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Abstract: A model for the heart rate response to treadmill walking exercise is proposed
in this paper. The parameters of the model were experimentally identified which involved
subjects walking at different speeds. A 2-degree-of-freedom controller was then developed for
the regulation of the heart rate response during treadmill exercise. The controller consists of
a piecewise LQ and an H∞ sub-controllers. Experimental results demonstrated that the heart
rate of the subjects were regulated by the proposed controller.
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1. INTRODUCTION

In order to meet the metabolic demand during exercise, the
heart rate (HR) of an exerciser increases. Thus, knowing
how HR responds to exercise will improve our understand-
ing of exercise physiology. In addition, it may also be useful
for predicting cardiovascular disease mortality (Savonen
et al. [2006], Cole et al. [1999]). The understanding of HR
response may also lead to an improvement in developing
training protocols for athletics and more efficient weight
loss protocols for the obese, and in facilitating assessment
of physical fitness and health of individuals (Achten and
Jeukendrup [2003]). Furthermore, knowing the cardiovas-
cular system responses to the stress induced by physi-
cal exercise provides us another perspective on how this
system functions. For instance, this may give us some
measures for the prevention of cardiac failure from dialysis.

HR response during exercise have been widely studied,
e.g. Brodan et al. [1971], Hajek et al. [1980], Rowell
[1993], Coyle and Alonso [2001], Su et al. [2007]), among
them a number of models have been proposed. Broden et
al. Brodan et al. [1971] and Hajek et al. Hajek et al. [1980]
modelled the HR response from a regulation point of view.
Their models are reliable for short duration exercises, but
are not sufficient for explaining long duration exercises. As
shown in, e.g. Coyle and Alonso [2001], HR will continue
to increase during prolonged exercise. In reference (Su
et al. [2007]), exercising HR response was modelled by
a Hammerstein system 1 . Besides modelling, they also
studied the control of the HR response during exercise.

⋆ This work was supported by the Australian Research Council.
⋆⋆Corresponding author: Teddy M. Cheng (email: t.cheng@ieee.org)
1 A system consists of a static nonlinearly cascaded at the input of
a linear system.

The ability to control the HR during exercise is of impor-
tance in the design of exercise protocols for patients with
cardiovascular diseases and in developing rehabilitation
exercises to aid patients recovering from cardiothoracic
surgery. The control of heart rate response during exercise
has been reported in the references (Kawada et al. [1999],
Cooper et al. [1998], Su et al. [2007]). Among them, a
number of different control strategies or algorithms have
been successfully applied, e.g. classical PID control, H∞

control, and model reference control. Each has its merits or
disadvantages and therefore, it is interesting to investigate
the usefulness of other control algorithms and techniques
that have been developed by the control society.

The objective of this paper is twofold. First, a nonlinear
model is proposed to describe the HR response to tread-
mill walking exercise during both the exercising and the
recovery phases. Secondly, using the proposed model, we
develop a controller-using the treadmill’s speed as a control
variable-that regulates the HR during exercise.

2. THE MODEL

In this paper, we propose the following nonlinear state-
space control systems to model the HR response to tread-
mill walking exercise:

ẋ1(t) = −a1x1(t) + a2x2(t) + a2u
2(t)

ẋ2(t) = −a3x2(t) + φ(x1(t))

z(t) = x1(t)

φ(x1(t)) :=
a4x1(t)

1 + exp
(

−(x1(t) − a5)
)

(1)

where x(0) = [x1(0) x2(0)]T = 0, z(t) describes the
change in HR from rest, and a1, ..., a5 are positive scalars.
The control input u(t) represents the normalised speed of
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Age (yr) Height (cm) Weight (kg) BMI (kg/m−2)

mean 29.3 174 68.5 22.5

std 5.9 3.4 12.6 3.4

range 23–38 169–178 53–85 18–27

Table 1. Physical characteristics of the sub-
jects: age, height, weight, and BMI (Body Mass

Index)

the treadmill and it is normalised by 8 km/h, assuming
the maximum walking speed is 8 km/h. The unit of time
t is in minutes.

System (1) can be viewed as a feedback interconnected
system, i.e. x1 in the forward path and x2 in the feed-
back path. The component x1(t) can be viewed as the
change of HR due to the neural response to exercise,
including both the parasympathetic and the sympathetic
neural inputs (see e.g. Rowell [1993]). The component x2

is utilised in describing the complex slow-acting peripheral
effects from, e.g. the hormonal systems, the peripheral
local metabolism, and/or the increase in body temper-
ature, etc.. Generally, these effects cause vasodilatation
and hence HR needs to be increased in order to maintain
the arterial pressure (see McArdle et al. [2007])). So, the
feedback signal x2, which can be thought of as a dynamic
disturbance input to the x1 subsystem, is a reaction to the
peripheral local effects. By observing system (1), the input
u drives the system nonlinearly, describing the nonlinear
increase of the HR in response to the increase in walking
speed. It has been observed that there is a curvilinear
relationship between aerobic demand and walking speed
(see, e.g. McArdle et al. [2007]). The quadratic increase
in HR in response to an increase in walking speed was
observed in Johnson [2007].

2.1 Experimental Setup

The parameters in system (1) were identified from exper-
imental data. The setup of the experiment is described in
this section.

Subject: Six healthy male subjects were studied. The
physical characteristics of the subjects are given in Table 1.

Procedure: Each subject completed three exercise ses-
sions in separate occasions. In each session, a subject was
requested to walk on a treadmill at a given speed (5km/h,
6km/h, and 7km/h) for 15 minutes with a recovery period
of 15 minutes. After three sessions, each subject completed
the treadmill walking exercise at the three different speeds.

Data acquisition: In this study, the Powerjog fully mo-
torised medical grade treadmill was used. The HR of the
subjects was monitored by the wireless Polar system and
recorded by LabVIEW. To remove noises, the HR mea-
surements were filtered using the moving average with a
5-second window.

Parameter estimation: Using the measured HR data of
all subjects and the Levenberg-Marquardt method, the
parameters in system (1) were estimated. Since three sets
of input-output measurements were collected for each sub-
ject (where the input is the speed of the treadmill and
the output is the HR), there were 18 sets of input-output
measurements in total. To search for a parameter set that

Fig. 1. A Multi-input-multi-output system.

gives a good fit to all the measurements, we estimated the
parameters by using all the measurements simultaneously.
In other words, we estimated the parameters of the follow-
ing multi-input multi-output system (see Figure 1):

ẋ(t) = f(x(t), a,u(t))

z(t) = Cx(t), x(0) = 0
(2)

where x ∈ R
36, u = [u1 u2 . . . u18]

T ∈ R
18 and z =

[z1 z2 . . . z18]
T ∈ R

18 and a = [a1 a2 . . . a5]
T ∈ R

5. The
measurement matrix C was defined as:

Ci,j =

{

1 if j = 2i − 1

0 otherwise,
(3)

for i = 1, 2, . . . , 18 and j = 1, 2, . . . , 36. To make the
estimation more robust, the output zi(t) from the input
ui(t) was defined as zi(t) = (HRi(t)−74)/4, where HRi(t)
is the absolute HR at time t, 74 bpm is the average resting
HR for all the subjects (resting HR was estimated from
the 3-minute resting period before exercise), and 4 bpm is
a normalising factor.

For estimation, the objective function was chosen as

S(a) =

N
∑

i=1

(z(ti) − ẑ(ti, a))T (z(ti) − ẑ(ti, a)) (4)

where, for i = 1, 2, . . . , N , z(ti) is the measurement of
the output vector at time ti and ẑ(ti, a) is the output
of system (2) with the parameter vector a. With the
objective function (4), the Levenberg-Marquardt method
was used to determine an estimate of a which was denoted
as â := [â1 â2 . . . â5]

T (see, e.g. Bard [1974], Stortelder
[1996], Englezos and Kalogerakis [2001]). Based on a
linear approximate method (see e.g. Stortelder [1996]), an
approximate 100(1−α)% independent confidence interval
for each estimate is given by (âi − δai, âi + δai), for
i = 1, 2, . . . , 5, with

δai =

√

p

Nm − p
S(â)Fα(p, Nm − p)[A−1]i,i (5)

where Fα(p, Nm − p) denotes the upper α quantile for
Fishers F -distribution with p and Nm− p degrees of free-
dom and the scalar [A−1]i,i is the (i, i) diagonal element
of the inverse matrix A that is defined as

A :=

N
∑

i=1

G′(ti)C
′CG(ti), G(ti) :=

∂f

∂a

∣

∣

∣

∣

a=â,t=ti

. (6)

In this study, N = 180, m = 18 and p = 5. An α level
of 0.05 was used for obtaining the confidence intervals
of parameter estimates. Table 2 summaries the estimated
parameters of the model (1).

3. CONTROLLER DESIGN

In the second part of this paper, a controller design
is proposed for the regulation of HR. The controller
essentially controls the speed of the treadmill and in turn
controls the HR during treadmill exercise. System (1) is
first written in a state-space form as follows:
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Parameter estimates, â

(δa)
â1 â2 â3 â4 â5

1.84 24.32 6.36× 10−2 3.21× 10−3 8.32
(0.36) (4.36) (1.95× 10−2) (6.84 × 10−4) (0.44)

Table 2. Estimated parameter â and parameter
variation δa.

η̇(t) = Aη(t) + B1Φ(η1(t)) + B2g(u(t))

y(t) = Cη(t)
(7)

where

A =

[

−3.07 × 10−2 2.7 × 10−2

0 −1.06 × 10−3

]

, η =

[

η1

η2

]

,

B1 =

[

0
1

]

, B2 =

[

2.7 × 10−2

0

]

, C′ =

[

1
0

]

,

Φ(η1(t)) :=
8.03 × 10−4η1(t)

1 + exp
(

−15(η1(t) − 5.55 × 10−1)
) ,

g(u(t)) := u2(t).

(8)

To obtain (7), we have defined the normalised output
y(t) = η1(t) := x1(t)/15 (i.e. y(t) := (HR(t)−HRrest)/60).
The time unit of t in (7) is in seconds, instead of minutes
as in (1).

System (7) is a nonlinear system with nonlinearity Φ(η1)
and nonlinear control input g(u). To overcome the control
input nonlinearity, a transformed input

v(t) = g(u(t)) (9)

is defined. As for the nonlinear function Φ(η1), it can be
approximated by a piecewise linear function

γ(η1) =

{

0 if η1 ≤ 0.419

1.52 × 10−3η1 − 6.34 × 10−4 if η1 > 0.419.

(10)
In fact, γ(η1) is obtained by linearising the function Φ(η1)
at η1 = 0 and 0.5. As a result, system (7) can be approx-
imated by a piecewise affine system (see e.g. Rantzer and
Johansson [2000]).

In this paper, we adopt a two-degree-of-freedom (2-DOF)
controller consisting of a piecewise LQ feedforward and
a H∞ feedback controllers, as shown in Figure 2, for the
control and regulation of heart rate responses.

Feedback

Controller
Subject

Feedforward

Controller

(LQ)
+ ++

-

feedforward

feedback Approx. linear model

Fig. 2. Control configuration

3.1 LQ Feedforward Controller Design

First, we design a feedforward controller using the piece-
wise LQ optimal control technique of Rantzer and Johans-
son [2000]. In doing so, we also incorporate an integral
action in the controller, see e.g., Burl [1999].

Define two partitions of the state space as shown in
Figure 3:

X1 := {[η1 η2]
′ ∈ R

2
∣

∣ η1 < 0.419}

X2 := {[η1 η2]
′ ∈ R

2
∣

∣ η1 ≥ 0.419}.
(11)

Fig. 3. Partition of state space.

Next, define

Āi =

[

Ai 02×1 ai

−C 0 0
01×2 0 0

]

, B̄ =

[

B2

0
0

]

, η̄(t) =

[

η(t)
e(t)
1

]

(12)

for η ∈ Xi and i = 1, 2, where

A1 =

[

−3.07 × 10−2 2.7 × 10−2

0 −1.06 × 10−3

]

,

A2 =

[

−3.07 × 10−2 2.7 × 10−2

1.52 × 10−3 −1.06 × 10−3

]

,

a1 =

[

0
0

]

, a2 =

[

0
−6.39× 10−4

]

,

e(t) =

∫ t

0

(r − Cη(t))dt,

(13)

and r is the constant reference input. Therefore, we have

˙̄η(t) = Āiη̄(t) + B̄v(t), for η ∈ Xi

y(t) = C̄η̄(t).
(14)

where C̄ = [C 0 0]. Then, the control problem is to
minimise the following cost function:

J =

∫

∞

0

(η̄′(t)Q̄η̄(t) + v′(t)Rv(t))dt (15)

for any given Q̄ ≥ 0 and R > 0. In the control design, the
matrix Q̄ and the value of R were chosen as follows:

Q̄ =







0 0 0 0
0 0 0 0
0 0 0.5 0
0 0 0 0






, R = 350. (16)

The minimising control law is

v(t) = Liη̄(t), η ∈ Xi, i = 1, 2 (17)

where

L1 =
[

−8.8 × 10−1 −9.7 × 10−1 3.8 × 10−2 0
]

L2 =
[

−9.1 × 10−1 −1.0 3.8 × 10−2 1.9 × 10−2
]

.
(18)

The gains L1 and L2 (18) are obtained by using PWL-
Tool, a MATLAB Toolbox for Piecewise Linear Systems
(see Hedlund and Johansson [1999]).

In turn, the LQ feedforward controller is in the form:

˙̄η(t) = Āiη̄(t) + B̄v(t) + Brr, for η ∈ Xi

yr(t) = C̄η̄(t), v(t) = Liη̄(t)
(19)

where η̄(0) = [0 0 0 1]′, Br = [0 0 1 0]′ and r is
the reference input. In other words, the input to this
feedforward controller is the reference r and the output are
the feedforward control v(t) and the “smoothed” reference
yr(t). It is clear that the LQ controller is a switching
controller (see e.g. Savkin and Evans [2002]), here the
control law is chosen depending on the state η(t).
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3.2 H∞ Controller Design

Next, we design a feedback controller based on the H∞

control technique (see e.g. Petersen et al. [2000], Petersen
and Savkin [1999], Moheimani et al. [1998]). We first lin-
earise the system (7) and then formulate the control prob-
lem as a mixed sensitivity problem (see e.g. Skogestad and
Postlethwaite [1996], Zhou and Doyle [1998] for details).
In a mixed sensitivity problem, the idea is to choose some
weighing functions, namely W1(s), W2(s) and W3(s) to
satisfy the control objectives.

The system (7) was first linearised at x0 = [0.5 0.115]T ,
v0 = 0.452, and the transfer function of the linearised
model is given by

G(s) =
0.027s + 2.86 × 10−5

s2 + 0.0317s− 8.65 × 10−6
. (20)

Then, the weighting functions were chosen as

W1(s) =
0.1(s + 0.083)

(s + 8.33 × 10−5)
, W2(s) =

70(s + 6.25 × 10−4)

(s + 4.38)
,

W3(s) =
100(s + 0.066)

(s + 8.33)
.

(21)

The weighting function W1(s) is chosen as a high-gain
lowpass filter approximating an integral action in order
to ensure good tracking accuracy. A first-order high-pass
filter is chosen for W2(s) to limit the controller bandwidth
and magnitude. The weighting function W3(s) is chosen
to accommodate any multiplicative modelling error. The
inverse of the weighting functions Wi(s), i = 1, 2, 3, are
shown in Figure 4.

By using MATLAB Robust Control Toolbox, we then
obtain a robust controller
K(s) =

8.91 × 10−3s4 + 0.11s3 + 0.33s2 + 0.01s + 2.6 × 10−6

s5 + 9.1s4 + 6.43s3 + 0.42s2 + 4.61 × 10−4s + 3.56 × 10−8

(22)

and γ = 0.9 so that |S(jw)| ≤ γ/|W1(jw)|, |T (jw)| ≤
γ/|W3(jw)| and |K(jw)S(jw)| ≤ γ/|W2(jw)| for all ω.
The functions S and T are the sensitivity and the comple-
mentary sensitivity functions, respectively (see Figure 4).

4. CONTROLLER VERIFICATION

By using the control design presented in Section 3, a
controlled treadmill system was implemented for the heart
rate regulation (see Figure 5).

The Powerjog fully motorised treadmill was connected
to the controller via an RS232 serial port. The heart
rate was collected in a similar way as in the stage of
identification of the model (see Section 2.1). Except that
here the computer (LabVIEW) collected heart rate signal
from the wireless Polar system every 6 seconds. Also, an
exponential smoothing with filter coefficient α = 0.75 was
employed on-line (see Diggle [1990]).

As for the controller, it was implemented in LabVIEW.
The feedforward controller (19) was pre-computed offline,
whereas the robust feedback controller (22) was discretized
using the zero-order-hold method with a sampling period
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Fig. 4. Inverse weighting functions, sensitivity, complemen-
tary sensitivity, and loop gain.

Exerciser

Treadmill Controller

Heart

rate

Walking

speed

Controlled

Treadmill system

Fig. 5. Controlled Treadmill System.

T = 6 seconds. The control signal was then sent to the
treadmill via the serial port.

To validate the controller, the 6 subjects participated in
system identification were requested to exercise on the
treadmill and prescribed with 2 sets of pre-defined exercise
heart rate profiles. The goal was to regulate subjects’
heart rate according to the profile. The pre-defined heart
rate profiles may be viewed as prescribed training or
exercise protocols. The first profile had 3 10-minute stages
involving 2 heart rate levels, namely 100bpm and 115bpm.
The first 10-minute stage with heart rate 100bpm was
considered as a warm-up period, the second 10-minute
stage with heart rate 115bpm was the exercise period, and
the last stage with heart rate 100bpm was the cool-down
period.

The second exercise heart rate profile also includes the
warm-up, exercise and cool-down stages. The differences
between the first and the second profiles were: 1) the
warm-up period was 3-minute long with gradually increase
of heart rate to 110bpm from rest; 2) the heart rate
level during the exercise phase was 110bpm; 3) the cool-
down period was 7 minutes long with heart rate gradually
decreasing to the subjects’ recovery heart rate from the
exercise phase. As shown in Figure 6, the heart rate of
each subject closely followed the first exercise heart rate
profile and regulated at the pre-defined levels, i.e. 100 and
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115 bpm, by using the proposed controller. Similar results
were obtained for the second heart rate profile that are
shown in Figure 7.
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Fig. 6. Regulation of heart rate at 100bpm and 115bpm
for all 6 subjects.
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Fig. 7. Heart rate regulation at 110bpm for all 6 subjects
with gradually warm-up and cool-down periods.

5. CONCLUDING REMARKS

A nonlinear model describing the heart rate response to
the treadmill walking exercise was proposed. The proposed
model is a feedback interconnected system. The subsystem
in the forward path may be used to describe the neural
or the central response, whereas the feedback subsystem
may be utilised to describe the peripheral local response.
Moreover, the model would be useful in describing the
interactions between these two responses. Using the non-
linear model, a controller was developed for the regulation
of heart rate during treadmill exercise. The controller
consists of a piecewise LQ feedforward and an H∞ feed-
back controller. Experimental results demonstrated that
the proposed controller had the ability to regulate heart
rate for all the experimental subjects. By applying the
controller, the heart rate of the subjects could follow two
pre-defined heart rate profiles that may represent two
kinds of exercise protocols.

REFERENCES

J. Achten and A. E. Jeukendrup. Heart rate monitoring:
Applications and limitations. Sports Med., 33(7):517–
538, 2003.

Y. Bard. Nonlinear Parameter Estimation. Academic
Press, New York and London, 1974.

V. Brodan, M. Hajek, and E. Kuhn. An analog model of
pulse rate during physical load and recovery. Physiologia
Bohemoslovaca, 20:189–198, 1971.

J. B. Burl. Linear Optimal Control: H2 and H∞ methods.
Addison Wesley, California, 1999.

C. R. Cole, E. H. Blackstone, F. J. Pashkow, C. E. Snader,
and M. S. Lauer. Heart rate recovery immediately after
exercise as a predictor of mortality. The New England
Journal of Medicine, 341(18):1351–1357, 1999.

R. A. Cooper, T. L. Fletcher, and R. N. Robertson.
Model reference adaptive control of heart rate during
wheelchair ergometry. IEEE Transactions on Control
Systems Technology, 6(4):507–514, 1998.

E. F. Coyle and G. Alonso. Cardiovascular drift during
prolonged exercise: New perspectives. Exercise and
Sports Science Review, 29:88–92, 2001.

P. J. Diggle. Time Series: A Biostatistical Introduction.
Oxford University Press, Oxford, 1990.

P. Englezos and N. Kalogerakis. Applied Parameter Es-
timation for Chemical Engineers. Marcel Dekker, New
York, 2001.

M. Hajek, J. Potucek, and V. Brodan. Mathematical
model of heart rate regulation during exercise. Auto-
matica, 16:191–195, 1980.

S. Hedlund and M. Johansson. PWLTool, a MATLAB
toolbox for piecewise linear system. Technical report
ISRN LUTFD2/TFRT–7582–SE, Department of Auto-
matic Control, Lund Institute of Technology, Sweden,
1999.

A. T. Johnson. Biomechanics and Exercise Physiology:
Quantitative Modeling. CRC Press, Boca Raton, FL,
2007.

T. Kawada, G. Sunagawa, H. Takaki, T. Shishido,
H. Miyano, H. Miyashita, T. Sato, M. Sugimachi, and
K. Sunagawa. Development of a servo-controller of heart
rate using a treadmill. Japanese Circulation Journal, 63:
945–950, 1999.

W. D. McArdle, F. I. Katch, and V. L. Katch. Exercise
Physiology: Energy, Nutrition & Human Performance.
Lippincott Williams & Wilkins, Philadelphia, PA, 6
edition, 2007.

S. O. R. Moheimani, A. V. Savkin, and I. R. Petersen. Ro-
bust filtering, prediction, smoothing, and observability
of uncertain systems. IEEE Transactions on Circuits
and and Systems - I: Fundamental Theory and Applica-
tions, 45(4):446–457, 1998.

I. R. Petersen and A. V. Savkin. Robust Kalman Filter-
ing for Signals and Systems with Large Uncertainties.
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