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1. INTRODUCTION

In this paper, we establish conditions under which a given pair
of processes can be realized as an input and a noisy output of
a stochastic linear control system subject to uncertain perturba-
tions. The class of stochastic disturbances under consideration
is based on an interpretation of the system uncertainty as re-
sulting from perturbations of reference Brownian motions; this
allows one to account for a rich class of system uncertainties
including some standard uncertainty models such as norm-
bounded parametric disturbances and H∞-norm bounded un-
modeled dynamics [Ugrinovskii and Petersen, 2001, Petersen
et al., 2000b]. Also, the uncertainty affecting probability laws
of the system noises is directly included in this model, whereby
uncertain systems driven by non-Gaussian noises can be ac-
counted for. This approach to stochastic uncertainty model-
ing has been employed in a number of recent papers on ro-
bust stochastic control and filtering; e.g., see [Petersen et al.,
2000a,b, Charalambous and Rezaei, 2007, Yoon et al., 2004].
The objective of this paper is to complement this recent stochas-
tic robust control and robust filtering theory by addressing is-
sues of model validation in relation to the stochastic uncertainty
description used in the mentioned work.

The importance of model uncertainty in the derivation of a
control system model consistent with available input and mea-
surement data has been highlighted some time ago. While in the
system identification theory the mismatch between the modeled
and observed system outputs is often attributed to noise, or ex-
citation (e.g., see Ljung and Soderstrom [1983]), it was argued
in [Poolla et al., 1994, Smith and Doyle, 1992] and a number
of other papers that in feedback control systems other types
of uncertainty such as, e.g., unmodeled dynamics, coprime
factor uncertainty or norm-bounded disturbances, must also be
accounted for. This argument motivated a substantial research
effort in the area of deterministic uncertain systems model val-
idation; e.g., in addition to the above references see [Savkin
and Petersen, 1996]. The deterministic model validation prob-
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lem was formulated in these references as follows: Given an
uncertain system model (consisting of a nominal model and
a set of uncertain perturbations) and an experimental datum,
does the uncertainty set include an uncertainty element such
that the observed datum can be produced exactly (cf. Problem
3.1 in Smith and Doyle [1992])? The solution to this problem,
as noted in Poolla et al. [1994], Smith and Doyle [1992], is
instrumental for eliminating models which are inconsistent with
observed measurements.

In stochastic systems, effects of process noise may further
augment those attributed to the system uncertainty. While a
common description of stochastic systems employs the classic
Gaussian excitation model to describe dynamics which are dif-
ficult to predict accurately, in applications arising in the areas
of hybrid systems control, mathematical finance and commu-
nications, it is often necessary to consider dynamics driven by
non-Gaussian noises or noises whose probability distributions
are state-dependent and/or affected by the system uncertainty.
One approach to dealing with control problems for this type of
uncertain systems, which has recently attracted attention (e.g.,
see Petersen et al. [2000a,b], Charalambous and Rezaei [2007]
and references therein), is based on an interpretation of uncer-
tain system noises as resulting from uncertain perturbations of
reference Brownian motions. Thanks to its connection to the
H∞ control and risk-sensitive control theories (Fleming and
McEneaney [1995], James et al. [1994], Dai Pra et al. [1996]),
this approach has been shown to enable tractable solutions
to a number of robust control and filtering problems involv-
ing uncertain stochastic systems. Aspects of stochastic system
modeling however have not been addressed in this theory in a
systematic manner. In this paper we complement the mentioned
theory of stochastic robust control by proposing a formulation
of the model validation problem which takes into account the
presence of uncertainty in the system model and also accounts
for a possibly non-Gaussian nature of excitations. Our aim is to
pave the way for future research into issues of stochastic model
reduction and stochastic systems realization for this class of
stochastic uncertain systems, which would parallel the deter-
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ministic theory concerned with issues of system equivalence
and system realizations [Beck et al., 1996, Petersen, 2007].

The model validation problem in this paper is concerned with
establishing conditions under which given processes u, ψ, ȳ
(where ȳ is a noisy version ofψ, as will be explained below) can
be realized as an input and output of a stochastic linear control
system subject to uncertain perturbations from a prescribed set.
Specifically, consider a.s. bounded random signals ψ(·), u(·)
adapted to the filtration generated by an exogenous process
disturbance w(·) (we postpone rigorous definitions until Sec-
tion 2). These processes will play the role of the input and
‘perfect’ output of a plant. In practice, it may be too expensive
and difficult to measure the plant directly, and often cheaper
but more noisy sensors are preferred, even though they provide
measurements with a larger error. To reflect such a practical
situation we augment our input-output pair by an Ito process ȳ

dȳ(t) = ψ(t)dt+ d%(t), ȳ(0) = 0; (1)
% is a Wiener process independent of w, with a known incre-
ment covariance matrix Σ(·), which represents measurement
noise. Since the probability law of % is fixed, equation (1)
imposes a coupling between ψ(·) and ȳ(·).

We are concerned with establishing conditions under which
the processes u, ψ, ȳ can be represented by a stochastic linear
uncertain system driven by the process noise w and the control
input u and whose linear noisy output has the same probability
law as that of ȳ. Such a representation would allow the designer
to apply the recent stochastic robust control design methodol-
ogy mentioned above (e.g., [Petersen et al., 2000b]), much of
which is based on linear stochastic modeling of a system.

Motivated by this idea, we focus on admissible candidate linear
models described by the linear stochastic differential equation

dx(t) = (A(t)x(t) +B1(t)u(t))dt +B2(t)dw(t), (2)

dy(t) = (C2(t)x(t) + dv(t), y(0) = 0, x(0) = 0.

A tacit feature of this problem formulation relates to the as-
sumption that the probability space in which the above system
is defined is not fixed. As will be explained below, this assump-
tion allows one to consider a rich class of uncertain dynamics
by describing them as the stochastic system (2) driven by per-
turbed process and measurement noises. This will enable us to
establish the desired representation of the processes u, ψ, ȳ by
perturbing a nominal system of the form (2); such a nominal
system corresponds to the case where w and v are Brownian
motions. In this sense, our problem formulation is analogous to
the deterministic formulation of the uncertain model validation
problem considered by Poolla et al. [1994], Savkin and Petersen
[1996], Smith and Doyle [1992], the main difference being that
our approach directly accounts for stochastic perturbations and
noises in the system. The set of admissible perturbations of the
nominal system will be denoted Ξd; this set will be defined
rigorously in Section 2.2.

The main result of the paper presented in Section 4 is a condi-
tion which guarantees the existence of an admissible probability
measure from the given class Ξd under which ȳ(·) = y(·) in the
sense of probability laws, i.e., weakly. The condition, which is
given in Theorem 2, is formulated in terms of a risk-sensitive
performance cost defined on dynamics of the nominal system
(2). The condition is sufficient, and, under some additional tech-
nical assumption, necessary. In somewhat lose terms, this risk-
sensitive performance cost characterizes performance exhibited

by this special system (2) when it ‘attempts to track’ψ using the
control input u. Our result in Theorem 2 compares this cost with
a given bound on the energy in admissible disturbances. Such
a bound is one of the parameters that define the class Ξd of
admissible disturbances. The significance of this result is seen
in connecting the realizability of the given processes (u, ψ, ȳ)
with risk-sensitive performance of the reference system. In a
number of related robust control problems involving a similar
class of uncertain stochastic systems it was possible to evaluate
corresponding risk-sensitive performance costs. Therefore the
result of Theorem 2 sets a direction for future research into
more tractable conditions for realizability of stochastic systems.

To conclude this section, we present a feedback control system
setting which elucidates the assumptions concerning (u, ψ, ȳ)
which will be used in this paper. Consider a stochastic open-
loop control system

x̄(t) =A(u(·)|t0, w(·)|t0), t ∈ [0, T ], (3)
consisting of a causal mapping A : w(·)×u(·) → x̄ and a mea-
surement equation (1) in which ψ(t) , Ψ(x̄(t)). In (3), w(·)
represents sample trajectories of an exogenous disturbance. The
required properties of u and ψ can then be ascertained if we
assume that u(t) is an exogenous deterministic test signal andA
and Ψ have appropriate measurability properties. E.g., when the
mapping A is described by an Ito differential equation andw(·)
is a semimartingale, assumptions which establish the existence
and uniqueness of a solution x̄ suffice. For a general discussion,
we refer to [Ugrinovskii and Petersen, 2000].

2. DEFINITIONS

2.1 Uncertain stochastic systems

Let T > 0 be a constant which will denote the finite time
horizon considered throughout the paper. Consider a complete
probability space (Ω,F , P †). In this probability space, consider
mutually independent Wiener processes w(·) ∈ R

r, y(·) ∈ R
q

with covariance matrices W (·), Σ(·), respectively. We will
assume W (t) ≥ ρW I , Σ(t) ≥ ρΣI for all t ∈ [0, T ], where
ρW , ρΣ are positive constants. As in Dai Pra et al. [1996],
the space Ω is thought of as the noise space C([0, T ],Rr) ×
C([0, T ],Rq), and the probability measure P † is defined as the
product-measure P †,w × P †,y where P †,w, P †,y are standard
Wiener measures onC([0, T ],Rr),C([0, T ],Rq), respectively.
Also as in Dai Pra et al. [1996], we endow the space Ω with
the filtrations {Fw

t , t ≥ 0}, {Fy
t , t ≥ 0}, and {Ft, t ≥ 0},

where Ft = σ {Fw
t ×Fy

t }. These filtrations are generated by
the following mappings Πw

t (w(·)), Πy
t (y(·)): Πw

0 (w(·)) , 0,
Πy

0(y(·)) , 0 and Πt(w(·)) , w(t), Πy
t (y(·)) = y(t) for t > 0.

The filtrations are completed by including all corresponding
sets of P †-probability zero. Without any loss of generality,
we set Fw = σ{∪t∈[0,T ]F

w
t }, Fy = σ{∪t∈[0,T ]F

y
t }, and

F = σ{∪t∈[0,T ]Ft} = σ{Fw × Fy}. The expectation with
respect to P † will be denoted E

†.

On the probability space defined above, we consider system
dynamics driven by the noise input w(·) and governed by a
control input u(·), as described by the stochastic differential
equation (2). In equation (2), x(t) ∈ R

n is the state, and inputs
u(t) under consideration are assumed to be adapted to the
filtration {Fw

t , t ∈ [0, T ]}. We will restrict the class of controls
to those under which P †

(

∫ T

0 ‖C2(t)x(t)‖
2
Σ−1dt <∞

)

= 1,
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where C2(·) is a given deterministic time-varying matrix. Also,
in the sequel we will make use of an auxiliary output of the
system (2) defined by

z(t) = C1(t)x(t) +D1(t)u(t); (4)
this output will be used in the definition of admissible uncer-
tainties. Finally, all coefficients in equations (2) and (4) will be
assumed to be deterministic bounded sufficiently smooth ma-
trix valued functions mapping [0, T ] into the spaces of matrices
of corresponding dimensions.

In this paper we do not fix the underlying probability measure
and probability laws of the process and measurement noises w
and v. Rather, following Petersen et al. [2000a,b], Ugrinovskii
and Petersen [1999, 2001], dynamics of the system (2), (4) are
considered under probability measures which are associated
with feasible perturbations of the processes w, v. To describe
the system (2) as an uncertain stochastic system in the con-
text of this uncertain stochastic system framework, consider
a probability measure Q which is absolutely continuous with
respect to P †, Q � P †. Following Dai Pra et al. [1996], a
pair of progressively measurable processes η(t), ξ(t) adapted
to {Ft, t ≥ 0} and Wiener processes {w̃(t), ṽ(t),Ft, t ≥ 0}
can be associated with Q, so that underQ,

[

w̃(t)
ṽ(t)

]

=

[

w(t)
y(t)

]

−

∫ t

0

[

η(s)
C2x(s) + ξ(s)

]

ds.

In the probability space (Ω,F , Q), dynamics and outputs of the
system (2), (4), are governed by the Ito differential equations

dx(t) = (A(t)x(t) +B1(t)u(t) +B2η(t))dt

+B2(t)dw̃(t), x(0) = 0, (5)

z(t) =C1(t)x(t) +D1(t)u(t),

dy(t) = (C2(t)x(t) + ξ(t))dt+ dṽ(t), y(0) = 0.

The system (5) has the form of a perturbed stochastic system
governed by the disturbance η, and the process y under Q
describes the noisy output of the system (5) perturbed by
ξ. Under certain mild conditions on (η, ξ), which will be
presented later in this section, the measures Q and P † are
related by

Q(dw × dy) = ζη,ξ(T )P †(dw × dy),

where the process {ζη,ξ(t),Ft, t ∈ [0, T ]} defined below can
be shown to be a martingale [Bensoussan, 1992],

ζη,ξ(t) := e

∫

t

0
η′(s)W−1(s)dw(s)− 1

2 ‖η(s)‖
2

W−1(s)
ds

×e

∫

t

0
(C2(s)x(s)+ξ(s))

′Σ−1dy(s)− 1
2

∫

t

0
‖C2(s)x(s)+ξ(s)‖

2

Σ−1ds.

A particular probability measure P , associated with the pair of
uncertainty inputs (η, ξ) = (0, 0) is regarded as the nominal
probability measure. Under this probability measure, w and
v become Wiener processes, and the system (2) becomes a
standard stochastic linear system driven by Wiener processes,
with linear noisy output. This system therefore is referred to as a
nominal system. In addition, since the process ζ†(t) , ζ0,0(t),
is a martingale and due to the assumption that solutions of
the system (2) are P †-a.s. L2-integrable, we observe that the
probability measuresP andP † are equivalent,P ∼ P † [Liptser
and Shiryayev, 1977, Theorem 7.1], i.e.,

P †(dw × dy) = (ζ†(T ))−1P (dw × dy).

As in Petersen et al. [2000a], Ugrinovskii and Petersen [1999],
the foregoing discussion leads us to define the set of feasible

uncertain systems by associating with it a set P of all probabil-
ity measures Q with an additional that property

h(Q‖P ) <∞. (6)
In equation (6), h(Q‖P ) denotes the relative entropy between
a probability measure Q and the nominal probability measure
P (Dupuis and Ellis [1997]):

h(Q‖P ) : =























E
Q log

(

dQ

dP

)

if Q� P and

log

(

dQ

dP

)

∈ L1(dQ),

+∞ otherwise.

Here E
Q is the expectation with respect to Q. Also, using

localizations one can express the relative entropy between Q
and P as

h(Q‖P ) =
1

2
E
Q

∫ T

0

(‖η(t)‖2
W−1 + ‖ξ(t)‖2

Σ−1)dt; (7)

see Dai Pra et al. [1996]. Hence, the satisfaction of condi-
tion (6) included in the definition of the set P implies that
E
Q
∫ T

0
(‖η(t)‖2

W−1 + ‖ξ(t)‖2
Σ−1)dt < ∞. That is, in fact

condition (7) shows that we deal with a class of L2-integrable
perturbations of the nominal system.

2.2 Admissible uncertainty

In the previous section, we observed that L2-integrable distur-
bances can be associated with probability measures of the set P .
While the set P represents a rich class of feasible disturbances,
in a practical problem not all uncertainties of this class may
be realized. For instance, the uncertainty in a practical problem
under consideration may correspond to an unmodeled dynamic
and may be known to be bounded in magnitude, e.g., its H∞

norm may be known to satisfy certain constraint. Therefore,
only uncertainties satisfying this constraint must be considered
as admissible in the problem, and the rest must be ruled out.
Following Petersen et al. [2000a,b], Ugrinovskii and Petersen
[1999], our characterization of admissible uncertainties bounds
the size of admissible perturbations by constraining the relative
entropy between associated perturbation probability measures
Q and the nominal probability measure P . As follows from (7),
such a constraint essentially describes a bound on the energy in
admissible disturbances.
Definition 1. Given a constant d > 0, a probability measure
Q ∈ P is said to define an admissible uncertainty if the
following stochastic uncertainty constraint is satisfied:

h(Q‖P ) ≤
1

2
E
Q

∫ T

0

‖z(t)‖2dt+ d. (8)

In (8), x(·), z(·) are defined by equation (2) considered under
the probability measure Q.

We denote the set of probability measures defining the admis-
sible uncertainties by Ξd. Elements of the set Ξd are also called
admissible probability measures.

3. STOCHASTIC MODEL VALIDATION PROBLEM

We are now in a position to formalize our stochastic model
validation problem. Along with the uncertain system consisting
of the system (2) and the set of probability measures Ξd
satisfying the uncertainty constraint (8), consider signals ȳ(·),
u(·) and ψ(·). As described in Section 1, we assume that u and
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ψ are adapted with respect to the filtration {Fw
t , t ∈ [0, T ]},

and u ∈ R
m, and ȳ, ψ ∈ R

q . Also, the processes ȳ(·) and
ψ(·) are connected as described in equation (1), where the
measurement noise %(t) takes values in R

q.

The problem under consideration is to verify whether there
exists an admissible probability measure Q ∈ Ξd such that
under this measure, probability distributions of the output y(·)
of the system (2) considered in the probability space (Ω,F , Q)
(or equivalently system (5) considered in the same probability
space) match those of the given process ȳ(·), i.e., y(t) = ȳ(t) in
the weak sense, provided the measurement noise process %(t)
governing the measurement model (1) has the same probability
law as the process ṽ(t) governing the system (5) considered
under Q. That is, {%,Fy

t , t ∈ [0, T ]} must be Wiener under
Q. A probability measure satisfying this requirements will be
denoted Q̄.

The requirement that the processes y(·), ȳ(·) must have the
same probability distributions under Q̄ can be regarded as a
constraint on an uncertain system which is additional to that
described in Section 2.2. To investigate the structure of un-
certain probability measures Q̄ satisfying this constraint, let us
consider uncertain dynamics of the system (2) governed by u,
then for the identity y(·) = ȳ(·) to hold weakly, the process
%̃(t) , y(t) −

∫ t

0
ψ(t)dt must be a Wiener process under Q̄,

with increment covariance Σ. To satisfy this constraint, we now
consider a subset of feasible measures constructed via probabil-
ity measure transformations, by restricting perturbations η(·) in
the definition of the martingale ζη,ξ to belong to the class of
Fw
t -adapted disturbances. This will ensure that in the presence

of such disturbances the state process x(·) of the uncertain
system (2) (equivalently, the system (5)) is Fw

t -adapted, which
is necessary to be able to realize the Fw

t -measurable process
ψ(t) using an Fw

t -adapted process C2(t)x(t).

In summary, the requirement that under Q̄, y(·) must be an
Ito process with the differential dy = ψdt + d%̃, and the
state process must be Fw

t -adapted and must be driven by Fw
t -

adapted disturbances, leads us to constrain the consideration
to probability measures Q̄ (and corresponding uncertainties)
which have the following structure:

Q̄(dw × dv) = Qw(dw) × Q̄(dy|w(·)), (9)
where according to the Girsanov Theorem,

Qw(dw) , P †,w(dw)

×e

∫

T

0
η′(s)W−1(s)dw(s)− 1

2

∫

T

0
‖η(s)‖2

W−1(s)ds, (10)

Q̄(dy|w(·)) , P †,y(dy)

×e

∫

T

0
ψ(s)′Σ−1dy(s)− 1

2

∫

T

0
‖ψ(s)‖2

Σ−1ds. (11)
In the above definition, Qw is a probability measure defined
on sets of the σ-field Fw, generated by w(s), 0 ≤ s ≤ t.
Also, Q̄(·|w(·)) denotes the conditional probability measure
defined on sets of Fy given a realization of w(·). In (9) we
have used the fact that P †(dy|w(·)) = P †,y(dy) since w and y
are independent under P †.

The foregoing discussion leads us to formulate the stochastic
model validation problem as follows: Derive conditions under
which there exists a probability measure Q̄ ∈ P of the form (9)
such that Q̄ ∈ Ξd.
Definition 2. Given an uncertain system (2) subject to the con-
straint (8). A triple (u, ψ, ȳ), in which ȳ(·), ψ(·) are connected

via (1), is said to be realizable via a stochastic uncertain system
(2), (8) (or simply realizable) if there exists Q̄ ∈ P of the form
(9) that satisfies the relative entropy uncertainty constraint (8):

h((Q̄‖P ) <
1

2
E
Q̄

∫ T

0

‖z(s)‖2ds+ d. (12)

4. THE MAIN RESULT

It is easy to see from the chain rule for the relative en-
tropy [Dupuis and Ellis, 1997] that the condition (7) implies
h(Qw‖P †,w) < ∞. Therefore, since Q̄ ∈ P , the search for
an admissible Q̄ satisfying (12) must be be carried out among
probability measures of the form (9) in which h(Qw‖P †,w) <
∞. The set of feasible probability measures Qw satisfying the
latter condition will be denoted Pw.

The following theorem shows that the realizability property
introduced in Definition 2 can be recast as an optimization
problem.
Theorem 1. Given an uncertain system (2) subject to the con-
straint (8). A given control-output-measurement triple u(·),
ψ(·), ȳ(·) is realizable using the uncertain system (2), (8) if and
only if

inf
Qw∈Pw

[

h(Qw‖P †,w)

−
1

2
E
Qw

∫ T

0

(‖z(s)‖2 − ‖ψ(s) − C2x(s)‖
2
Σ−1ds

]

< d. (13)

Proof First we observe using the chain rule for the relative
entropy [Dupuis and Ellis, 1997] that

h(Q̄‖P ) = h (Qw‖Pw) + E
Qw [

h
(

Q̄ (·|w(·)) ‖P (·|w(·))
)]

= h
(

Qw‖P †,w
)

+
1

2
E
Qw

∫ T

0

‖ψ(s) − C2x(s)‖
2
Σ−1ds;

the last identity holds since x(·) is independent of y from the
definition of Q̄. For the same reason, the expectation E

Q̄ in
(12) can be replaced with E

Qw

. Also, in the proof of the above
identity we have used the fact that according to the definition of
P , its restriction on Fw equals P †,w.

The above calculation implies that for any Q̄ ∈ P of the form
(9), condition (12) of Definition 2 reduces to the condition

h(Qw‖P †,w) ≤
1

2
E
Qw

∫ T

0

[

‖z(s)‖2

−‖ψ(s) − C2(s)x(s)‖
2
Σ−1

]

ds+ d. (14)
The claim of the theorem can now be established. Clearly, if
there exists Q̄ of the form (9) which satisfies (12), then it also
satisfies (14) and hence, (13) holds. Conversely, suppose (13)
holds. Then since (13) is a strict inequality, there must exist an
infinitesimally small ε > 0 such that

inf
Qw∈Pw

[

h(Qw‖P †,w) −
1

2
E
Qw

∫ T

0

(‖z(s)‖2

− ‖ψ(s) − C2x(s)‖
2
Σ−1ds

]

< d− ε. (15)

Hence, for any 0 < ε1 < ε/2 there exists Qw ∈ Pw such that
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h(Qw‖Pw) −
1

2
E
Qw

∫ T

0

[

‖z(s)‖2

−‖ψ(s) − C2(s)x(s)‖
2
Σ−1

]

ds < d− ε/2. (16)

To verify (12), one must construct Q̄ using this Qw in accor-
dance with (9). 2

The representation of our model validation problem in the form
of the optimization problem (13) allows us to relate the property
of realizability to a ‘risk-sensitive tracking’ performance of the
system (2) considered under the original probability measure
P † (and in fact under P †,w since u(t) is adapted to {Fw

t }). The
performance index is defined as follows

V = logE
†,w exp (F ) , (17)

F ,
1

2

∫ T

0

[

‖z(s)‖2 − ‖ψ(s) − C2x(s)‖
2
Σ−1

]

ds; (18)

here as suggested above, x(·) is a solution to the system (2)
considered under P †,w; recall that in this case the disturbance
w(·) in (2) is a Wiener process.

The main result of this paper presented below in Theorem 2
shows that there exists a connection between the realizability of
the processes (u, ψ, ȳ) and the value of V . Owing to Theorem 1,
such a connection is prompted by the variational formula for
the relative entropy (Dupuis and Ellis [1997], Dai Pra et al.
[1996]). However, the variational formula cannot be applied
directly to replace the quantity on the left hand side of (13)
with V . This is because the variational formula requires the
mapping F : Ω → R to be either bounded from above or
bounded from below. The proof of Theorem 2 circumvents this
technical difficulty by using suitable approximations.
Theorem 2. Consider the uncertain system (2) and the con-
straint (8). If

V > −d, (19)
then (u, ψ, ȳ) is a realizable using an uncertain system (2), (8).

Conversely, if (u, ψ, ȳ) is realizable and additionally, under the
reference probability measure P †, dynamics of the system (2)
governed by u(·) satisfy the condition

E
† exp

(

1

2

∫ T

0

‖z(t)‖2

)

<∞; (20)

then (19) holds.

Before we proceed to the proof of Theorem 2, we note that
the additional technical condition (20), known as the Novikov
condition [Liptser and Shiryayev, 1977], is only needed to
prove the ‘only if’ part of Theorem 2; the ‘if’ claim does not
require this condition. It is worthwhile to note that this addi-
tional condition concerns properties of the reference system
which is not subject to uncertainty, therefore properties of z
are entirely dependent on the properties of the input process
u. Particularly, if the properties of u establish that z(t) is
Markov and mean-square integrable on [0, T ], then condition
(20) can be verified using the same approach which was used to
prove the satisfaction of the Novikov condition in Lemma 1.1
of [Stummer, 1993]. Two practically important cases where the
Markov property of z holds justify the introduction of condition
(20). In one case the system (2) is driven by a deterministic
input u (the open loop control). The second case arises where
the input u is realized by a linear state feedback, and therefore,
the system (2) is a closed loop linear state-feedback control

system. In both cases, the solution x(t) of the system (2) is a
Markov process, and so is z(t).

Proof of Theorem 2 First we prove the “if” claim. We will
proceed by establishing a contradiction. Suppose (u, ψ, ȳ) is
not realizable, and therefore for any Q̄ of the form (9), condition
(12) fails. Owing to the argument based on the chain rule and
the assumptions and properties noted in the proof of Theorem 1,
this fact implies that

inf
Qw∈Pw

[

h(Qw‖P †,w) −E
Qw

[F ]
]

≥ d. (21)

Let us introduce an approximation of the quantity V ,

Vδ = logE
†,w exp(Fδ), (22)

Fδ ,−
1

2

∫ T

0

‖ψ(t) − C2x(t)‖Σ−1(t)dt+
r

1 + δr
,

r ,
1

2

∫ T

0

‖z(t)‖2dt, (23)

and δ > 0 is an infinitesimally small constant. Note that the
mappingFδ : Ω → R is bounded from above:Fδ ≤ r

1+δr ≤ 1
δ .

This property allows us to apply the variational formula for the
relative entropy mentioned above; e.g., see Dupuis and Ellis
[1997], Dai Pra et al. [1996]. When applied to the system (2)
and the risk sensitive cost (22), the variational formula yields

−Vδ = inf
Qw∈Pw

{

h(Qw‖P †,w) −E
Qw

[Fδ ]
}

. (24)

Together with our assumptions leading us to conclude that
(21) holds, this condition implies Vδ ≤ −d for all δ > 0,
i.e., Vδ is bounded from above uniformly in δ. Observe that
Fδ is monotone increasing as δ ↓ 0 and Fδ ↑ F a.s.. Then
Lebesgue’s Monotone Convergence Theorem yields V ≤ −d.
The contradiction with the condition that V > −d implies that
if (19) holds then (u, ψ, ȳ) must be realizable.

Conversely, to prove the “only if” claim of the theorem, sup-
pose (u, ψ, ȳ) is realizable. To prove that this fact implies con-
dition (19), we employ an approximation similar to that used in
the first part of the proof.

Let N > 0 be fixed, and define τN = inf{t ≤ T :
∫ t

0 ‖z‖2dt =

N} with τN = T if
∫ T

0 ‖z‖dt < N . Also let δ > 0 be an
infinitesimally small constant and define

Ṽδ,N = logE
†,weF̃δ,N , (25)

F̃δ,N :=−
f

1 + δf
+

1

2

[
∫ τN

0

‖z(t)‖2dt

]

,

f :=
1

2

∫ T

0

‖ψ(t) − C2(t)x(t)‖
2
Σ−1(t)dt, (26)

The quantity F̃δ,N is bounded from below uniformly in N ,
F̃δ,N ≥ − f

1+δf ≥ − 1
δ , so we can apply the variational formula:

−Ṽδ,N = inf
Qw∈Pw)

{

h(Qw‖P †,w) −E
Qw

[F̃δ,N ]
}

. (27)

Hence, since (u, ψ, ȳ) is realizable, there must exist Qw and a
sufficiently small ε > 0 such that
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d− ε > h(Qw‖P †,w) −E
Qw

[F ]

= h(Qw‖P †,w) −E
Qw

[F̃δ,N ] + E
Qw

[

δf2

1 + δf

]

≥ h(Qw‖P †,w) −E
Qw

[F̃δ,N ]

≥ inf
Qw∈Pw

{

h(Qw‖P †,w) −E
Qw

[F̃δ,N ]
}

=−Ṽδ,N .

That is, Ṽδ,N > −d+ ε for any sufficiently small ε > 0 and an
arbitrary N > 0.

Next we note that F̃δ,N ↓ F̃N a.s. and is monotone decreasing
as δ ↓ 0; here F̃N = −f+ 1

2

∫ τN

0 ‖z(t)‖2dt. Also, 0 ≤ eF̃δ,N ≤

exp
{

1
2

∫ τN

0
‖z(t)‖2dt

}

and

E
†,w

[

exp

{

1

2

∫ τN

0

‖z(t)‖2dt

}]

≤ eN/2 < +∞.

Therefore, by the Lebesgue’s Dominated Convergence Theo-
rem limδ↓0 Ṽδ,N = logE

†,w[eF̃N ] ≥ −d+ ε.

To conclude the proof, we note that F̃N ↑ F as N → ∞,
and F̃N ≤ F ≤ 1

2

∫ T

0 ‖z(t)‖2dt. Due to (20), the last in-
equality implies that the sequence of random variables eF̃N is
uniformly bounded from above by an integrable random vari-
able exp

[

1
2

∫ T

0
‖z(t)‖2dt

]

. Therefore, according Lebesgue’s

Monotone Convergence Theorem, eF is integrable and also

V = logE
†,w[eF ] = lim

N→∞
logE

†,w[eF̃N ] ≥ −d+ ε.

Since ε > 0 was chosen arbitrarily small, we have V > −d as
required.

5. CONCLUSIONS

The paper has presented a sufficient condition for realizability
of given a process triple u, ψ, ȳ (in which ψ and ȳ are coupled
by a Brownian motion) using perturbations of a linear stochas-
tic system. The class of admissible perturbations includes un-
certainties satisfying a relative entropy constraint. Under an
additional technical assumption, the proposed condition is also
necessary.

Our result establishes a connection between the realizability of
u, ψ, ȳ, on one hand, and a risk-sensitive tracking performance
of the nominal system and the size of admissible disturbances,
on the other hand. Such a connection is seen as an important
stepping stone towards obtaining more explicit and tractable
conditions. In a number of related robust control problems
involving relative entropy constraints of the form (8), it was
possible to evaluate risk-sensitive performance costs associated
with those problems in an explicit form. Therefore the result
of Theorem 2 sets a direction for further research into more
tractable conditions for realizability of stochastic systems. A
numerical approach [Kushner and Dupuis, 2001] to computing
the risk-sensitive realizability index V is also worth pursuing.
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