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Abstract: This paper presents a new control allocation design method for overactuated linear
systems with internal dynamics and input constraints. The control inputs are designed to
implement constrained control allocation and guaranteed stability of the closed-loop system.
An LMI-based sufficient condition is provided to solve the control allocation problem. The
proposed approach is demonstrated by a linear tailless aircraft model.

1. INTRODUCTION

In the recent decade, control design methods such as
model following (Durham et al., 1994), dynamic inver-
sion (Enns et al., 1994) and backstepping (Harkegard
and Glad, 2000) have gained increasing attention. These
control methods specify the generalized control inputs,
such as forces/moments, instead of the individual actuator
deflections. For systems with redundant actuators, control
allocation, which maps the generalized control inputs into
the actual actuator deflections, becomes inevitable.

Various formulations of the control allocation problem
have been discussed in the literature, and several survey
papers have been written to discuss the strengths and
weaknesses of the existing approaches (Bodson, 2002; Page
and Steinberg, 2000). In the design of control allocation for
systems with internal dynamics, control allocation may
potentially destabilize the internal dynamic (Buffington
and Enns, 1996). Since the control design must account for
closed-loop system stability and therefore cannot tolerate
instability of internal dynamics, stability of the internal
dynamics has to be addressed in the design of control
allocation. Unfortunately, most research papers on control
allocation (Bolender and Doman, 2004; Bodson, 2002;
Harkegard and Glad, 2000; Petersen and Bodson, 2006)
do not involve systems with internal dynamics. Buffington,
etc (Buffington et al., 1998) presented a small gain condi-
tion to ensure asymptotic stability of internal dynamics.
However, this condition is conservative due to its reliance
on the small gain theorem and can only be used to analyze
the effect of control allocation on the internal dynamics
stability, and not as a design method.

⋆ This research is funded by Defence Science & Technology Agency

under grant DSTA POD 513242, Singapore.

The main contribution of this paper is a sufficient con-
dition in the form of linear matrix inequalities (LMIs)
(Boyd et al., 1994) for solving the control inputs which
are required to not only implement the function of control
allocation but also guarantee the closed-loop stability. This
condition provides a synthesis tool for constrained control
allocation of linear systems with internal dynamics.

The rest of this paper is organized as follows. Section 2
gives the formulation of constrained control allocation
problems. Section 3 presents a approach to solve the con-
strained control allocation problem. Section 4 use a tailless
aircraft model to demonstrate the proposed approach.
Some conclusions are given in Section 5.

2. PRELIMINARIES

Consider the overactuated linear system with internal
dynamics in the following form:

[

ż
ẋ

]

=

[

Azz Azx

Axz Axx

] [

z
x

]

+

[

Bz

Bx

]

u (1)

where x ∈ Rnx is the commanded state vector, z ∈ Rnz

is the internal state vector, and u ∈ Rm with m > nx are
the control inputs and constrained by u ∈ Ω with

Ω ≡ {u ∈ Rm | |ui| ≤ ūi, i = 1, 2, . . . ,m} (2)

In flight control, Equation (1) corresponds to the linearized
equations of motion at some trim conditions, e.g. wing-
level horizontal flight, where the internal state vector z
may comprise the velocity components u, v, w, the com-
manded state vector x may comprise the angular velocity
components p, q, r, and control vector u may comprise
the actuator positions. In the case of small conventional
aircraft, the number of actuators m typically equals three,
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i.e. the elevator, aileron and rudder commands. For mod-
ern and unconventionally configured aircraft, m can be as
large as 11 or more (Buffington, 1999).

One situation in which the control allocation problem
arises is the employment of dynamics inversion/model-
reference control laws, where desired dynamics are pro-
vided via a generalized control that must be resolved into
the actual control commands.

In this paper, it is desired to design controller u, admissible
within given control limits, for a system of the form (1)
such that its x-state tracks some desired dynamics, and
that the closed-loop system remains stable.

Generally the desired dynamics is represented by a stable
reference model as follows:

ẋ = Amx + Bmr, (3)

where r ∈ Rnx is a reference input vector and Am is
Hurwitz. Since the derivative of x is given by (1), model
matching follows if

Bxu = ad(z,x, r) (4)

where ad is the reduced-dimension, generalized control
vector represented by

ad(z,x, r) = (Am−Axx)x − Axzz + Bmr (5)

It is noted that ad ∈ Rnx has the same dimension as the
commanded state vector x.

Suppose that the control u is in the form of

u = Ks

[

z
x

]

+ Krr (6)

Then the equation (4) is satisfied if

BxKs = N (7)

BxKr = Bm (8)

where

N = [−Axz (Am−Axx)] (9)

Obviously, the x-state is driven to the desired dynamics
by the control u as in (6) with Ks and Kr satisfying (7)
and (8). The objective of control allocation is to minimize
the error between Bxu and ad(z,x, r) as in (4), as well as
the control power. In other words, it is to minimize the
cost function

Jc = J1 + J2 + J3 + J4 (10)

where

J1 = trace
(

(BxKs−N)T H1(BxKs−N)
)

(11)

J2 = trace
(

(BxKr−Bm)T H2(BxKr−Bm)
)

(12)

J3 = trace
(

KT
s H3Ks

)

(13)

J4 = trace
(

KT
r H4Kr

)

(14)

subject to the control constraints u ∈ Ω and closed-loop
stability. Here H1 > 0, H2 > 0, H3 ≥ 0 and H4 ≥ 0 are

weighting matrices. J1 and J2 are together to minimize the
error between Bxu and ad(z,x, r). J3 and J4 are together
to minimize the control power. Since J1 and J2 are main
optimization objectives, while J3 and J4 are secondary
optimization objectives, usually we choose the values of
H3 and H4 far smaller than those of H1 and H2.

Now we consider the closed-loop stability of the system
(1). Denote

ξ =

[

z
x

]

, A =

[

Azz Azx

Axz Axx

]

, B =

[

Bz

By

]

(15)

Substituting (6) into (1), we have the closed-loop system
of the system (1) as

ξ̇ = (A + BKs) ξ + BKrr (16)

It is well known that the system (16) is stable if
(A + BKs) is Hurwitz.

In the following, we consider the control constraint u ∈ Ω
in the design of the controller u. Since unstable systems
regulated by a constrained controller cannot be stabilized
for all initial conditions, we introduce an invariant set as
follows.

Lemma 1. (Blanchini, 1999) For a positive scalar ρ, the
set

Π ≡
{

ξ : ξT Pξ < ρ
}

(17)

is positively invariant with respect to the system (16)
where r ∈ Φ with

Φ ≡ {r : rT Sr < ρ} (18)

if there exist positive-definite matrices P = PT > 0 and
S = ST > 0 and a positive scalar α such that

[

P(A+BKs)+(A+BKs)
T P+αP PBKr

KT
r BT P −αS

]

< 0 (19)

Proof: Denote the Lyapunov function with respect to the
system (16) as

V = ξT Pξ (20)

Then its derivative is given by

V̇ = ξT
[

P (A + BKs) + (A + BKs)
T

P
]

ξ

+ξT PBKrr + rT KT
r BT Pξ

=

[

ξ
r

]T





P(A+BKs)
+(A+BKs)

T P
PBKr

KT
r BT P −αS





[

ξ
r

]

+ αrT Sr (21)

Substituting (19) into (21), we have

V̇ < −αξT Pξ + αrT Sr (22)

Since r ∈ Φ, we obtain that

V̇ < −αξT Pξ + αρ (23)

If V = ξT Pξ ≥ ρ, from (23), we have V̇ < 0. Hence the
state ξ converges to the positively invariant set Π. 2

Throughout this paper, we assume that
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A1: [A,B] is stabilizable.
A2: Am is Hurwitz.

3. MAIN RESULTS

Theorem 1. Consider the system (16). For a given positive
scalar ρ, if there exist symmetric positive-definite matrices
Y and S, matrices Z and Kr, and a positive scalar α such
that the following conditions are satisfied.

[

AY + YAT + BZ + ZT BT + αY BKr

KT
r BT −αS

]

< 0 (24)









ū2
i

2ρ
EiZ EiKr

ZT ET
i Y 0

KT
r ET

i 0 S









> 0 (25)

i = 1, 2, · · · ,m

where Ei ∈ Rm is a row vector with the ith element being
1 and the others being zero, then the control input

u = Ksξ + Krr (26)

with

Ks = ZP, P = Y−1 (27)

can stabilize the closed-loop system (16) and satisfy the
control constraint u ∈ Ω for any initial state ξ(0) ∈ Π as
in (17) and any reference r ∈ Φ as in (18).

Proof: By substituting (27) into (24) and making congru-
ence transformation by multiplying diag(P, I) on its left
and right sides, we prove that (24) is equivalent to (19).
From the inequality (19), we have

P(A + BKs) + (A + BKs)
T P + αP < 0 (28)

Since α > 0 and P > 0, we have

P(A + BKs) + (A + BKs)
T P < 0 (29)

Obviously, the matrix A + BKs is Hurwitz. Hence, the
control as in (26) can stabilize the closed-loop system (16).

As (24) is equivalent to (19), according to Lemma 1, the set
Π is a positively invariant set with respect to the closed-
loop system (16) for r ∈ Φ. Hence, for any initial state
ξ(0) ∈ Π, we have

ξ(t)T Pξ(t) < ρ, t ≥ 0 (30)

Since r ∈ Φ, i.e.,

rT Sr < ρ (31)

we obtain that

ξT Pξ + rT Sr < 2ρ (32)

This can be rewritten as

[

ξ
r

]T [

P 0
0 S

] [

ξ
r

]

< 2ρ (33)

which is equivalent to

[

ξ
r

] [

ξ
r

]T

< 2ρ

[

P−1 0
0 S−1

]

(34)

From (26), we have

u2
i = Ei(Ksξ + Krr)(Ksξ + Krr)

T ET
i

= Ei[Ks Kr]

[

ξ
r

] [

ξ
r

]T [

KT
s

KT
r

]

ET
i

< 2ρEi[Ks Kr]

[

P−1 0
0 S−1

] [

KT
s

KT
r

]

ET
i

= 2ρEi[Z Kr]

[

P 0
0 S−1

] [

ZT

KT
r

]

ET
i

By Schur complement formula, the inequalities (25) is
equivalent to

ū2
i > 2ρEi[Z Kr]

[

P 0
0 S−1

] [

ZT

KT
r

]

ET
i

i = 1, 2, · · · ,m (35)

Thus we have

u2
i < ū2

i , i = 1, 2, · · · ,m (36)

namely, u ∈ Ω for ξ(0) ∈ Π and r ∈ Φ. This completes
the proof. 2

Remark 1. Theorem 1 gives a sufficient condition for solv-
ing the constrained controller u. The controller u consists
of two parts: the part of state feedback is used to stabi-
lize the closed-loop system while the part with forward
reference signal is used to implement tracking of reference
signal.

As (24) involves the items αY and αS where α, Y and S
are variables, it is not a regular LMI. However, if α is given,
(24) is an LMI. The optimization of α will be presented
subsequently.

Once the closed-loop stability and control constraints are
guaranteed, the control allocation becomes a constrained
optimization problem: for a given positive scalar α,

min
Y,S,Z,K

r
,W1,W3,Qi,i=1,2,3,4,5

γ

subject to the LMIs (24), (25) and

4
∑

i=1

trace(Qi) + λ1trace(Q5) + λ2trace(S) < γ (37)

[

W1 (BxZ − NY)T H
1

2

1

H
1

2

1 (BxZ − NY) I

]

> 0 (38)

[

2Y − W1 I
I Q1

]

> 0 (39)

[

Q2 (BxKr − Bm)T H
1

2

2

H
1

2

2 (BxKr − Bm) I

]

> 0 (40)

[

W3 ZT H
1

2

3

H
1

2

3 Z I

]

> 0 (41)

[

2Y − W3 I
I Q3

]

> 0 (42)
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[

Q4 KT
r H

1

2

4

H
1

2

4 Kr I

]

> 0 (43)

[

Q5 I
I Y

]

> 0 (44)

where N is defined as in (9), H1 > 0, H2 > 0, H3 ≥ 0 and
H4 ≥ 0 are known weighting matrices, λ1 > 0 and λ2 > 0
are known weighting scalars, and ρ > 0 is a given scalar.
Then we have Ks = ZP and P = Y−1 as in (27).

In the above LMI constraints, (38) and (39) are used
to find the upper bound of J1 as in (11). By Schur
complement formula, (38) is equivalent to

W1 > Y(BxKs−N)T H1(BxKs−N)Y (45)

and (39) is equivalent to

2Y − Q−1
1 > W1 (46)

Since (Q−1
1 − Y)Q1(Q

−1
1 − Y) > 0, it is obvious that

YQ1Y > 2Y − Q−1
1 (47)

From (45)-(47), we have Q1 > (BxKs−N)T H1(BxKs−N).
Hence J1 < trace(Q1). Similarly, (41) and (42) are used
to find the upper bound of J3 as in (13).

Remark 2. The purpose of minimizing trace(Q1), trace(Q2),
trace(Q3) and trace(Q4) is to minimize J1, J2, J3 and J4,
respectively. While the purpose of minimizing trace(Q5)
is to minimize trace(P) such that the set Π as in (17)
is as large as possible for a positive constant ρ. Similarly,
trace(S) is minimized to make the set Φ as in (18) as large
as possible for a positive constant ρ.

Remark 3. The controller u = Ksξ +Krr solved from the
proposed off-line optimization approach can implement the
control allocation and guarantee the closed-loop stability
subject to given control constraints.

In the design of control allocation, to determine the
positive optimal scalar α, an iterative method is proposed:

Step 1: Give the initial value of ν and the maximum
number of iteration n.

Step 2: At jth iteration, set α = Tj where T is a given
small constant.

Step 3: Minimize γ(j) over Y(j), S(j), Z(j), K
(j)
r , W

(j)
1 ,

W
(j)
3 and Q

(j)
i (i = 1, 2, 3, 4, 5) subject to LMIs (24),

(25) and (37)-(44).
Step 4: If γ(j) < ν, set ν = γ(j) and L = j.
Step 5: If j = n, we have αopt = TL and stop. Otherwise,
j = j + 1 and go to Step 2.

Once αopt is obtained, by minimizing γ subject to LMIs
(24), (25), (37)-(44), we can obtain Kr, Ks and P.

4. EXAMPLE

In this section, we use a modified tailless aircraft model
(Buffington and Enns, 1996) to demonstrate the proposed
control allocation approach. The linear approximation of
the lateral/directional dynamics of the tailless aircraft is
given as follows.





β̇
ṗ
ṙ



=





0.1 | 0.154 −0.988
−8.210 | −0.785 0.117
−0.889 | −0.030 −0.016









β
p
r





+





0.006 −0.004 −0.009 0.013 0.011
3.650 −0.614 7.570 −4.970 0.079

−0.416 0.188 0.091 −0.181 −0.804















δt

δf

δe

δs

δytv











Here the internal state is the side-slip angle β expressed
in degree, the commanded states are the body-axis roll
rate p and yaw rate r expressed in degree per second. The
control input consists of the differential all moving tips
δt, differential outboard leading-edge flaps δf , differential
elevons δe, differential spoiler/slot-deflectors δs and yaw
thrust vectoring δytv. They are all expressed in degrees
and satisfy the following constraints:

|δe| ≤ 20, |δs| ≤ 20, |δt| ≤ 25, |δytv| ≤ 30, |δf | ≤ 30 (48)

It is noted that there is an unstable eigenvalue 0.4709 in
the open-loop tailless aircraft system. In this example, it
is desired to command the roll rate p and yaw rate r. The
desired closed-loop dynamics is given by

[

ṗc

ṙc

]

=

[

−1 0
0 −1

] [

pc

rc

]

+

[

1 0
0 1

] [

rp

rr

]

(49)

Set ρ = 1, λ1 = 5.0 × 10−5, λ2 = 0.25, H1 = I2×2,
H2 = 20I2×2 and H3 = H4 = 0. Using the optimization
approach proposed in Section 3, we obtain α = 0.14 and

Ks =











−2.1709 −0.3204 2.0264
2.6370 0.3792 −2.4077
1.1551 −0.0072 −0.1500

−1.7916 −0.2454 1.5670
0.9044 0.2353 −0.5276











Kr =











−1.8959 12.3191
2.2595 −14.6438
0.2360 −0.7050

−1.4835 9.5714
1.8677 −13.2619











P =

[

0.0318 0.0045 −0.0287
0.0045 0.0010 −0.0051

−0.0287 −0.0051 0.0314

]

S =

[

0.0233 −0.1432
−0.1432 0.9292

]

Then the closed-loop tailless aircraft system are





β̇
ṗ
ṙ



=





0.0527 | 0.1500 −0.9503
−0.0328 | −1.0034 0.0271

0.2122 | 0.0291 −1.1848









β
p
r





+





−0.0213 0.1174
0.9997 0.0018
0.0018 0.9883





[

rp

rr

]

with eigenvalues of −0.1452, −0.9911 and −0.9992. Thus
the control u = Ksξ + Krr with u = [δt, δf , δe, δs, δytv]T ,
ξ = [β, p, r]T and r = [rp, rr]

T can stabilize the closed-loop
tailless aircraft system and satisfy the control constraint
(48) for any initial state ξ(0) ∈ Π and the reference r ∈ Φ.

Set the initial states β(0) = 1, p(0) = 0 and r(0) = 0 and
the reference
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rp =











0, 0 ≤ t < 5 sec
15, 5 ≤ t < 15 sec

−15, 15 ≤ t < 25 sec
0, 25 sec ≤ t

rr =











0, 0 ≤ t < 5 sec
2.3, 5 ≤ t < 15 sec

−2.3, 15 ≤ t < 25 sec
0, 25 sec ≤ t
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Fig. 1. Simulation results of tailless aircraft with consider-
ation of internal dynamics stability

The simulation results are given in Figure 1 which shows
that the proposed control allocation approach can effec-
tively match the reference model (49) and stabilize the
sideslip angle β.

For the purpose of comparison, Figure 2 gives the sim-
ulation result of the general on-line control allocation
(Petersen and Bodson, 2006) where the stability of the
internal dynamics is not considered. From Figure 2, it is
observed that at the beginning the reference model (49)
can still be effectively tracked although the sideslip angle
β is divergent. However, when β is large enough, it makes
the actuators saturated. As a result, the responses of p
and r cannot track pref and rref which are responses of
the reference model (49) and p and r begin to diverge.
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Fig. 2. Simulation results of tailless aircraft without con-
sideration of internal dynamics stability

Although it is easy to use robust optimization control
(Zhou and Doyle, 1998) approaches to stabilize an unstable
system and optimize its tracking performance where con-
trol input can be constrained within given control limits
by adjusting weighting matrices, it is not easy to achieve
the desired dynamics of the closed-loop. This is verified by
Figure 3 that shows the responses of the tailless aircraft
using H2 optimal control with the state-feedback and the
integral of tracking errors e = r − x. From Figure 3, it is
observed that p and r can track pref and rref with zeros
steady-state tracking error, the response of β is stable, and
all the actuator defelections satisfy the constraints (48).
However, it is also observed that the dynamics of p and r
cannot match those of pref and rref .

5. CONCLUSIONS

This paper presents a new control allocation method for
linear systems with internal dynamics. In this method,
closed-loop systems are stabilized by state-feedback con-
trol, and positively ellipsoidal invariant sets are used to
guarantee that the specified control constraints be satisfied
within a range of references and initial states. An LMI-
based off-line optimization approach is then proposed to
solve for a fixed controller which achieves the desired dy-
namics. Simulation results show that the proposed method
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Fig. 3. Simulation results of tailless aircraft based on H2

optimal control

is better than the existing control allocation approach
where the closed-loop stability is not considered. Com-
pared to the robust optimization approach, the proposed
approach can achieve the desired dynamics of closed-loop
system more easily.
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