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Abstract: In this work, a weighted least squares (WLS) based adaptive tracker is designed for
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proposed adaptive tracker leads to the minimality of the tracking errors and strong consistency
of the estimates for the unknown system parameters. A numerical example is given and the
simulation results are consistent with the theoretical analysis.
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1. INTRODUCTION

The Hammerstein system consisting of a static function
f(·) followed by a linear dynamics (see Fig.1) is a com-
monly used model in practice, such as chemical engineer-
ing Eskinat [1991], electronics circuits Kim&Konstantinou
[2001], biological cybernetics Hunter&Korenberg [1986],
and others. So, its identification and adaptive con-
trol issues naturally receive much attention from re-
searchers. Though the most of existing theoretical results
on identification of the Hammerstein systems, e.g., Eski-
nat [1991], Narendra&Gallman [1966], Stoica&Söderström
[1982], Bai&Liu [2004], Chaoui et al [2005], Greblicki
[2002], Chen [2004], Chen [2005], Zhao&Chen [2006] are
for open-loop systems, there are also a few works An-
bumani et al [1981], Agarwal&Seborg [1987], Wittenmark
[1993], Samuelsson et al [2005], Chen [2007] on the adap-
tive control problems for the Hammerstein systems. The
adaptive control problem is considered in Anbumani et
al [1981], Agarwal&Seborg [1987], Wittenmark [1993] for
the discrete time Hammerstein models, and in Samuels-
son et al [2005] for the continuous time, but in these
works, there are only numerical examples. Maybe, the
first rigorous theoretical analysis for adaptive regulation
of Hammerstein systems in noise environment is given in
Chen [2007], where a direct adaptive regulator based on
stochastic approximation (Chen [2002]), is designed such
that the regulation error is asymptotically minimized.

In this paper, we consider adaptive tracking, for which
the reference signal is normally allowed to be any given
bounded signal, while for regulation it is restricted to be
a constant.

⋆ Supported by NSFC under Grants No. 60221301, 60334040,

60474004.

 


Fig. 1. Hammerstein system

Let us consider the single-input single-output (SISO)
Hammerstein system with linear subsystem being an AR-
MAX model and the nonlinear function being a polyno-
mial:

A(z)yk+1 = B(z)f(uk) + C(z)ωk+1, k ≥ 0, (1)

A(z) , 1+a1z+ · · ·+apz
p, B(z) , b1 +b2z+ · · ·+bqz

q−1,

C(z) , 1 + c1z + · · · + crz
r, f(x) =

s∑
i=1

fjx
j ,

where z is the backward-shift operator, uk and yk denote
the system input and output, respectively, ωk is the driven
noise, f(·) is the unknown static function and vk , f(uk)
is the unavailable internal signal.

Let {y∗
k} be a bounded reference signal. The problem of

adaptive tracking consists in designing feedback control
uk depending on {u0, · · · , uk−1, y0, · · · , yk, y∗

0 , · · · , y∗
k+1}

in order to minimize

lim sup
n→∞

1

n

n∑
k=0

(yk − y∗
k)2 (2)

Inspired by the adaptive tracker for linear systems (see
Chen&Guo [1991], Chapter 5), in this work a weighted
least squares (WLS) based adaptive tracker for system
(1) is introduced and the tracking error (2) is shown
to be minimized. Further, by the diminishing excitation
technique used in Chen&Guo [1991], both the minimality
of the control performance (2) and the strong consistency
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of the estimates for the Hammerstein system (1) are
obtained simultaneously. The main results of this work
are Theorem 3 and Theorem 6, which correspond to
Theorem 5.4 and Theorem 6.2 in Chen&Guo [1991] for
linear systems.

The rest of the paper is arranged as follows. The minimum
of the tracking error and the adaptive control are shown
in Section 2. The optimality of the WLS based adaptive
tracker and the strong consistency of the WLS estimates
are presented in Section 3. An illustrative example is given
in Section 4. Some concluding remarks are addressed in
Section 5.

2. STATEMENT OF PROBLEM

2.1 Optimal Tracking Control

In the following, for two sequences {ak}
∞
k=1 and {bk}

∞
k=1,

by ak = O(bk), we mean |ak| ≤ c|bk| for some constant
c > 0 and by ak = o(bk), we mean ak

bk
→ 0 as k → ∞.

Prior to defining the adaptive control, let us first derive the
lower bound of the tracking error and the optimal tracking
control for the case where the system (1) is known. It is
well-known that for the linear ARMAX system the optimal
tracking control is determined by solving a Diophantine
equation and the tracking error has the lower bound Rω,
where Rω , lim

n→∞

1
n

∑n
k=0 ω2

k (c.f. Chen&Guo [1991]).

Similar results also hold for the Hammerstein system (1).

Lemma 1. Let {Fk} be a family of non-decreasing σ-
algebras and yk ∈ Fk, ∀ k ≥ 0. Assume that i) {ωk,Fk} is
a martingale difference sequence with sup

k

E(ω2
k+1|Fk) <

∞ a.s. and Rω , lim
n→∞

1
n

∑n
k=0 ω2

k < ∞; ii) the reference

signal {y∗
k} is bounded and y∗

k is Fk−1-measurable, ∀ k ≥ 1.
Then for any Fk-measurable control uk, the tracking error
has the following lower bound,

lim sup
n→∞

1

n

n∑
k=0

(yk − y∗
k)2 ≥ Rω. (3)

Further, if uk can be solved from

y∗
k+1 = −

(
A(z) − 1

)
yk+1 + B(z)f(uk)

+
(
C(z) − 1

)(
yk+1 − y∗

k+1

)
, (4)

or equivalently from

b1

s∑
j=1

fju
j
k =y∗

k+1 + (A(z) − 1) yk+1 − (B(z) − b1) f(uk)

− (C(z) − 1)
(
yk+1 − y∗

k+1

)
,

then uk is the optimal tracking control.

Proof: The proof is similar to Theorem 3.6 in Chen&Guo
[1991] for the optimal tracking control of linear sys-
tems. ¥

Since A(z), B(z), C(z) and f(·) are unknown, the optimal
tracking control uk defined by (4) cannot be used directly.

2.2 WLS Based Adaptive Control

Since f(x) =
∑s

i=1 fjx
j , the Hammerstein system (1) can

be expressed as follows:

yk+1 + a1yk + · · · + apyk+1−p

= b1

s∑
j=1

fju
j
k + · · · + bq

s∑
j=1

fju
j
k+1−q + C(z)ωk+1.

By setting

θT =[−a1 · · · − ap (b1f1) · · · (b1fs) · · ·

(bqf1) · · · (bqfs) c1 · · · cr], (5)

ϕ0T
k =[yk · · · yk+1−p uk · · ·u

s
k · · ·

uk+1−q · · ·u
s
k+1−q ωk · · ·ωk+1−r], (6)

the system is written in the compact form:

yk+1 = θT ϕ0
k + ωk+1. (7)

Thus, we have transformed the Hammerstein system into
an ARMAX system. This makes it possible to apply the
identification methods well-developed for linear systems to
estimating unknown parameters.

We first introduce conditions to be used.

A1. {ωk,Fk} is a martingale difference sequence with

sup
k

E(ω2
k+1|Fk) < ∞ a.s., Rω , lim

n→∞

1

n

n∑
k=0

ω2
k > 0,

(8)
where {Fk} is a family of non-decreasing σ-algebras;

A2. There exists a nondecreasing sequence of positive
numbers {dk} such that dk+1 = O(dk), dk = o(k)
and ω2

k+1 = O(dk) a.s.;

A3. C−1(z) − 1
2 is strictly positive real (SPR), i.e.,

C−1(eiλ) + C−1(e−iλ) > 1, ∀ λ ∈ [0, 2π];
A4. B(z) is of minimum phase, i.e., B(z) 6= 0, ∀ |z| ≤ 1;
A5. A(z), zB(z) and C(z) have no common factor and

the row vector [ap bq cr] 6= 0;
A6. fs = 1 and s is an odd number.

Remark 1. Conditions A1, A3, and A5 are commonly
used for the LS-like algorithms Chen&Guo [1991], while
A4 is necessary for stability of the adaptive tracker
Chen&Guo [1991], Goodwin&Sin [1984]. If s is even, for
f(x) =

∑s
j=1 fjx

j , then all control uk solved from (4) may
be complex. Condition A6 is to exclude this possibility.
Setting fs = 1 is for identifiability.

With an arbitrary θ0 and P = α0I for some α0 > 0,
the WLS method defines {θk}k≥1 and {Pk}k≥1 by the
following algorithm:

θk+1 = θk + akPkϕk

(
yk+1 − θT

k ϕk

)
, (9)

Pk+1 = Pk − akPkϕkϕT
k Pk, ak =

1

λ−1
k + ϕT

k Pkϕk

, (10)

ω̂k+1 = yk+1−θT
k+1ϕk, λk ,

1

log1+σ rk

, some σ > 0, (11)

ϕT
k =

[
yk · · · yk+1−p uk · · ·u

s
k · · ·

uk+1−q · · ·u
s
k+1−q ω̂k · · · ω̂k+1−r

]
, (12)

θT
k ,

[
− a1,k · · · − ap,k (b1f1)k · · · (b1fs−1)k b1,k · · ·

(bqf1)k · · · (bqfs−1)k bq,k c1,k · · · cr,k

]
,

where rk , 1 +
∑k

i=0 ‖ϕi‖
2, and r0

k , 1 +
∑k

i=0 ‖ϕ
0
i ‖

2.

According to (10), P−1
k+1 =

∑k
i=0 λiϕiϕ

T
i + 1

α0
I.
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The real solution uk with minimum magnitude to the
following algebraic equation

(b1f1)kuk + · · · + (b1fs−1)kus−1
k + b1,kus

k

=y∗
k+1+

[
(b1f1)kuk+· · ·+(b1fs−1)kus−1

k +b1,kus
k−θT

k ϕk

]
,

(13)

is defined as the adaptive control at time k. It is worth
noting that the control terms in the square brackets at the
right-hand side of (13) are with time indices≤ k − 1.

In the case b1,k = 0, uk may not be defined from (13).
To avoid this difficulty, we replace b1,k with any Fk-

measurable b̂1,k with properties as follows:

b̂1,k 6= 0, k ≥ 1 and △b̂1,k , b̂1,k − b1,k −→
k→∞

0.

For example, b̂1,k , b1,k + sign{b1,k}
1
k
, where sign{x} ,

1, if x ≥ 0 and sign{x} , −1, if x < 0.

Further, uk defined by (13) may not be sufficiently excited
for identification. Motivated by Chapter 6 in Chen&Guo
[1991], a diminishingly excited signal is added to the de-
sired control solved from (13) aiming at obtaining strongly
consistent estimates for θ without bringing down the con-
trol performance. For this, let us take a sequence {εk} of
bounded i.i.d. random variables with continuous distribu-
tion and Eǫk = 0, Eǫ2k = 1. Let {εk} be independent of
{ωk}.

We now define the WLS based diminishingly excited

control. First, define u
(c)
k from the following equality:

(b1f1)ku
(c)
k + · · · + (b1fs−1)k(u

(c)
k )s−1 + b̂1,k(u

(c)
k )s

=y∗
k+1+

[
(b1f1)kuk+· · ·+(b1fs−1)kus−1

k +b1,kus
k−θT

k ϕk

]
,

(14)

where θk is generated by (9)-(12). Then, define the dimin-
ishingly excited control

uk =u
(c)
k +v

(d)
k , v

(d)
k ,

εk

k
ǫ

2
with ǫ > 0 suffciently small.

(15)

uk serves as the system input.

Remark 2. If λk ≡ 1, then the WLS algorithm (9)-(12)
coincide with the extended least squares (ELS) algorithm.
The optimal ELS based tracker for linear systems (i.e.,
f(x) = x) can be found in Chen&Guo [1991], Theorem
5.4, for which the key point in the proof is to show

u2
k =O

(
log2 rk−1

( p−1∑
i=0

y2
k−i +

q−1∑
i=1

u2
k−i +

r−1∑
i=0

ω̂2
k−i

))

+ O(log rk−1), (16)

where uk is defined from

b̂1,kuk = y∗
k+1 + b1,kuk − θT

k ϕk (17)

with θk generated by the ELS algorithm and b̂1,k , b1,k +
sign{b1,k}

1

log
1
2 rk−1

(see Chen&Guo [1991], pp 175-181 for

details). If θk in (14) is replaced by the ELS estimate,
then it is not clear whether or not a relationship similar to
(16) exists, because the left-hand side of (14) is nonlinear

with respect to u
(c)
k . This is why we resort to the WLS

algorithm.

Remark 3. By Theorem 2.8 in Chen&Guo [1991], it is
directly verified that

lim
n→∞

1

n

n∑
k=0

(yk − y∗
k)2 = Rω (18)

is equivalent to

lim
n→∞

1

n

n∑
k=0

(yk − y∗
k − ωk)2 = 0 a.s. (19)

3. MAIN RESULTS

Since x2+···+x2s

(f1x+···+fs−1xs−1+xs)2 → 1, as |x| → ∞, for any ǫ > 0

there exists N large enough such that x2 + · · ·+x2s ≤ (1+
ǫ)f2(x), |x| ≥ N . Moreover, there exists M > 0 such that
x2 + · · · + x2s ≤ M, ∀ |x| ≤ N . Hence, for uk generated
by (14) and (15) we have

u2
k + · · · + u2s

k = O(1) + O
(
f2(uk)

)
(20)

as k → ∞.

Defining

U(k) ,




1 0 · · · 0

C1
2u

(c)
k 1 · · · 0

...
. . .

Cs−1
s (u

(c)
k )s−1 Cs−2

s (u
(c)
k )s−2 · · · 1




with Ci
j = j!

i!(j−i)! (j ≥ i),

uk ,




u
(c)
k

(u
(c)
k )2

...

(u
(c)
k )s




, vk ,




v
(d)
k

(v
(d)
k )2

...

(v
(d)
k )s




,

we then have




uk

u2
k
...

us
k


 =




u
(c)
k + v

(d)
k

(u
(c)
k + v

(d)
k )2

...

(u
(c)
k + v

(d)
k )s




= uk + U(k)vk. (21)

Denote by F ′
k−1 the σ-algebra generated by {ωi, 0 ≤ i ≤

k; εj , 0 ≤ j ≤ k − 1}.

It is clear that uk and U(k) are F ′
k−1-measurable, vk is F ′

k-

measurable and
{
vk −Evk,F ′

k

}
is a martingale difference

sequence.

Noticing v
(d)
k → 0, from the definitions of uk and U(k) we

have

‖uk‖
2 =

(
u

(c)
k

)2

+· · ·+
(
u

(c)
k

)2s

=O(1)+O
(
(uk)2s

)
,(22)

‖U(k)‖2 ≤ tr
{

UT (k)U(k)
}

= O(1) + O
(
(u

(c)
k )2

)
+ · · · + O

(
(u

(c)
k )2(s−1)

)

= O(1) + O
(
(uk)2(s−1)

)
, (23)

and
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tr
{

U(k)UT (k)
}

= O(1) + O
(
(u

(c)
k )2(s−1)

)

= O(1) + O
(
(uk)2(s−1)

)
. (24)

Lemma 2. If A1 and A3 hold, then the WLS estimate
θk defined by (9)-(12) is bounded and has the following
properties,

θ̃T
n+1P

−1
n+1θ̃n+1 = O(1) a.s. (25)

∞∑
k=1

λkξ2
k < ∞ a.s.,

∞∑
k=1

(
θ̃T

k
ϕk

)2

λ−1
k

+ϕT

k
Pkϕk

< ∞ a.s. (26)

1

log1+σ rn

n∑
k=1

ξ2
k = o(1) a.s.,

∞∑
k=1

δk < ∞ a.s. (27)

(
θ̃T

k ϕk

)2

= O
(
log1+σ rk

)
+ O

(
δk‖ϕk‖

2
)

a.s. (28)

n∑
k=1

(
θ̃T

k ϕk

)2

=O
(
log1+σ rn

)
+O

(
sup

0≤k≤n

‖ϕk‖
2

)
(29)

where ξk+1 , yk+1 − θT
k+1ϕk −ωk+1, θ̃k+1 , θ− θk+1, and

δk , tr(Pk − Pk+1).

Proof: The boundedness of θk, and (25) and (26) are
proved in Lemma 1 in Guo [1996]. The proof of (27), (28),
and (29) is based on (25) and (26). ¥

Theorem 3. If A1-A4, and A6 hold, then the WLS-based
adaptive tracker defined by (14) and (15) is optimal.
Precisely,

‖ϕk‖
2

= O
(
dk + log1+σ k

)
, a.s. (30)

n∑
k=1

(yk+1 − y∗
k+1 − ωk+1)

2 = o(n) a.s. (31)

The proof of Theorem 3 is motivated by the analysis for
the ELS based adaptive tracker in Chen&Guo [1991].

Remark 4. The WLS-based adaptive tracker is still optimal

if v
(d)
k ≡ 0.

Denote by λmax(n), λmin(n), λ0
max(n), and λ0

min(n) the
maximal and minimal eigenvalues of

∑n
i=0 ϕiϕ

T
i + 1

α0
I and∑n

i=0 ϕ0
i ϕ

0T
i + 1

α0
I, respectively. For strong consistency of

the WLS estimate, we have the following lemma, which is
inspired by Theorem 4.2 in Chen&Guo [1991] for the ELS
algorithm.

Lemma 4. If A1, A3 hold and
(
log λ0

max(n)
)1+σ

= o
(
λ0

min(n)
)

a.s., (32)

then the WLS estimate θn is strongly consistent with the
following rate of convergence:

∥∥∥θn+1 − θ
∥∥∥

2

= O

((
log λ0

max(n)
)1+σ

λ0
min(n)

)
a.s. (33)

where σ > 0 is defined in (11).

For further results, we strengthen condition A2 to

A7. There is a nondecreasing sequence of positive num-

bers {dk} such that ω2
k+1 = O(dk), dk = O(kδ), v

(d)
k =

εk/k
ǫ

2 for some δ > 0 and small enough ǫ > 0 such
that the interval

(
1

2

(
1 +

2s − 1

s
δ
)
,

1 − (µ + 1)sǫ − (µ + 1)δ − (µ + 1)
(s − 1)2

s
δ

]
, (34)

is nonempty, where µ , p + max{q, r} − 1.

Lemma 5. If A1-A7 hold, then

∞∑
k=1

1

k
1−sǫ−

(s−1)2

s
δ

(
U(k)(vk − Evk)(vk − Evk)T UT (k)

− U(k)E
[
(vk − Evk)(vk − Evk)T

]
UT (k)

)
<∞ a.s.

(35)

1

k1−sǫ−
(s−1)2

s
δ

k∑
i=1

U(i)(vi − Evi)(vi − Evi)
T UT (i) ≥ c0I

(36)

for all large enough k, where c0 > 0 may depend on sample
paths.

For proving the lemma, (30) and the convergent theorem
for martingale difference sequences play the key role.

Theorem 6. If A1-A7 hold, then the WLS estimate is
strongly consistent with the following convergence rate,

∥∥θn+1 − θ
∥∥2

= O

(
log1+σ n

nα

)
a.s. (37)

for any α ∈
(

1
2

(
1 + 2s−1

s
δ
)
, 1 − (µ + 1)sǫ − (µ + 1)δ−

(µ + 1) (s−1)2

s
δ
]
.

Instead of detailed proof we only outline the basic steps of
the proof. First, we prove that λ0

min(n) ≥ c1n
α, where

α belongs to the interval (34). Second, we prove that
λ0

max(n) ≤ c2n. The positive numbers c1 and c2 may
depend on sample paths. Finally, based on the inequalities
established in the previous two steps, the conclusion of
Theorem 6 follows from Lemma 4 incorporating with (30).

Remark 5. Since b1 6= 0 by A4, (b1fj)k/b1,k, j = 1, · · · , s−
1 may serve as the estimates for f1, · · · , fs−1.

Remark 6. If f(x) = x, i.e., s = 1, then the Hammerstein
system under consideration is reduced to an ARMAX
system and the interval defined by (34) is reduced to(

1
2 (1+δ), 1− (µ+1)ǫ− (µ+1)δ

]
which coincides with the

one used in Theorem 6.2 of Chen&Guo [1991] for ARMAX
systems.

4. NUMERICAL EXAMPLE

Consider the following SISO Hammerstein system

yk+1 + a1yk = b1(f1uk + f2u
2
k + u3

k) + ωk+1 + c1ωk,

where a1 = 0.5, b1 = 2, f1 = 1, f2 = 1.5, c1 = −0.3,
and {ωk}k≥0 is a sequence of i.i.d. random variables ωk ∈
N (0, σ2

ω) with σ2
ω = 0.25.

For l = 0, · · · , 9 and k = 1, · · · , 10000, define the reference
signal

y∗
k =

{
+1, k ∈

[
1000l + 1, · · · , 1000l + 500

]

−1, k ∈
[
1000l + 501, · · · , 1000l + 1000

]

It is directly verified that A1-A6 hold.
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Fig. 2. System output vs reference signal
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Fig. 3. Estimates for unknown parameters
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Fig. 4. Cost function of the adaptive tracker

Let {ǫk} be a sequence of i.i.d. random variables uniformly
distributed over [−0.2, 0.2] and let {ǫk} be independent of

{ωk}. Let {u
(c)
k } be defined by (14) and {uk = u

(c)
k +

v
(d)
k = u

(c)
k + ǫk/k

1
30 }k≥1 serve as the system input. We

can verify that A7 also holds. Fig.2, Fig.3, and Fig.4
show the performance of the WLS-based tracker with

{v
(d)
k = ǫk/k

1
30 }.

In Fig.2, the dotted line denotes the system output while
the solid line the reference signal. In Fig.3, the dotted lines
denote the estimates for a1, b1, f1, f2, and c1, while the
solid lines the values of the true parameters. Fig.4 shows

the asymptotic properties of 1
k

∑k
i=1(yi − y∗

i )2 as time k
increases.

The simulation results are consistent with the theoretical
analysis.

5. CONCLUDING REMARKS

In this work, a WLS based adaptive tracker is designed
for a class of Hammerstein systems, and its optimality is
proved. By using the diminishing excitation technique, the
strong consistency of the WLS estimate is achieved as well.

In the Hammerstein model under consideration, it is as-
sumed that f(x) =

∑s
j=1 fjx

j , where s is known and finite.

But for a continuous function f(x), by the Weierstrass
approximation theorem f(x) =

∑s
j=1 fjx

j + h(x), where

h(x) is the approximation error and h(x) is small if s is
large enough. Hence, in general, the Hammerstein system
is expressed as

A(z)yk+1 = B(z)
s∑

j=1

fju
j
k + C(z)ωk+1 + B(z)h(uk).

Adaptive control and identification for such kind of sys-
tems belong to further research.

It is also of interest to consider the robustness of the pro-
posed adaptive tracker, more complex control performance
indices, including the LQG problem and others.
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