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Abstract: This paper presents an alternative solution to simultaneous localization and mapping (SLAM)
problem by applying a fuzzy Kalman filter using a pseudolinear measurement model of nonholonomic
mobile robots. Takagi-Sugeno fuzzy model based on an observation for a nonlinear system is adopted to
represent the process and measurement models of the vehicle-landmark system. The complete system of
the vehicle-landmark model is decomposed into several linear models. Using the Kalman filter theory,
each local model is filtered to find the local estimates. The linear combination of these local estimates
gives the global estimate for the complete system. The simulation results shows that the new approach
performs better, though nonlinearity is directly involved in the Kalman filter equations, compared to the
conventional approach.

1. INTRODUCTION

The simultaneous localization and mapping (SLAM) problem
(Durrant-Whyte & Bailey, 2006), also known as concurrent
mapping and localization (CML) problem, is often recognized
in the robotics literature as one of the key challenges in build-
ing autonomous capabilities for mobile vehicles. The goal of
an autonomous vehicle performing SLAM is to start from an
unknown location in an unknown environment and build a map
(consisting of environmental features) of its environment incre-
mentally by using the uncertain information extracted from its
sensors, whilst simultaneously using that map to localize itself
with respect to a reference coordinate frame and navigate in real
time.

The first solution to the SLAM problem was proposed by Smith
et al. (1987). They emphasized the importance of map and vehi-
cle correlations in SLAM and introduced the extended Kalman
filter (EKF)-based stochastic mapping framework, which esti-
mated the vehicle pose and the map feature (landmark) posi-
tions in an augmented state vector using second order statis-
tics. Although EKF-based SLAM within the stochastic map-
ping framework gained wide popularity among the SLAM re-
search community, over time, it was shown to have several
shortcomings (Leonard & Durrant-Whyte, 1991; Dissanayake
et al., 2001). Notable shortcomings are its susceptibility to data-
association errors and inconsistent treatment of nonlinearities.

Here we propose some remedies to overcome the shortcomings
of EKF algorithm. To preserve the nonlinearity in the system,
motion and observation models are represented by the pseu-
dolinear models (Li & Jikov, 2001; Whitcombe, 1972; Watan-
abe, 1991). This avoids the direct linearization of the system.
Discrete time motion model is derived from the dead-reckoned
measurements of the vehicle pose as to reduce the error as-
sociated with the control inputs. This assures the less error
prone motion model producing faster convergence. We propose
a fuzzy Kalman filter based state estimation algorithm to the

SLAM problem. Fuzzy logic has been a promising control tool
for the nonlinear systems. Fuzzy state estimation is a topic
that has received very little attention. Fuzzy Kalman filtering
(Chen et al., 1998) is a recently proposed method to extend
Kalman filter to the case where the linear system parameters
are fuzzy variables within intervals. We show the superiority
of fuzzy Kalman filtering for the state estimation through the
SLAM algorithm developed with T-S fuzzy model in this paper.
The proposed T-S fuzzy model (Takagi & Sugeno, 1985) based
algorithm to the SLAM problem has shown that a demanding
(not conventional) solution to the SLAM problem exists and it
overcomes limitations of the EKF based SLAM hinting a new
path explored is much suitable in finding an advanced solution
to localization and mapping problems.

2. VEHICLE MODEL AND ODOMETRY

In the history of SLAM problem, it has been the common
practice of generating the motion model with forward velocity
and steering angle as control inputs. In this representation,
measurement errors in control inputs propagate into the next
stage with the same noise strength. But the model that we
present has less error prone control inputs as control inputs
to the motion model are derived from the successive dead-
reckoned poses where current dead-reckoned pose subtracts the
immediate previous dead-reckoned pose to produce the control
input and it is hopeful that this subtracts the common dead-
reckoned error giving a control input with low noise level.

2.1 Dead-Reckoned Odometry Measurements

Assume left and right wheels of radius r mounted on both sides
of the rear axle turn amounts δθl and δθr in one time interval,
as shown in Fig. 1. We want to express the change of position of
the center of rear axle of the vehicle (δxo, δyo) and the change
of orientation (δφo) as a function of δθl and δθr. From the
geometrical relationship of Fig. 1, it is easy to see that

rδθr = (c − L/2)α, rδθl = (c + L/2)α (1)
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Fig. 1. Geometric construction of rear wheel movements

Solving above two equation in (1) for c and α, we obtain

c =
L

2

δθl + δθr

δθl − δθr

, α =
r

L
(δθl − δθr) (2)

immediately then it yields that
[

δxo

δyo

δφo

]

=

[

(1 − cosα)c
c sinα
−α

]

(3)

The dead-reckoning system in the vehicle simply compounds
these small changes in position and orientation to obtain a
global position estimate. Figure 2 shows a vehicle with a
prior pose xo(k − 1). The processing of wheel rotations be-
tween successive readings (via (3)) has indicated a vehicle-
relative transformation (i.e. in the frame of the vehicle) uo =
[δxo, δyo, δφo]

T . The task of combining this new motion uo(k)
with the old dead-reckoned estimate xo(k − 1) to arrive at a
new dead-reckoned posed xo(k) is trivial, i.e.,

xo(k) = xo(k − 1) ⊕ uo(k) (4)

We want to figure out the control inputs to the vehicle motion
model (uv = [δx, δy, δφ]T ) from the successive dead reckoned
poses. Compounding xo(k) to inverse relationship of xo(k−1)
results in uv(k) and is given by

uv(k) = ⊖xo(k − 1) ⊕ xo(k) (5)

We are now in a position to write down the vehicle motion
model using dead-reckoned poses as a control input:

xv(k + 1) = f (xv(k), uv(k))

= xv(k) ⊕ (⊖xo(k − 1) ⊕ xo(k))

= xv(k) ⊕ uv(k) (6)

3. PSEUDOLINEAR SYSTEM MODELING

In the following, the vehicle state is defined by xv = [x, y, φ]T .
where x and y are the coordinates of the center of the rear axel
of the vehicle with respect to some global coordinate frame
and φ is the orientation of the vehicle axis. The landmarks
are modeled as point landmarks and represented by a Cartesian
pair such that mi = [xi, yi]

T , i = 1, ..., N . Both vehicle and
landmark states are registered in the same frame of reference.

3.1 The Pseudolinear Process Model

Figure 3 shows a schematic diagram of the vehicle in the
process of observing a landmark. The dead-reckoned measure-
ments obtained from successive vehicle frames can be used to

World coordinate frame

x
o
(k-1)

x
o
(k)

uo(k)

Fig. 2. Deducing a new dead-reckoned state from a prior dead-
reckoned state with a local odometry measurement

predict the vehicle state from the previous state. The discrete-
time vehicle process model can be obtained according to the (6)
and expressed in the following form:

[

x(k + 1)
y(k + 1)
φ(k + 1)

]

=

[

x(k)
y(k)
φ(k)

]

+

[

cos(φ(k)) −sin(φ(k)) 0
sin(φ(k)) cos(φ(k)) 0

0 0 1

][

δx(k)
δy(k)
δφ(k)

]

(7)

which can be represented by the discrete-time pseudolinear
vehicle motion model expressed:

xv(k + 1) = xv(k) + Bv(k)uv(k) (8)

for use in the prediction stage of the vehicle state estimator.

The landmarks in the environment are assumed to be stationary
point targets. The landmark process model is thus

[

xi(k + 1)
yi(k + 1)

]

=

[

xi(k)
yi(k)

]

(9)

for all landmarks i = 1, ..., N . Equation (7) together with (9)
defines the process model of the vehicle-landmarks. To repre-
sent the process model in the proposed SLAM algorithm, the
vehicle-landmarks augmented state vector can then be repre-
sented in the following pseudolinear form:

x(k + 1) = x(k) + B(k)u(k) (10)

where x(k) = [xT
v (k) mT (k)]T , B(k) =

[

BT
v (k) 0

T
1

]T

and u(k) = uv(k), in which 01 is a null matrix.

3.2 The Observation Model

Range ri(k) and two bearing measurements θi
1
(k) and θi

2
(k)

to landmark i are recorded by the range and bearing sensors.
The range measurements and bearing measurements are taken
from the center of rear vehicle axel where the vehicle position
(x, y) is taken. One sensor starts reading measurements from
the x axis and the other from the center axis of the vehicle.
Referring to Fig. 3, the observation model for ith landmark
zi(k) = [ri(k), θi(k), βi(k)]T can be written in direct form
as

ri(k) =
√

(xi − x(k))2 + (yi − y(k))2 + vr(k) (11)

θi(k) = θi
1
(k) = arctan

(

yi − y(k)

xi − x(k)

)

+ vθ(k) (12)
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Fig. 3. Vehicle-landmark model

θi
2
(k) = arctan

(

yi − y(k)

xi − x(k)

)

− φ(k) + vθ2
(k) (13)

βi(k) = θi
1
(k) − θi

2
(k) = φ(k) + vβ(k) (14)

where vr and vθ are the white noise sequences associated
with the range and bearing measurements with zero means and
standard deviations σr and σθ respectively. vβ is also assumed
to be white with zero mean and standard deviation σβ . The
covariance matrix Rz for the observation model given by (11),
(12) and (14) is then in the form:

Rz =





σ2

r 0 0
0 σ2

θ 0
0 0 σ2

β



 (15)

Thus, (11), (12) and (14) define the observation model for the
ith landmark.

Pseudolinear Observation Model: In this section, we present
the pseudolinear measurement model. The pseudomeasurement
method (Aidala, 1985) relies on representing the nonlinear
measurement model given by (11), (12) and (14) in the follow-
ing pseudolinear form:

y(z) = H(z)x + vy(x, v) (16)

where the pseudomeasurement vector y(z) and matrix H(z)
are known functions of the actual measurement z. v =
[vr, vθ]

T is the range and bearing measurement noise vector and
vy(x, v) is the corresponding pseudomeasurement error, now
state dependent. The underlying idea of the approach is clear.
Once a pseudolinear model (16) is available, a linear Kalman
filter can be readily used with y(z), H(z), and Ry(x∗) =
cov[vy(x∗, v)], where a common choice of x∗ is the predicted
state estimate x̂. Equations (11), (12) and (14) can be rear-
ranged by algebraic and trigonometric manipulations to obtain
the following model expressed by

ri(k) = (xi − x(k))cos(θi(k)) + (yi − y(k))sin(θi(k))

+vr(k) (17)

0 = (xi − x(k))sin(θi(k)) − (yi − y(k))cos(θi(k))

+vy
θ (k) (18)

βi(k) = φ(k) + vβ(k) (19)

where vy
θ (k) = ri,true(k)vθ(k). The composite model of above

three equations can be expressed in the following pseudolinear
form for the ith landmark:

y(zi) =

[

ri(k)
0

βi(k)

]

= H(zi)x + vyi(x, v) (20)

where

H(zi) =

[

−λcos(θi(k)) −λsin(θi(k)) 0 0 · · ·
−λsin(θi(k)) λcos(θi(k)) 0 0 · · ·

0 0 1 0 · · ·

0 λcos(θi(k)) λsin(θi(k)) 0 · · · 0
0 λsin(θi(k)) −λcos(θi(k)) 0 · · · 0
0 0 0 0 · · · 0

]

(21)

λ = 1 − exp(−σ2

θ) + exp(−σ2

θ/2) (22)

where λ is the debiased conversion factor obtained by the
nested conditioning of state covariance (Li & Jikov, 2001).
This conversion serves to compensate the estimation bias and
process measurement components. vy(x, v) is considered to
be white and its covariance is expressed by

Ryi(x̂) =





σ2

r 0 0
0 r̂2

i σ2

θ 0
0 0 σ2

β



 (23)

Note that, r̂i is used in calculating Ryi because ri,true is not
available.

4. TAKAGI–SUGENO (T-S) FUZZY MODEL

The fuzzy model proposed by Takagi and Sugeno is described
by fuzzy IF-THEN rules, which represent local linear input-
output relations of a nonlinear system. The jth rule of the T-S
fuzzy model is of the following form:

Rule j :
IF q1(k) is Fj1 and · · · and qg(k) is Fjg THEN

x(k + 1) = Ajx(k) + Bju(k)

y(k) = Cjx(k) j = 1, 2, · · · , r. (24)

Fjl is the fuzzy set and r is the number of IF-THEN rules.
x(k) ∈ ℜn is the state vector, u(k) ∈ ℜm is the input
vector, y(k) ∈ ℜp is the measurement vector. Given a pair of
(x(k), u(k)), the final outputs of the fuzzy systems are inferred
as follows:

x(k + 1) =

∑r

j=1
wj(q(k)){Ajx(k) + Bju(k)}

∑r

j=1
wj(q(k))

=

r
∑

j=1

hj(q(k)){Ajx(k) + Bju(k)} (25)

where

q(k) = [q1(k) · · · qg(k)], wj(q(k)) =

g
∏

l=1

Fjl(ql(k)) (26)

r
∑

j=1

wj(q(k)) > 0, wj(q(k)) ≥ 0 for j = 1, 2, · · · , r (27)

hj(q(k)) =
wj(q(k))

∑r

j=1
wj(q(k))

(28)
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Fig. 4. Approximation of nonlinear term cos φ

for all k. Fjl(ql(k)) is the grade of membership of ql(k) in Fjl.
From (25)–(28) we have

r
∑

j=1

hj(q(k)) = 1, hj(q(k)) ≥ 0 for j = 1, 2, · · · , r (29)

for all k.

4.1 Fuzzy Modeling of Nonlinear Terms

Fuzzy description of nonlinear term cosφ can be expressed as
follows. It is assumed that φ varies in between −π and π. cosφ
can be rewritten for two cases by using two linear models for
each case. This is illustrated in Fig. 4. They can be represented
as follows:

cosφ = F 1

1
(φ) · 1 + F 2

1
(φ) · cosa for |φ| ≤ π/2 (30)

cosφ = F 1

2
(φ) · (−1) + F 2

2
(φ) · cosb for π/2 < |φ| < π (31)

Here, a = π/2 − δ, b = π/2 + δ and δ is a small positive
angle. The membership functions in (30) and (31) are defined
as F 1

1
= {about 0}, F 2

1
= {about ± a}, F 1

2
= {about ± π}

and F 2

2
= {about ± b}, where

F 1

1
(φ), F 2

1
(φ), F 1

2
(φ), F 2

2
(φ) ∈ [0, 1] (32)

F 1

1
(φ) + F 2

1
(φ) = 1, F 1

2
(φ) + F 2

2
(φ) = 1 (33)

Solving the above equation gives

F 1

1
(φ) =

cosφ − cosa

1 − cosa
, F 2

1
(φ) = 1 − F 1

1
(φ) =

1 − cosφ

1 − cosa
(34)

F 1

2
(φ) =

cosb − cosφ

1 + cosb
, F 2

2
(φ) = 1 − F 1

2
(φ) =

1 + cosφ

1 + cosb
(35)

In the same way, sinφ can also be rewritten by the combination
of linear models and can be deduced from the above cosφ by
the following formula:

sinφ = sgn(φ)
√

1 − cos2φ, sgn(φ) =

{

1 if φ > 0
−1 if φ < 0

(36)

5. FORMULATION OF FUZZY ALGORITHM IN SLAM
PROBLEM

To reduce the computational cost in using the T-S fuzzy model
in SLAM problem, fuzzification of the process model and the
pseudolinear measurement model is split into two cases based
on value of the vehicle azimuth angle. A set of fuzzy rules
is formed for each case and is executed based on the initial
separation of vehicle azimuth angle.

Case 1: If the azimuth angle (φ(k)) lies between −π/2 and
π/2, the jth rule for this case will be of the form:
Local linear system rule j relative to the ith landmark:

IF φ(k) is F j
φ and θi(k) is F j

θ THEN

xj(k + 1) = x(k) + Bj(k)u(k) for j = 1, 2, · · · , 8

yij(k + 1) = Hij(k + 1)xj(k + 1) + vyij(k + 1) (37)

F j
φ , F j

θ ∈ {F 1

1
, F 2

1
, F 1

2
, F 2

2
} are the fuzzy sets of vehicle

azimuth angle (φ) and measurement angle (θi) for the jth rule
respectively. Bj is the matrix with its nonlinear elements to be
sectorial as discussed in fuzzy description of nonlinear terms in
the Section 4.1 and then it becomes a linear matrix for fuzzy
sets of vehicle azimuth angle (φ) for each rule in T-S fuzzy
model of SLAM problem. In the similar way, the nonlinear
elements of the matrices H ij are to be sectorial for fuzzy sets
of measurement angle (θi).

Case 2: It is defined for π/2 < |φ(k)| < π and will be
composite of eight similar local linear models as defined above.

5.1 Estimation Process

In the formulation of T-S fuzzy model based SLAM algorithm,
the linear discrete Kalman filter is used to provide local esti-
mates of vehicle and landmark locations for each local linear
model defined in T-S fuzzy model. The Kalman filter algorithm
proceeds recursively in the three stages:

• Prediction:
The algorithm first generates a prediction for the state
estimate, the observation (relative to the ith landmark) and
the state estimate covariance at the time k + 1 for the jth
rule according to

x̂j(k + 1|k) = x̂(k|k) + Bj(k)u(k) (38)

ŷij(k + 1|k) = Hij(k + 1)x̂j(k + 1|k) (39)

P j(k + 1|k) = P (k|k) + Bj(k)Q(k)BT
j (k) (40)

• Observation:
Following the prediction, the observation yi(k + 1) of the
ith landmark of the true state x(k + 1) is made according
to (20). Assuming correct landmark association, an inno-
vation is calculated for the jth rule as follows:

νij(k + 1) = yij(k + 1) − ŷij(k + 1|k) (41)

together with an associated innovation covariance matrix
for the jth rule given by

Sij(k + 1) = Hij(k + 1)P j(k + 1|k)HT
ij(k + 1)

+Rij(k + 1) (42)

• Update:
The state update and corresponding state estimate covari-
ance are then updated for the jth rule according to

x̂j(k + 1|k + 1) = x̂j(k + 1|k)

+Kj(k + 1)νij(k + 1) (43)

P j(k + 1|k + 1) = P j(k + 1|k) − Kj(k + 1)

×Sij(k + 1)KT
j (k + 1) (44)

Here the gain matrix Kj(k + 1) is given by

Kj(k + 1) = P j(k + 1|k)HT
ij(k + 1)S−1

ij (k + 1) (45)
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Fig. 5. Feature based map building: The EKF approach
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Fig. 6. Feature based map building: The pseudolinear model based FKF approach

Local state estimates are then combined according to the (25)
to obtain the global state estimate for the T-S fuzzy model given
by (37). The global estimate is then obtained by the following
equation:

x̂(k + 1|k + 1) =

8
∑

j=1

hj(qi(k))x̂j(k + 1|k + 1) (46)

where qi(k) = [qi1(k) qi2(k)] = [φ(k) θi(k)].

Propagation of uncertainty for the augmented state error of
the T-S fuzzy model is realized by a common covariance that
is chosen to be the local covariance which has the minimum
trace. This assures the stability of the T-S fuzzy model based
SLAM algorithm because it is of paramount importance in state
estimation using fuzzy algorithm. The common covariance can
be formulated as follows:

P (k + 1|k + 1) = min(trace P j(k + 1|k + 1)) ∀j (47)

The resulting global state estimate and common covariance are
then proceeded to the next stage of prediction. Each rule in the
T-S fuzzy model takes the global state estimate and the common
covariance to generate the next stage prediction. This process is
repeated until the required criteria for the state estimation is
met.

6. SIMULATION RESULTS

In this section, we show the simulation results for the FKF-
SLAM algorithm with the measurement model derived from
two sensor frames for the system composite of (7), (9) and

(20). Comparion of performances of the FKF-SLAM algorithm
and the EKF-SLAM algorithm was made while keeping all the
conditions remain unchanged for the two cases.

6.1 Map Building

An environment with six arbitrarily placed landmarks was
simulated with a given vehicle trajectory. Simulation results
are depicted in Figs. 5 and 6. Figures 5(a) and 6(a) show the
evolution of the map over the time obtained from applying
the EKF algorithm and the pseudolinear model based FKF
algorithm respectively. It can be seen that error ellipses in
Fig. 6(a) converge to the actual landmark locations faster than
that in Fig. 5(a). This feature can be observed from Fig. 5(b)
and Fig. 6(b). A feature that has the same map registration
number (where its pose is registered) in the state vector has been
indicated in Fig. 5(b) and Fig. 6(b) to compare the performances
of uncertainty convergence rate between two methods. The
selected feature in Fig. 5(b) is detected at the point Ae and
it requires de time span to reach to a minimum bound in
uncertainty since detection. And in Fig. 6(b), for the selected
landmark, it takes dp time span to reach to a minimum bound
in uncertainty since detection at Ap. This discloses that the
proposed pseudolinear model based FKF approach has higher
convergence rate than the EKF approach (de > dp). From
Fig. 5(c) and Fig. 6(c), it can be observed that the landmark
state error obtained from the pseudolinear model based FKF
approach reaches to a minimum bound within a less number of
time steps compared to that obtained from the EKF algorithm.
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Fig. 7. Simultaneous localization and mapping
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6.2 Simultaneous Localization and Map Building

The newly described method is applied to the feature based-
SLAM problem. An environment populated with point land-
marks was simulated with the FKF-SLAM algorithm discussed
above to generate the state estimates and state errors. Simula-
tion results are depicted in Fig. 7 and Fig. 8.

Figure 7(a) shows an instant of the FKF-SLAM algorithm run-
ning on the vehicle-landmark systems. It can be seen that error
ellipses of the features converge to actual landmark locations as
the map of the landmark locations is being constructed when the
vehicle navigates through the environment. Figure 7(b) shows
standard deviation and error associated with the vehicle pose.
It can be seen that the vehicle localization is performed well by
the newly presented method as vehicle pose error decreases to a
minimum bound gradually. Figure 7(c) shows the evolution of
landmark state error. It is observed that the landmark state error
obtained from the pseudolinear model based FKF approach
reaches to a minimum bound within a less number of time steps
compared to that obtained from the EKF algorithm. Figure 8
shows the evolution of the landmark location uncertainty and
it can be observed that the landmark location uncertainty grad-
ually decreases over time. It is once shown that the proposed
method works well in SLAM problem.

7. CONCLUSION

A fuzzy logic and pseudolinear model based solution to the
SLAM problem has been proposed in this paper, where the
validity of the method was proved with simulation results.
The need for direct linearization of nonlinear systems for state

estimation is diminished because the newly proposed method
performed well and provided a better solution to the SLAM
problem. Results obtained from the newly introduced method
were compared with those obtained from widely used EKF al-
gorithm to highlight the merit of the pseudolinear model based
system with fuzzy logic. It was shown that the pseudolinear
model based fuzzy Kalman filter algorithm provided more sat-
isfactory results over the EKF because the pseudolinear models
did not lose its nonlinearity when employed in the Kalman
filter equations. It was shown that a fuzzy logic based approach
with the pseudolinear models provided a remarkable solution
to state estimation process because fuzzy logic has been always
standing for a better solution.
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