic components are respectively given by

yd(t) =Pu(z)ud(t) + Pr(z)r(t) (7a)

ud(t) = −C(z)yd(t) (7b)

and

ys(t) =Pu(z)us(t) + Hp(z)ν(t) (8a)

us(t) = −C(z)ys(t) + Hc(z)η(t) (8b)

3.2 Deterministic subsystem

We define a state vector xd ∈ R
nd for the deterministic subsys-

tem, whose dimension is the sum of orders of Pu(z) and C(z) by
Assumption 2. Then, a minimal state space model for (7) can
be written as

xd(t + 1) =Ad xd(t) + Bdr(t) (9a)

wd(t) =Cd xd(t) + Ddr(t) (9b)

where Ad ∈ R
nd×nd , Bd ∈ R

nd×q, Cd ∈ R
l×nd , Dd ∈ R

l×q are

constant matrices. We also define Cd =

[

Cd1

Cd2

]

, Dd =

[

Dd1

Dd2

]

where Cd1 ∈ R
p×nd , Cd2 ∈ R

m×nd and Dd1 ∈ R
p×q, Dd2 ∈ R

m×q.

3.3 Stochastic subsystem

For the stochastic subsystem, we can define a state vector xs ∈
R

ns , whose dimension is also the sum of orders of Pu(z) and
C(z). Thus, a minimal state space model for (8) can be written
as

xs(t + 1) =Asxs(t) + Ksξ(t) (10a)

ws(t) =Csxs(t) + ξ(t) (10b)

where As ∈ R
ns×ns , Cs ∈ R

l×ns are constant matrices, and Ks =
[

Ks1 Ks2

]

is the steady-state Kalman gain with Ks1 ∈ R
ns×p,

Ks2 ∈ R
ns×m, and ξ ∈ Rl is the innovation process of ws defined

by ξ(t) = ws(t) − Ê{ws(t) | ws(τ), τ < t}.

According to the spectral factorization theory for feedback
stochastic systems (Ng et al., 1977; Anderson and Gevers,

1982), we can show that ξ :=

[

ξ1
ξ2

]

is related to χ :=

[

ν
η

]

as

[

ξ1(t)
ξ2(t)

]

=

[

Ip 0
∆21 Im

] [

ν(t)
η(t)

]

(11)

where the lower triangular form is due to the fact that there
exists a delay from u to y, and ∆21 ∈ R

m×p denotes a possible

correlation of ν to ξ2. Define Cs =

[

Cs1

Cs2

]

with Cs1 ∈ R
p×ns and

Cs2 ∈ R
m×ns . It then follows from (10) and (11) that the state

space model of stochastic subsystem can be expressed as

xs(t + 1) =Asxs(t) + Bsν(t) + Ks2η(t) (12a)

ys(t) =Cs1xs(t) + ν(t) (12b)

us(t) =Cs2xs(t) + ∆21ν(t) + η(t) (12c)

where Bs := Ks1 + Ks2∆21 ∈ R
ns×p.
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4. CONNECTING DETERMINISTIC AND STOCHASTIC
SUBSYSTEMS

In Section 3, we have derived state-space realizations for de-
terministic and stochastic subsystems. We now put these two
subsystems together to obtain a state space model of the plant
(1). In view of (5), the outputs wd and ws of two subsystems can
be added to recover the joint input-output. However, we need to
align two state vectors by a suitable similarity transformation
T before adding two state vectors xd and xs of two subsystems,
because they are defined up to similarity transformations. To
obtain a similarity transformation, we must find some relations
connecting the deterministic and stochastic subsystems.

We see from (3) that

C(z)Tyr(z) + Tur(z) = 0 (13)

Also, since the noise filters are nonsingular, we see from (4a)
and (4c) that

C(z)Tyν(z) + Tuν(z) = 0 (14)

Hence, from (13) and (14), we have the following lemma that
connects the deterministic and stochastic subsystems. All the
proofs are omitted due to space limitation.

Lemma 1. For the compatibility of the two subsystems, we
have

[

Ad Bd

Cd2 Dd2

]

=

[

Ās Bs

C̄s ∆21

] [

Ad Bd

Cd1 Dd1

]

(15)

where Ās := As − BsCs1 ∈ R
ns×ns , C̄s := Cs2 − ∆21Cs1 ∈ R

m×ns .

Lemma 2. The condition of (15) holds if and only if Dd2 =

∆21Dd1 and

Cd(zInd
− Ad)−1Bd −Cs(zIns

− As)
−1BsDd1

=
(

Cs(zIns
− As)

−1Bs +

[

Ip

∆21

]

)

F(z) (16)

where F(z) is a strictly proper p × q matrix.

Lemma 3. In (16), we get F(z) = 0 if and only if

Cd(zInd
− Ad)−1Bd = Cs(zIns

− As)
−1BsDd1 (17)

5. STATE SPACE MODEL OF PLANT

For the deterministic subsystem (Ad, Bd,Cd) and stochastic sub-
system (As, BsDd1,Cs), we respectively define extended ob-
servability matrices Od

k
and Os

k
as

Od
k =

































Cd

CdAd

...

CdAk−1
d

































∈ Rkl×nd , Os
k =

































Cs

CsAs

...

CsA
k−1
s

































∈ Rkl×ns

Similarly, extended reachability matrices Cd
k

and C̄s
k

are defined
as

Cd
k =
[

Bd AdBd · · · Ak−1
d Bd

]

∈ Rnd×qk

C̄s
k =
[

BsDd1 AsBsDd1 · · · Ak−1
s BsDd1

]

∈ Rns×qk

As shown in Subsections 3.2 and 3.3, the dimensions of the
deterministic and stochastic subsystems are the same. Thus we
write ncl = nd = ns in the following.

Lemma 4. Suppose that Dd1 � 0. Then, (17) holds if and only
if there exists a nonsingular matrix T ∈ Rncl×ncl satisfying

Cd = CsT, T Ad = AsT, T Bd = BsDd1 (18)

Moreover, if k > ncl, the similarity transformation is given by
T = (Os

k
)†Od

k
, where (†) denotes the pseudo inverse.

Proof: See Kailath (1980). �

Theorem 5. Suppose that there exists a transformation T ∈
R

ncl×ncl that satisfies (18). Then, by defining x = xs + T xd, the
plant output y is expressed as

x(t + 1) =(As − Ks2Cs2)x(t) + Ks2u(t)

+ (T Bd − Ks2Dd2)r(t) + Ks1ν(t) (19a)

y(t) =Cs1x(t) + Dd1r(t) + ν(t) (19b)

Equation (19) is easily derived by using (9) and (12). It is a
state space realization of the output process y of (1) in terms
of the combined state vector x, the input u, the exogenous
input r and the white noise ν. This theorem implies that a state
space model of the plant can be obtained by identifying both
the deterministic subsystem (9) and the stochastic subsystem
(10), followed by suitably combining parameters of the two
subsystems by a similarity transformation.

It should be noted that Theorem 5 is derived under the condition
F(z) = 0. If, however, Dd1 = 0 in (16), we get

Cd(zInd
− Ad)−1Bd =

(

Cs(zIns
− As)

−1Bs +

[

Ip

∆21

]

)

F(z) (20)

Thus, obviously F(z) � 0, so that in this case, Lemmas 3 and
4 are not valid. But, by setting Dd1 = 0 and hence Dd2 = 0 in
(19), we have

x(t + 1) =(As − Ks2Cs2)x(t) + Ks2u(t)

+ T Bdr(t) + Ks1ν(t) (21a)

y(t) =Cs1x(t) + ν(t) (21b)

Thus, from (21), we have a strictly proper transfer matrix as
expected, i.e.

Pr(z) = Cs1(zIns
− As + Ks2Cs2)−1T Bd (22)

This implies that the state space model of (19) is valid even if
Pr(z) is strictly proper.

The following lemma also verifies (22).

Lemma 6. For Dd1 = 0, we can show that F(z) satisfying (20)
is given by

F(z) = Cs1(zIns
− As + BsCs1)−1T Bd (23)

under the first two conditions of (18). By using (23), we can
prove that Pr(z) is given by (22). �

6. SUBSPACE IDENTIFICATION METHOD

The deterministic and stochastic subsystems (9) and (10) are
derived under the assumption that infinite history of joint pro-
cess w is given. In this section, for given finite data, we briefly
describe the basic procedure of ORT-based identification ac-
cording to Katayama (2005).

Suppose that the data {y(t), u(t), r(t), t = 0, 1, · · · ,N + 2k − 2}
are given, where k > ncl, and N sufficiently large. As usual we
define a block Hankel matrix R0|k−1 ∈ R

kq×N as

R0|k−1 =

































r(0) r(1) · · · r(N − 1)
r(1) r(2) · · · r(N)
...

...
...

r(k − 1) r(k) · · · r(k + N − 2)

































and similarly for Rk|2k−1. Also, we define W0|k−1,Wk|2k−1 ∈ R
kl×N

by using the joint input-output process w.

A key step is the use of LQ decomposition to compute the
deterministic and stochastic components (wd, ws) of the joint
process w.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13375



We compute the LQ decomposition


























Rk|2k−1

R0|k−1

W0|k−1

Wk|2k−1



























=



























L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44

























































QT
1

QT
2

QT
3

QT
4































(24)

where L11, L22, L33, L44 are lower triangular matrices, and Qis
are orthogonal, i.e. QT

i
Q j = Iδi j. From the theory of subspace

identification, we see that rank(R0|2k−1) = 2kq should hold
in (24), so that we assume that the disturbance r satisfies PE
condition of order 2k.

6.1 Identification of deterministic subsystem

We see from (24) that the deterministic component Wd
0|2k−1

:=

Ê{W0|2k−1 | R0|2k−1} is given by
[

Wd
0|k−1

Wd
k|2k−1

]

=

[

L31 L32

L41 L42

] [

QT
1

QT
2

]

(25)

and that Im(Od
k
) = Im(L42). Let the SVD of L42 be given by

L42 = [Û Ũ]

[

Ŝ 0

0 S̃

]

≃ ÛŜ V̂T

where dim(Ŝ ) = nd and the term with less significant singular
values are discarded. Then, the extended observability matrix is
given by Od

k
= ÛŜ 1/2, so that Ad and Cd are

Ad = (Od
k−1)†Ōd

k , Cd =

[

Cd1

Cd2

]

= Od
k (1 : l, :)

where Ōd
k

:= Od
k
(l + 1 : kl, :).

Moreover, the matrices (Bd,Dd) can be obtained by solving

ŨTL41 = ŨTΨk(Bd,Dd)L11 (26)

where Ψ (Bd,Dd) is the well-known block Toeplitz matrix
formed by the Markov parameters gd(0) = Dd and gd( j) =

CdA
j−1

d
Bd, j = 1, 2, · · · , k − 1.

6.2 Identification of stochastic subsystem

We see from (24) that the stochastic component is given by
[

W s
0|k−1

W s
k|2k−1

]

=

[

L33 0
L43 L44

] [

QT
3

QT
4

]

(27)

Define the covariance matrices of stochastic component as
[

Σpp Σp f

Σ f p Σ f f

]

:=
1

N

[

W s
0|k−1

W s
k|2k−1

] [

W s
0|k−1

W s
k|2k−1

]T

Then, we have

Σpp =
1

N
L33LT

33, Σ f p =
1

N
L43LT

33, Σ f f =
1

N
(L43LT

43 + L44LT
44)

Computing the normalized SVD

Σ
−1/2

f f
Σ f pΣ

−T/2
pp = UΣVT ≃ ÛΣ̂V̂T

we get the extended observability matrix Os
k
= Σ

1/2

f f
ÛΣ̂1/2.

Now we define the estimate of the state vector of the stochastic
subsystem as X̄s

k
= Σ̂1/2V̂TΣ

−1/2
pp W s

0|k−1
∈ Rns×N , and define

X̂s
k+1 : = X̄s

k(:, 2 : N), X̂s
k := X̄s

k(:, 1 : N − 1)

Ŵ s
k|k : = W s

k|k(:, 1 : N − 1)

Then we have the regression equation
[

X̂k+1

Ŵ s
k|k

]

=

[

As

Cs

]

X̂k +

[

ρx

ρw

]

(28)

where ρx ∈ R
ns×(N−1) and ρw ∈ R

l×(N−1) are residual errors.
Applying the least-squares method to (28), we have the estimate
of (As,Cs) together with the covariance matrices of residuals

[

Q̂ Ŝ

Ŝ T R̂

]

=
1

N − 1

[

ρxρ
T
x ρxρ

T
w

ρwρ
T
x ρwρ

T
w

]

By solving the algebraic Riccati equation (ARE), we compute
the Kalman gain K = [Ks1 Ks2]. The covariance matrix of the
innovation process is then given by Ξ = (Ξi j) = CsPCT

s + R̂,

where P is the solution of ARE. Thus, we have ∆21 = Ξ21Ξ
−1
11

.

Define T = (Os
k
)†Od

k
, and A = As − Ks2Cs2, Bu = Ks2, C = Cs1,

Br = T Bd − Ks2Dd2, Dr = Dd1. Then, a plant model is given by
(19).

7. NUMERICAL EXAMPLES

7.1 Example

Consider a 2nd-order system described by

x(t + 1) = Ax(t) + Buu(t) + Brr(t) + Kν(t)

y(t) = Cx(t) + Drr(t) + ν(t)

where

A =

[

1.80 −0.85
1.00 0.00

]

, Bu =

[

1
0

]

, Br =

[

0
0.5

]

, K =

[

0.1
0.1

]

C = [−0.3 1.0], Dr = 1,

and where r and ν are Gaussian white noises with mean zero
and variances σ2

r = 0.25 and σ2
ν = 0.36, respectively. Also, the

feedback control is given by

u(t) = −C(z)y(t) + η(t)

where C(z) is a PI controller of the form

C(z) = 0.04

[

1 +
z

30(z − 1)

]

, Hc(z) = 1

and where η is a Gaussian white noise with mean zero and
variance σ2

η = 0.04.

For simulation studies, we choose N = 1000, nd = 3, ns = 3
and k = 21 2 . Also, the order of identified models is reduced
from ncl = min(nd, ns) = 3 to n = 2, where it is assumed that
the true model order n is known.
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Fig. 2. Pole plots of the plants estimated by ORT method, where
the true poles are denoted by +.

Table 1 displays the performance of the ORT-based method
by Monte Carlo simulation. For comparison, the result by the
PBSID method (Chiuso and Picci, 2005a) is also included.
We see that both methods give quite similar estimates of the

2 The orders (nd , ns) are obtained by computing the prediction errors, so that

they may be different. If nd ≥ ns, the present algorithm works with T ∈ Rns×nd .

If nd < ns, then we must define a different transformation matrix T̃ ∈ Rnd×ns .

Details are omitted due to space limitation.
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Table 1. Simulation results for the 2nd-order plant
Pu(z) = Nu(z)/d(z) and Pr(z) = Nr(z)/d(z), where
the means and standard deviations (s.d.) are com-

puted based on 50 Monte Carlo runs.

True ORT PBSID

d(z) â1 −1.8 −1.8073 −1.7962

(s.d.) (0.0109) (0.0121)

â2 0.85 0.8550 0.8466

(s.d.) (0.0102) (0.0176)

Nu(z) b̂u1 −0.3 −0.2219 −0.2932

(s.d.) (0.0822) (0.0936)

b̂u2 1.0 0.9367 1.0002

(s.d.) (0.0778) (0.1252)

Nr(z) b̂r0 1.0 0.9975 1.0040

(s.d.) (0.0530) (0.0443)

b̂r1 −1.3 −1.2972 −1.2954

(s.d.) (0.0936) (0.0780)

b̂r2 0.0775 0.0801 0.0825

(s.d) (0.0701) (0.0529)
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Fig. 3. Bode plots of the plant identification results by ORT
method, where the true one is shown in a thick line.

denominator d(z), and the PBSID gives unbiased estimates of
the numerator Nu(z) but with somewhat larger variance errors,
while the ORT-based method gives biased estimates. Also, both
methods give comparable estimates of the numerator Nr(z).

Figs. 2 and 3 respectively display estimates of plant poles (0.9±
0.2 j) and Bode plots of Pu(z) and Pr(z) by the present method.
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generator

u1 := Valve degree
u2 := Fan revolution
y1 := Pressure in condenser
y2 :=Water temperature
r1 := Steam flow rate
r2 := Steam header pressure

Fig. 4. High pressure steam condenser

7.2 Example 2

We consider a high pressure steam condenser as an industrial
application; see Fig. 4. Steam from boiler is accumulated in
a high pressure steam header, where a fixed amount of it is
continuously fed to a steam turbine to generate electricity. On
the other hand, the high pressure steam condenser receives
excess steam, converting it into water for re-circulation. Due to

Table 2. Identification result: Simulation errors for
14 days.

Standard deviations (%)

Day y1 y2

12/10/2005 3.62 1.48

13/10/2005 3.53 5.14

14/10/2005 3.43 4.22

15/10/2005 15.97∗ 18.15∗

16/10/2005 2.93 3.91

17/10/2005 3.65 1.17

18/10/2005 2.82 1.52

19/10/2005 2.99 1.70

20/10/2005 6.99 6.98

21/10/2005 2.53 1.69

22/10/2005 3.26 2.61

23/10/2005 3.64 2.79

24/10/2005 3.01 3.10

25/10/2005 2.33 1.42

large fluctuations of the flow rate r1 and pressure r2 of incoming
steam, we see large variations in the pressure y1 and water
temperature y2 of the high pressure steam condenser, so that
the condenser is regulated by two PID controllers, i.e. the valve
degree u1 and fan revolution u2.

We have collected data for 14 days from October 12 to 25, 2005,
where the sampling time is 20s, so that the number of data for
one day is N = 4, 320. By applying the present method, we
have obtained a set of 14 identification results as shown in Table
2, where the performance is evaluated in terms of simulation
errors rather than prediction errors (Ljung, 1999). As shown in
Table 2, the results are nearly the same except for the data of
October 15 marked by asterisks.

The results for October 21, 2005 are shown in Figs. 5 – 8, where
we have chosen (nd, kd) = (8, 17), (ns, ks) = (7, 14). Figs. 5
and 6 display the poles and Bode plots of an identified plant
model with np = 5. Also, we see from Fig. 7 that the simulated
output is very close to measured outputs. The step responses of
the derived model are displayed in Fig. 8, showing that these
responses are good agreement with our physical knowledge
acquired from past experiences. Though not shown here, other
results are quite similar to the one shown above. Especially, the
identification results are quite stable in the sense that if two data
sets of 24 hours are similar, so are the identification results.

8. CONCLUSIONS

In this paper, we have developed a new identification method
for closed-loop system without using test signals under the
assumption that there exists a measurable disturbance satis-
fying a certain PE condition. By introducing a compatibility
condition between realizations of deterministic and stochastic
subsystems, we have derived a state space realization of the
plant, based on which an ORT-based algorithm of identifying
the closed-loop system is obtained. Numerical results for a
simple system and an industrial plant are included to show the
applicability of the proposed method. Since there are many real
plants similar to the one treated here, the present ORT-based
algorithm has many applications in the future.
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Fig. 5. Pole plots of an estimated plant model (np = 5)
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