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Abstract: This note deals with the robust stability analysis for time-delay systems with
nonlinear perturbations. Firstly, a new class of Lyapunov functional candidate is proposed to
develop some new criteria by considering the additional useful terms and introducing some free-
weighting matrices. Then, an augmented Lyapunov functional is introduced to establish a novel
improved stability condition. All results obtained are given in terms of linear matrix inequalities.
A numerical example is given to illustrate the effectiveness of the proposed methods.

1. INTRODUCTION

Time-delay systems are frequently encountered in various
areas, including engineering, biology, and economics and
other areas (see Hale & Lunel (1993), Gu et al. (2003)).
In practical systems, time delay is often a source of in-
stability, oscillation, and poor performance (for example,
Malek-Zavarei & Jamshidi (1987)). Therefore, the problem
of stability of time delay systems has been the subject
of considerable research efforts. Generally speaking, the
stability analysis is mainly concerned with two categories:
delay-independent stability criterion and delay-dependent
stability criterion. The former do not include any infor-
mation about the magnitude of the delay, while the latter
do employ such information. It is well known that delay-
dependent stability criterion is less conservative than the
delay-independent ones, especially when the magnitude of
the delay is small.

In recent years, the problem of robust stability for systems
with nonlinear perturbations has also received consider-
able attention (see Siljak & Stipanovic (2000), Zuo et al.
(2004) and the references therein). In Cao & Lam (2000),
a model transformation technique was used to transform
the system with a discrete delay to a system with a dis-
tributed delay, and delay-dependent stability criteria were
obtained by using a Lyapunov functional approach. In
Han (2004), based on the descriptor model transformation
and the decomposition technique of a discrete-delay term
matrix, the author gave a linear matrix inequalities (LMI)-
? This work was supported by National Natural Science Foundation
of China under Grant 60504012, 60774039, 60504011 and 60674019.

based robust stability condition. An integral inequality
was introduced to derive the above result, which may lead
to considerable conservativeness. In Zuo & Wang (2006),
a less conservative result was obtained by using some
free matrices to express the relationship of the terms in
the Leibniz-Newton formula. Although their results are
superior than some existing ones, there still leaves room
for further investigation since in the derivative of Lya-
punov functional, some useful terms have been enlarged
or ignored which have been discussed in He et al. (2007).

In the following of our paper, we will use the free-
weighting-matrix (FWM) approach which has been widely
used in He et al. (2004a), Wu et al. (2004a), He et al.
(2004b), and Wu et al. (2004b). This approach provides
great flexibility in solving LMIs, and yields less conser-
vative results than the previous approaches. Furthermore,
by employing the augmented Lyapunov functional (see He
et al. (2007), Wu et al. (2004b), He et al. (2005)) and some
useful lemmas (Zhang et al. (2005), Moon et al. (2001), we
obtain a novel improved result.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following linear system with time-varying
delay and nonlinear perturbations

ẋ(t) = Ax(t) + Bx(t − d(t)) + f(x(t), t)
+g(x(t − d(t)), t) (1)

where x(t) ∈ Rn is the state. A ∈ Rn×n, B ∈ Rn×n,
are constant matrices. The time-varying vector-valued
functions f(x(t), t) ∈ Rn and g(x(t − d(t)), t) ∈ Rn
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are unknown and represent the parameter perturbations
with respect to the current state x(t) and delayed state
x(t − d(t)) of the systems, respectively. They satisfy that
f(0, t) = 0, g(0, t) = 0. The function d(t) is a time-varying
delay which satisfies

0 < d(t) ≤ h, ḋ(t) ≤ µ (2)

where h > 0 is the upper bound of delay, and 0 ≤ µ < 1.
The initial condition of system (1) is given by

x(θ) = φ(θ) ∀θ ∈ [−h, 0], (3)

where φ(·) is a continuous vector valued initial function. In
this note, we assume that f(x(t), t), g(x(t−d(t)), t) satisfy

‖ f(x(t), t) ‖≤ α ‖ x(t) ‖

‖ g(x(t − d(t)), t) ‖≤ β ‖ x(t − d(t)) ‖
(4)

where α ≥ 0, β ≥ 0 are given constants. Note that
constraint (4) can be rewritten as

fT (x(t), t)f(x(t), t) ≤ α2xT (t)x(t),

gT (x(t − d(t)), t)g(x(t − d(t)), t)
≤ β2xT (t − d(t))x(t − d(t))

(5)

In this paper, we will attempt to formulate some delay-
dependent robust stability of the system described by
(1)-(3). The following lemmas are useful in deriving the
criteria.
Lemma 1. For any vector a, b and matrices N , U , X, Y ,
where U , X are two symmetric matrices, such that

−2aT Nb ≤ aT Ua + bT Xb (6)

where [
U N

NT X

]
≥ 0 (7)

Proof. Applying the lemma in Moon et al. (2001) we can
easily to obtain

−2aT Nb ≤
[

a
b

]T [
U Y − N
? X

] [
a
b

]
where [

U Y
Y T X

]
≥ 0,

Let Y = N , (6) is obtained immediately.
Lemma 2. (Zhang et al. (2005)) Let x(t) ∈ Rn be a vector-
valued function with first-order continuous-derivative en-
tries. Then, the following integral inequality holds for any
matrices X,M1,M2 ∈ Rn×n and Z ∈ R2n×2n , and a
scalar function h := h(t) ≥ 0:

−
t∫

t−h

ẋT (s)Xẋ(s)ds ≤ ηT (t)Υη(t) + hηT (t)Zη(t)

where

Υ :=
[

MT
1 + M1 −MT

1 + M2

? −MT
2 − M2

]
, η(t) :=

[
x(t)

x(t − h)

]
[

X Y
? Z

]
≥ 0,

with Y := [M1 M2]

3. NEW STABILITY CRITERIA

In the previous work such as He et al. (2004a), Wu et al.
(2004a), and Fridman & Shaked (2003), the following well-
known Lyapunov functional is used

V1(xt) = xT (t)Px(t) +

t∫
t−d(t)

xT (s)Qx(s)ds

+

0∫
−h

t∫
t+θ

ẋT (s)Zẋ(s)dsdθ

(8)

However, we know that, in the derivative of V1(xt) some
useful terms have been enlarged or ignored which may
bring conservativeness. Recently, in order to overcome this
conservatism, in He et al. (2007), the authors used a new
class of Lyapunov functional candidate,

V2(xt) = xT (t)Px(t) +

t∫
t−d(t)

xT (s)Qx(s)ds

+

t∫
t−h

xT (s)Rx(s)ds +

0∫
−h

t∫
t+θ

ẋT (s)(Z1 + Z2)ẋ(s)dsdθ

(9)

and in the derivative of V2(xt), the term
−

∫ t

t−h
ẋT (s)Z1ẋ(s)ds was separated to

−
∫ t

t−d(t)
ẋT (s)Z1ẋ(s)ds−

∫ t−d(t)

t−h
ẋT (s)Z1ẋ(s)ds. But when

dealing with the term −
∫ t

t−h
ẋT (s)Z2ẋ(s)ds, the way they

used has also conservativeness. In the following, we will
employ Lemma 2 presented in Zhang et al. (2005) to
handle this term.
Theorem 3. For given scalar h > 0, and 0 < µ < 1 ,
the system described by (1)-(4) is asymptotically stable
if there exist matrices P = PT > 0, Q = QT > 0,
R = RT > 0, Zi = ZT

i > 0, i = 1, 2,

Ḡ =

 G1

...
G6

 , H̄ =

 H1

...
H6

 , K̄ =

 K1

...
K6

 , L̄ =

 L1

...
L6


and scalars ε1 ≥ 0, ε2 ≥ 0 such that Ξ hḠ hH̄ hK̄

? −hZ1 0 0
? ? −hZ1 0
? ? ? −hZ2

 < 0, (10)

where
Ξ = Ξ1 + Ξ2 + ΞT

2

Ξ1 =


Ξ11 0 0 P 0 0
? Ξ22 0 0 0 0
? ? −R 0 0 0
? ? ? h(Z1 + Z2) 0 0
? ? ? ? −ε1I 0
? ? ? ? ? −ε2I


Ξ11 = R + Q + ε1α

2I
Ξ22 = −(1 − µ)Q + ε2β

2I
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Ξ2 =
[
Ḡ + K̄ H̄ − Ḡ −H̄ − K̄ 0 0 0

]
+L̄ [ A B 0 −I I I ]

Proof. Choose the Lyapunov functional V2(xt) as in (9).
By the Leibniz-Newton formula, the following equations
hold for any matrices Ḡ, H̄, K̄ with appropriate dimen-
sions

α1(t) := 2ζT
1 (t)Ḡ[x(t) − x(t − d(t)) −

t∫
t−d(t)

ẋ(s)ds] = 0

α2(t) := 2ζT
1 (t)H̄[x(t−d(t))−x(t−h)−

t−d(t)∫
t−h

ẋ(s)ds] = 0

α3(t) := 2ζT
1 (t)K̄[x(t) − x(t − h) −

t∫
t−h

ẋ(s)ds] = 0

where
ζT
1 (t) = [xT (t) xT (t − d(t)) xT (t − h)

ẋT (t) fT (x(t), t) gT (x(t − d(t)), t)]
Observe that

−
t∫

t−h

ẋT (s)(Z1 + Z2)ẋ(s)ds = −
t∫

t−d(t)

ẋT (s)Z1ẋ(s)ds

−
t−d(t)∫
t−h

ẋT (s)Z1ẋ(s)ds −
t∫

t−h

ẋT (s)Z2ẋ(s)ds

(11)

and note that
θ1(t) := 2ζT

1 (t)L̄[−ẋ(t) + Ax(t) + Bx(t − d(t))

+f(x(t), t) + g(x(t − d(t)), t)] = 0

Calculating the derivative of V2(xt) and adding the left
side of α1(t), α2(t), α3(t), θ1(t) into it and using (11) yield

V̇2(xt) ≤ 2xT (t)Pẋ(t) + xT (t)(Q + R)x(t)
−(1 − µ)xT (t − d(t))Qx(t − d(t))
−xT (t − h)Rx(t − h) + hẋT (t)(Z1 + Z2)ẋ(t)

−
t∫

t−h

ẋT (s)(Z1 + Z2)ẋ(s)ds

+α1(t) + α2(t) + α3(t) + θ1(t)

≤ ζT
1 (t)[Φ + hḠZ−1

1 ḠT + hH̄Z−1
1 H̄T + hK̄Z−1

2 K̄T ]ζ1(t)

−
t∫

t−d(t)

[ζT
1 (t)Ḡ + ẋT (s)Z1]Z−1

1 [ḠT ζ1(t) + Z1ẋ(s)]ds

−
t−d(t)∫
t−h

[ζT
1 (t)H̄ + ẋT (s)Z1]Z−1

1 [H̄T ζ1(t) + Z1ẋ(s)]ds

−
t∫

t−h

[ζT
1 (t)K̄ + ẋT (s)Z2]Z−1

2 [K̄T ζ1(t) + Z1ẋ(s)]ds

(12)

where Φ = Φ1 + Ξ2 + ΞT
2 and

Φ1 =


Q + R 0 0 P 0 0

? −(1 − µ)Q 0 0 0 0
? ? −R 0 0 0
? ? ? h(Z1 + Z2) 0 0
? ? ? ? 0 0
? ? ? ? ? 0


Ξ2 is defined in Theorem 3.

Since Zi > 0, i = 1, 2, then the last three parts in (12) are
all less than 0. Set Ψ = Φ + hḠZ−1

1 ḠT + hH̄Z−1
1 H̄T +

hK̄Z−1
2 K̄T . So if Ψ < 0, then V̇2(xt) ≤ ζT

1 (t)Ψζ1(t).

Then using S-procedure, if there exist ε1 ≥ 0, and ε2 ≥ 0
such that

ζT
1 (t)Ψζ1(t) + ε1(α2xT (t)x(t) − fT (x(t), t)f(x(t), t))

+ε2(β2xT (t − d(t))x(t − d(t))
−gT (x(t − d(t)), t)g(x(t − d(t)), t)) < 0

(13)

for all ζ1(t) 6= 0, which can be rewritten as

ζT
1 (t)Γζ1(t) < 0

where

Γ = Ψ +


ε1α

2I 0 0 0 0 0
? ε2β

2I 0 0 0 0
? ? 0 0 0 0
? ? ? 0 0 0
? ? ? ? −ε1I 0
? ? ? ? ? −ε2I


Then V̇2(xt) ≤ ζT

1 (t)Γζ1(t) < 0, the system described
by (1)-(4) is asymptotically stable. In view of Schur
complement, Γ < 0 equivalent to (10).

In order to get more less conservative criteria, we will use
the Lemma 2 to handle the term −

∫ t

t−h
ẋT (s)Z2ẋ(s)ds in

the following.
Theorem 4. For given scalar h > 0, and 0 < µ < 1 ,
the system described by (1)-(4) is asymptotically stable
if there exist real matrices P = PT > 0, Q = QT > 0,
R = RT > 0, Zi = ZT

i > 0, i = 1, 2,

Ḡ =

 G1

...
G6

 , H̄ =

 H1

...
H6

 , L̄ =

 L1

...
L6


Y := [Y1 Y2], W :=

[
W1 W2

? W3

]
(14)

and scalars ε1 ≥ 0, ε2 ≥ 0 such that[
Z2 Y
? W

]
≥ 0, (15)

 Ξ̂ hḠ hH̄
? −hZ1 0
? ? −hZ1

 < 0, (16)

where
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Ξ̂ = Ξ̂1 + Ξ̂2 + Ξ̂T
2

Ξ̂1 =


Ξ̂11 0 Ξ̂13 P 0 0
? Ξ̂22 0 0 0 0
? ? Ξ̂33 0 0 0
? ? ? h(Z1 + Z2) 0 0
? ? ? ? −ε1I 0
? ? ? ? ? −ε2I


Ξ̂11 = Q + R + ε1α

2I + Y1 + Y T
1 + hW1

Ξ̂13 = −Y T
1 + Y2 + hW2

Ξ̂22 = −(1 − µ)Q + ε2β
2I

Ξ̂33 = −R − Y2 − Y T
2 + hW3

Ξ̂2 =
[
Ḡ H̄ − Ḡ −H̄ 0 0 0

]
+ L̄ [ A B 0 −I I I ]

Proof. Choose the same Lyapunov functional as in The-
orem 4, and use the equations:

α1(t) := 2ζT
1 (t)Ḡ[x(t) − x(t − d(t)) −

t∫
t−d(t)

ẋ(s)ds] = 0

α2(t) := 2ζT
1 (t)H̄[x(t−d(t))−x(t−h)−

t−d(t)∫
t−h

ẋ(s)ds] = 0

and
θ1(t) := 2ζT

1 (t)L̄[−ẋ(t) +Ax(t) + Bx(t − d(t))

+f(x(t), t) + g(x(t − d(t)), t)] = 0

Calculating the derivative of V2(xt) and adding the left
side of α1(t), α2(t), θ1(t) into it and using (11) yield

V̇2(xt) ≤ −
t∫

t−h

ẋT (s)Z2ẋ(s)ds

+ζT
1 (t)[Φ1 + Ξ̂2 + Ξ̂T

2 + hḠZ−1
1 ḠT + hH̄Z−1

1 H̄T ]ζ1(t)

−
t∫

t−d(t)

[ζT
1 (t)Ḡ + ẋT (s)Z1]Z−1

1 [ḠT ζ1(t) + Z1ẋ(s)]ds

−
t−d(t)∫
t−h

[ζT
1 (t)H̄ + ẋT (s)Z1]Z−1

1 [H̄T ζ1(t) + Z1ẋ(s)]ds

(17)

where Φ1 is defined in Theorem 3 and Ξ̂2 is defined in
Theorem 4. Then using Lemma 2, we have

−
t∫

t−h

ẋT (s)Z2ẋ(s)ds ≤

[
x(t)

x(t − h)

]T {[
Y1 + Y T

1 −Y T
1 + Y2

? −Y T
2 − Y2

]
+ hW

}[
x(t)

x(t − h)

]
where

[
Z2 Y
? W

]
≥ 0, Y , W with structures given in (14).

Then we can rewrite (17) as follows:

V̇2(xt) ≤ ζT
1 (t)[Φ̂ + hḠZ−1

1 ḠT + hH̄Z−1
1 H̄T ]ζ1(t)

−
t∫

t−d(t)

[ζT
1 (t)Ḡ + ẋT (s)Z1]Z−1

1 [ḠT ζ1(t) + Z1ẋ(s)]ds

−
t−d(t)∫
t−h

[ζT
2 (t)H̄ + ẋT (s)Z1]Z−1

1 [H̄T ζ1(t) + Z1ẋ(s)]ds

(18)

where Φ̂ = Φ̂1 + Ξ̂2 + Ξ̂T
2 and

Φ̂1 =


Φ̂11 0 Φ̂13 P 0 0
? −(1 − µ)Q 0 0 0 0
? ? Φ̂33 0 0 0
? ? ? h(Z1 + Z2) 0 0
? ? ? ? 0 0
? ? ? ? ? 0


Φ̂11 = Q + R + Y1 + Y T

1 + hW1

Φ̂13 = −Y T
1 + Y2 + hW2

Φ̂33 = −R − Y2 − Y T
2 + hW3

Ξ̂2 is defined in Theorem 4. Then using S-procedure and
inequality (13), the proof follows a similar method in
Theorem 3, then we can obtain Theorem 4.

4. NEW AUGMENTED STABILITY CONDITION

The augmented Laypunov functional introduced in He
et al. (2007), Wu et al. (2004b), He et al. (2005), have
shown less conservativeness. In He et al. (2007), He et
al. used the augmented Lyapunov functional to deal with
systems with a time-varying delay. Now, we will use this
technique to handle our problem.
Theorem 5. For given scalar h > 0, and 0 < µ < 1 ,
the system described by (1)-(4) is asymptotically stable if
there exist real matrices Zi = ZT

i > 0, i = 1, 2

Pa =

[
P11 P12 P13

? P22 P23

? ? P33

]
> 0,

Qa =
[

Q11 Q12

? Q22

]
≥ 0, Ra =

[
R11 R12

? R22

]
≥ 0,

(19)

X =

[
X11 X12 X13

? X22 X23

? ? X33

]
> 0, U > 0, (20)

G̃ =

 G1

...
G8

 , H̃ =

 H1

...
H8

 , L̃ =

 L1

...
L8


Y := [Y1 Y2], W =

[
W1 W2

? W3

]
and scalars ε1 ≥ 0, ε2 ≥ 0 such that[

U P̄2

? X

]
≥ 0,

[
Z2 Y
? W

]
≥ 0, (21) Ξ̃ hG̃ hH̃

? −hZ1 0
? ? −hZ1

 < 0, (22)
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where
P̄2 = [PT

12 P22 P23], Ξ̃ = Ξ̃1 + Ξ̃2 + Ξ̃T
2

Ξ̃1 =



Ξ̃11 µX12 Ξ̃13 Ξ̃14 P12 P13 0 0
? Ξ̃22 µX23 PT

12 Ξ̃25 P23 0 0
? ? Ξ̃33 PT

13 PT
23 P33 − Q12 0 0

? ? ? Ξ̃44 0 0 0 0
? ? ? ? Ξ̃55 0 0 0
? ? ? ? ? −Q22 0 0
? ? ? ? ? ? −ε1I 0
? ? ? ? ? ? ? −ε2I


Ξ̃11 = R11 + Q11 + µX11 + Y1 + Y T

1 + hW1 + ε1α
2I

Ξ̃13 = µX13 − Y T
1 + Y2 + hW2

Ξ̃14 = P11 + R12 + Q12

Ξ̃22 = −(1 − µ)R11 + µX22 + ε2β
2I

Ξ̃25 = −(1 − µ)R12 + P22

Ξ̃33 = −Q11 + µX33 − Y2 − Y T
2 + hW3

Ξ̃44 = h(Z1 + Z2) + R22 + Q22

Ξ̃55 = −(1 − µ)R22 + µU

Ξ̃2 =
[
G̃ H̃ − G̃ −H̃ 0 0 0 0 0

]
+L̄ [ A B 0 −I 0 0 I I ]

Proof. Construct the following augmented Lyapunov
functional candidate as:

V3(xt) = ξT (t)Paξ(t) +

t∫
t−h

[
x(s)
ẋ(s)

]T

Qa

[
x(s)
ẋ(s)

]
ds

+

t∫
t−d(t)

[
x(s)
ẋ(s)

]T

Ra

[
x(s)
ẋ(s)

]
ds

+

0∫
−h

t∫
t+θ

ẋT (s)(Z1 + Z2)ẋ(s)dsdθ

(23)

where Pa, Qa, Ra, Zi, i = 1, 2, with structures given in
(19), are matrices to be determined and

ξT (t) =
[
xT (t) xT (t − d(t)) xT (t − h)

]
From the Leibniz-Newton formula, the following equations
are true for matrices G̃, H̃ with appropriate dimensions

α̃1(t) := 2ζT
2 (t)G̃[x(t) − x(t − d(t)) −

t∫
t−d(t)

ẋ(s)ds] = 0

α̃2(t) := 2ζT
2 (t)H̃[x(t−d(t))−x(t−h)−

t−d(t)∫
t−h

ẋ(s)ds] = 0

where
ζT
2 (t) =

[
xT (t) xT (t − d(t)) xT (t − h) ẋT (t)

ẋT (t − d(t)) ẋT (t − h)) fT (x(t), t) gT (x(t − d(t)), t)
]

Observe that

−
t∫

t−h

ẋT (s)(Z1 + Z2)ẋ(s)ds = −
t∫

t−d(t)

ẋT (s)Z1ẋ(s)ds

−
t−d(t)∫
t−h

ẋT (s)Z1ẋ(s)ds −
t∫

t−h

ẋT (s)Z2ẋ(s)ds

(24)

and note that

θ̃1(t) := 2ζT
2 (t)L̃[−ẋ(t) + Ax(t) + Bx(t − d(t))

+f(x(t), t) + g(x(t − d(t)), t)] = 0

The derivative of Vp(xt) = ξT (t)Paξ(t) is expressed as

V̇p(xt) = 2ξT (t)Pa

 ẋ(t)
(1 − ḋ(t))ẋ(t − d(t))

ẋ(t − h)



= 2ξT (t)Pa

[
ẋ(t)

ẋ(t − d(t))
ẋ(t − h)

]
− 2ḋ(t)ẋ(t − d(t))P̄2ξ(t)

Using Lemma 1, it follows that

− 2ḋ(t)ẋT (t − d(t))P̄2ξ(t)

≤ µẋT (t − d(t))Uẋ(t − d(t)) + µξT (t)Xξ(t)

where
[

U P̄2

? X

]
≥ 0, P̄2 =

[
PT

12 P22 P23

]
, U , X with

structures given in (20). Calculating the derivative of
V3(xt) and adding the left side of α̃1(t), α̃2(t), θ̃1(t) into
it and using (24) yield

V̇3(xt) ≤ 2ξT (t)Pa

[
ẋ(t)

ẋ(t − d(t))
ẋ(t − h)

]
+ µξT (t)Xξ(t)

+µẋT (t − d(t))Uẋ(t − d(t)) + α1(t) + α2(t) + θ1(t)

+
[

x(t)
ẋ(t)

]T

(Qa + Ra)
[

x(t)
ẋ(t)

]

−
[

x(t − h)
ẋ(t − h)

]T

Qa

[
x(t − h)
ẋ(t − h)

]

−(1 − µ)
[

x(t − d(t))
ẋ(t − d(t))

]T

Ra

[
x(t − d(t))
ẋ(t − d(t))

]

+hẋT (t)(Z1 + Z2)ẋ(t) −
t∫

t−d(t)

ẋT (s)Z1ẋ(s)ds

−
t−d(t)∫
t−h

ẋT (s)Z1ẋ(s)ds −
t∫

t−h

ẋT (s)Z2ẋ(s)ds

(25)

Then using Lemma 2, we have

−
t∫

t−h

ẋT (s)Z2ẋ(s)ds ≤
[

x(t)
x(t − h))

]T

×

{[
Y1 + Y T

1 −Y T
1 + Y2

? −Y T
2 − Y2

]
+ hW

}[
x(t)

x(t − h))

]
where

[
Z2 Y
? W

]
≥ 0.

Now we can rewrite (25) as follows:
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V̇3(xt) ≤ ζT
2 (t)[Φ̃ + hG̃Z−1

1 G̃T + hH̃Z−1
1 H̃T ]ζ2(t)

−
t∫

t−d(t)

[ζT
2 (t)G̃ + ẋT (s)Z1]Z−1

1 [G̃T ζ2(t) + Z1ẋ(s)]ds

−
t−d(t)∫
t−h

[ζT
2 (t)H̃ + ẋT (s)Z1]Z−1

1 [H̃T ζ2(t) + Z1ẋ(s)]ds

(26)

where Φ̃ = Φ̃1 + Ξ̃2 + Ξ̃T
2 and

Φ̃1 =



Φ̃11 µX12 Φ̃13 Φ̃14 P12 P13 0 0
? Φ̃22 µX23 PT

12 Φ̃25 P23 0 0
? ? Φ̃33 PT

13 PT
23 P33 − Q12 0 0

? ? ? Φ̃44 0 0 0 0
? ? ? ? Φ̃55 0 0 0
? ? ? ? ? −Q22 0 0
? ? ? ? ? ? 0 0
? ? ? ? ? ? 0 0


Φ̃11 = R11 + Q11 + µX11 + Y1 + Y T

1 + hW1

Φ̃13 = µX13 − Y T
1 + Y2 + hW2

Φ̃14 = P11 + R12 + Q12

Φ̃22 = −(1 − µ)R11 + µX22

Φ̃25 = −(1 − µ)R12 + P22

Φ̃33 = −Q11 + µX33 − Y2 − Y T
2 + hW3

Φ̃44 = h(Z1 + Z2) + R22 + Q22

Φ̃55 = −(1 − µ)R22 + µU

Ξ̃2 is defined in Theorem 5. Since Zi > 0, i = 1, 2, then
the last two parts in (26) are all less than 0. Set Ψ̃ = Φ̃ +
hG̃Z−1

1 G̃T + hH̃Z−1
1 H̃T . So if Ψ̃ < 0, then V̇3(xt) ≤

ζT
2 (t)Ψ̃ζ2(t) < 0. The remaining proof of Theorem 5 is

similar to that of Theorem 3, thus omitted.

5. EXAMPLE

In order to demonstrate the effectiveness of the method
we have presented, the same example (used in Cao & Lam
(2000), Han (2004) and Zuo & Wang (2006)) is given in
this section to compare with the results of the previous
methods. Consider the system with

A =
[
−1.2 0.1
−0.1 −1

]
, B =

[
−0.6 0.7
−1 −0.8

]
Applying the methods proposed in Cao & Lam (2000),
Han (2004) and Zuo & Wang (2006) and Theorem 3, 4
and 5 in this paper, the maximum value of h for stability
of system under different α and β, is listed in Table 1. It is
obvious that the stability criteria presented in this paper
give more less conservative results than the existing ones.

Table 1: Compared results for h by different methods

α = 0 β = 0.1 α = 0.1 β = 0.1
µ = 0 µ = 0.5 µ = 0 µ = 0.5

Cao & Lam 0.6811 0.5467 0.6129 0.4950
Han(2004) 1.3279 0.6743 1.2503 0.5716
Zuo(2006) 2.0422 1.1424 1.8753 1.0097
Theorem 3 2.7419 1.1811 2.0000 1.0466
Theorem 4 3.0556 1.3360 2.1240 1.1883
Theorem 5 ∞ 1.6198 3.5254 1.4938
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