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Abstract: In this work we focus on control of MIMO LTI plants and explore the potential
benefits of replacing a traditional diagonal non-networked control architecture with a networked
full MIMO one. Diagonal terms of the networked MIMO architecture employ transparent links,
whereas the off-diagonal terms use communication channels which are subject to signal-to-noise
ratio constraints. Within this setup, we show how to design LTI coding systems which optimize
overall performance. Unsurprisingly, for high-quality channels the full MIMO architecture is
preferable to decentralized architectures. However, our analysis reveals that the achievable
performance in the networked situation may become arbitrarily poor, if the signal-to-noise
ratio constraints in the communication links are sufficiently severe. In these cases, traditional
decentralized controller structures are preferable. In the present work, we limit our analysis
to the two-input two-output case and illustrate our results for networked control systems with
bit-rate limited communication channels.

Keywords: Control over networks, control under communication constraints, decentralization.

1. INTRODUCTION

Practical control systems often use structurally con-
strained controllers such as diagonal or triangular ones
(see, e.g., Salgado and Conley (2004); Skogestad and
Postlethwaite (1996)). The reasons for this choice are
manyfold and include ease of design, simplified tuning,
and implementation related issues such as cabling or geo-
graphic plant distribution. Although it is well known that
restricting the controller architecture may constrain the
achievable performance (see, e.g., Goodwin et al. (2005);
Kariwala (2007); Silva et al. (2007)), there exist situations
where the implementation of centralized controllers is not
feasible. For this reason, there has been ongoing interest
in the design of decentralized control systems (see, e.g.,
Sandell et al. (1978); Hovd and Skogestad (1994); Campo
and Morari (1994); Sourlas and Manousiousthakis (1995);
Gündeş and Kabuli (2001); Rotkowitz and Lall (2006)).
We note, however, that this is not an easy task. Even
basic notions such as stability become non trivial in a
decentralized framework (Wang and Davidson (1973)).

With the development of modern communication net-
works, low level networked control loops have become a
reality (see, e.g., Antsaklis and Baillieul (2007); Hespanha
et al. (2007)). The topic of networked control systems
(NCS’s) is a research area that has received significative
attention during the last years. In fact, many successful
controller design procedures that take communication con-
straints into account, have been proposed (see, e.g., Nair
et al. (2007); Schenato et al. (2007) and the references in
Hespanha et al. (2007)).

In the context of decentralized control systems, networks
can play significative roles. Indeed, it is easy to envisage
decentralized control architectures that, when enriched

with additional communication links, may provide en-
hanced performance. This may (partially) overcome the
limitations that arise as a consequence of the controller
structure constraint. For example, Ishii and Francis (2002)
showed that the set of plants that are stabilizable by
decentralized architectures can be enlarged by means of
appropriate communication resources usage. Also, Rawl-
ings and Stewart (2007) have provided evidence that, by
exploiting the possibility of transmitting large packets (as
made feasible by modern networks such as Ethernet), one
can recover centralized performance in an architecture
where different agents communicate over a network. Other
relevant results can be found in Yüksel and Başar (2007);
Matveev and Savkin (2005); Jiang and Voulgaris (2007).

In this paper, we consider the control of MIMO LTI sys-
tems for which a decentralized controller has been success-
fully designed. We investigate the possible benefits of en-
riching the decentralized control structure with additional
communication channels. These channels allow one to im-
plement full MIMO (i.e., centralized) controllers, where
the off-diagonal terms communicate through non ideal
channels. Within this setup, we show, for a given MIMO
controller, how to design LTI coding systems that optimize
overall performance. Unsurprisingly, for high-quality chan-
nels the networked MIMO architecture outperforms the
decentralized one. However, an interesting finding is that,
in some situations, the networked architecture will perform
better than the decentralized one only if the channels
are extremely reliable. Our work builds upon the ideas
presented in Goodwin et al. (2008).

The remainder of this paper is organized as follows.
Section 2 presents the networked architecture of interest.
Section 3 provides analysis guidelines. Section 4 shows
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how to synthesize optimal coding systems. Illustrative
examples are provided in Section 5. Section 6 draws
conclusions.

Notation: We use standard vector space notation for sig-
nals, i.e., x denotes {x(k)}k∈N0

. We also use z as both the
argument of the z-transform and as the forward shift op-
erator, where the meaning is clear from the context. Given

any matrix, (·)H and (·)T denote conjugate transposition
and transposition, respectively. Given any complex scalar,
|·| denotes magnitude. I refers to the identity matrix and
εi to the i-th element of the canonical basis in R

n.

The set of all n×m proper real rational transfer functions
is denoted by Rn×m. The subset of Rn×m containing all
stable minimum phase and biproper transfer functions is
denoted by Un×m

∞ . Every A(z) ∈ Rn×m with no poles
on the unit circle belongs to Ln×m

2 (see, e.g., Morari and
Zafiriou (1989)). If this is the case, then we define the
2−norm of A(z) via

||A(z)||22 , trace

{

1

2π

∫ π

−π

A(ejω)HA(ejω)dω

}

.

2. PARTLY NETWORKED MIMO CONTROL

As outlined in the Introduction, we will consider the
control of a plant model, G(z) ∈ Rn×n, for which a
decentralized controller is available. We are interested in
exploring the possible benefits of replacing this control
architecture by a networked full MIMO one. For simplicity,
we consider n = 2 in the remainder of this paper. We
assume that an admissible 1 full MIMO controller, say

C(z) =

[

C11(z) C12(z)
C21(z) C22(z)

]

∈ R2×2,

has already been designed for G(z). The diagonal terms
of this controller are implemented without communication
constraints, but the off-diagonal terms communicate using
non transparent communication links. We will refer to this
control architecture as a partially networked one.

We will focus on a situation where the non transparent
communication links comprise a perfect reconstruction
coder-decoder pair 2 , and a fixed signal-to-noise ratio
additive noise channel (see Fig. 1). In that figure, Fi(z) ∈
R1×1 is the i-th (i ∈ {1, 2}) coder transfer function, vi is
the i-th channel input and wi is the i-th channel output.
These signals are related via

wi = vi + qi,

where qi is the i-th channel noise. Each noise sequence is
considered white, having variance 0 ≤ σ2

i < ∞ and power
spectral density Σi(e

jω) = σ2
i , ∀ω ∈ [−π, π]. A key feature

of our model is that each channel has a fixed signal-to-noise
ratio. This means that σ2

i is not a given constant, but is
proportional to the variance of the channel input (namely,
proportional to σ2

vi
). We define the associated i-th channel

signal-to-noise ratio as

γi ,
σ2

vi

σ2
i

∈ R
+
0 . (1)

1 i.e., an internally stabilizing controller that defines a well possed
control loop (see,e.g., Zhou et al. (1996); Goodwin et al. (2001)).
2 This guarantees that, save for the additive channel noise and
the signal-to-noise ratio constraint, the communication links are
transparent.

Fi(z)−1
vimi

qi

Fi(z)
ni

channel

wi

Fig. 1. i-th communication link.

We also assume that both channel noises are mutually
uncorrelated.

The channel model described above has been used very
successfully in the signal processing literature to model bit
rate limited channels (see, e.g., Jayant and Noll (1984);
Schreier and Temes (2004)). It has also been applied to
the study of NCS architectures, as described in Xiao et al.
(2003); Goodwin et al. (2008).

The NCS which results from employing the links described
above to implement the off-diagonal terms of C(z), can be
visualized as in Fig. 2. In that figure, u = [u1 u2]

T is the
plant input, y = [y1 y2]

T is the plant output, r = [r1 r2]
T

is the reference sequence, and e = [e1 e2]
T denotes the

tracking error, i.e.,

e , r − y.

In the remainder of this paper we will show how to choose
F1(z) and F2(z) so as to minimize the variance of the
tracking error. To that end, we will assume that the
reference r is a zero mean wide sense stationary process,
uncorrelated to q, having power spectral density Σr(e

jω) ,

Ωr(e
jω)Ωr(e

jω)H , where Ωr(z) ∈ R2×2 is a stable spectral
factor.

3. ANALYSIS

This section provides analysis guidelines for the NCS
architecture described in Section 2. As a byproduct, we
will show that, in some cases of interest, the advantages
of a full MIMO controller design can be void due to the
communication constraints that appear in the partially
networked implementation.

From Fig. 2 it follows that the tracking error e satisfies

e = S(z)r − Sd(z)F (z)q, (2)

where

F (z) , diag {F1(z), F2(z)}
and

S(z) , (I + G(z)C(z))−1, Sd(z) , S(z)G(z).

Given the model for q and r, (2) implies that the variance
of the tracking error is given by

σ2
e = ||S(z)Ωr(z)||22 +

2
∑

i=1

σ2
i ||Sd(z)εiFi(z)||22 , (3)

where σ2
i , i ∈ {1, 2}, depends on v (recall (1)). From Fig. 2

one has that v1 and v2 satisfy

v1 = F1(z)−1C12(z)εT
2 (S(z)r − Sd(z)F (z)q) ,

v2 = F2(z)−1C21(z)εT
1 (S(z)r − Sd(z)F (z)q) .

It thus follows that
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C11(z)

C12(z)

C21(z)

C22(z)

F1(z)−1

F2(z)−1 F2(z)

F1(z)

e1

e2

r1

r2

v2

v1

q1

q2

u1

u2

y1

y2

G(z)

−

−

Link 2

Link 1

Fig. 2. Partly networked MIMO control architecture.

σ2
vi

σ2
i

=
||Ai(z)Ωr(z)||22

σ2
i

+

2
∑

j=1

σ2
j

σ2
i

||Ai(z)G(z)F (z)εj ||22 ,

(4)

where

A1(z) , F1(z)−1C12(z)εT
2 S(z),

A2(z) , F2(z)−1C21(z)εT
1 S(z).

Equation (4) allows one to establish conditions that guar-
antee the mean square stability (MSS) of the NCS under
study (i.e., conditions that guarantee that the variance
matrices of the state vectors of all the involved systems are
positive semi-definite and remain bounded as time goes to
infinity):

Theorem 1. (MSS). The NCS described above is MSS if
and only if both F1(z) and F2(z) belong to U1×1

∞ ,

γ1 > B1 ,
∣

∣

∣

∣C12(z)εT
2 Sd(z)ε1

∣

∣

∣

∣

2

2
, (5)

γ2 > B2 ,
∣

∣

∣

∣C21(z)εT
2 Sd(z)ε2

∣

∣

∣

∣

2

2
, (6)

and

(γ1 − B1) (γ2 − B2) >

||A1(z)G(z)F (z)ε2||22 ||A2(z)G(z)F (z)ε1||22 . (7)

Proof. Since Ωr(z) is stable, we have that MSS is equiv-
alent to having an internally stable feedback system (in
the standard sense) and 0 ≤ σ2

i < ∞, i ∈ {1, 2} (see,
e.g., Söderström (1994)). Since C(z) is assumed to be an
admissible controller for G(z), internal stability is equiv-
alent to F1(z), F2(z) ∈ U1×1

∞ (see, e.g., Goodwin et al.
(2001)). It remains to prove that (5)-(7) are equivalent to
0 ≤ σ2

i < ∞, i ∈ {1, 2}.
Equating (4) to γi, and using the definition of Ai(z), one
obtains that

γi − Bi =

||Ai(z)Ωr(z)||22
σ2

1

+

2
∑

j=1
j 6=i

σ2
j ||Ai(z)G(z)F (z)εj||22

σ2
i

. (8)

Solving (8) for σ2
i , it follows that

σ2
i = ∆−1

((

γj − ||Aj(z)G(z)F (z)εj||22
)

||Ai(z)Ωr(z)||22
+ ||Aj(z)Ωr(z)||22 ||Ai(z)G(z)F (z)εj ||22

)

, (9)

where j ∈ {1, 2}, j 6= i, and

∆ =
(

γ1 −
∣

∣

∣

∣C12(z)εT
2 Sd(z)ε1

∣

∣

∣

∣

2

2

)

×
(

γ2 −
∣

∣

∣

∣C21(z)εT
2 Sd(z)ε2

∣

∣

∣

∣

2

2

)

−

||A1(z)G(z)F (z)ε2||22 ||A2(z)G(z)F (z)ε1||22 . (10)

Using the definition of Ai(z), the result follows directly
from (8)-(10). �

It is illustrative to note that, as long as F1(z), F2(z) ∈
U1×1
∞ , condition (5) (resp. (6)) is necessary and sufficient

for MSS when q2 = 0, i.e., when γ2 → ∞ (resp. when
γ1 → ∞). This means that conditions (5)-(6) arise when
the channels do not interact. On the other hand, for
finite γi’s both channels interact through the plant and
controller and hence, (5)-(6) are no longer sufficient for
MSS, and (7) is required. Indeed, if both C(z) and G(z)
are anti-diagonal (and hence the channels do not interact),
then (7) is trivially satisfied if (5)-(6) hold.

An immediate consequence of Theorem 1 is the following:

Corollary 2. (Arbitrary poor performance). Consider the
NCS described above with F1(z), F2(z) ∈ U1×1

∞ . Assume
that (5)-(7) are satisfied and define

S ,
{

(γ1, γ2) ∈ R
2 : γ1 and γ2 achieve equality in (7)

}

.

Then,

lim
(γ1,γ2)→(γ̄1,γ̄2)

σ2
e = ∞

for any C(z), and any choice for F1(z) and F2(z).

Proof. Immediate from the definition of S and expres-
sions (3) and (9). �

Although very simple, Corollary 2 has an interesting impli-
cation: For any given full MIMO controller, and no matter
how the coding system is chosen, there exist sufficiently
poor channels which render the performance of the result-
ing partially networked closed loop arbitrary bad. In these
cases, any stabilizing decentralized controller (that makes
no use of the non-transparent channels) will provide better
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performance. As will become clear in Section 5, the channel
signal-to-noise ratios do not need to be artificially low for
the MIMO controller to perform poorly. Indeed, depending
on plant and controller features, the left hand side of (7)
may be large, thus requiring high signal-to-noise ratios to
be satisfied.

4. OPTIMAL CODER DESIGN

In this section we show how to design optimal coders F1(z)
and F2(z) under a mild simplifying assumption.

From (8) one can immediately conclude that, provided (5)-
(7) are satisfied,

σ2
i ≥ ||Ai(z)Ωr(z)||22

γi − Bi

≥ 0.

As a consequence (recall (3)),

σ2
e ≥ ||S(z)Ωr(z)||22 +

2
∑

i=1

||Ai(z)Ωr(z)||22 ||Sd(z)εiFi(z)||22
γi − Bi

. (11)

If γ1 and γ2 are high enough, then the bound in (11) will
be tight. If this is the case, then the coders that minimize
σ2

e also minimize

J ,

2
∑

i=1

||Ai(z)Ωr(z)||22 ||Sd(z)εiFi(z)||22
γi − Bi

.

We will denote the coders that minimize J by F o
1 (z) and

F o
2 (z), i.e.,

(F o
1 (z), F o

2 (z)) , arg min
F1(z)∈U1×1

∞

F2(z)∈U1×1

∞

J ;

the corresponding (minimal) value of J will be denoted
by Jo. Note that the constraints on F1(z) and F2(z) arise
from MSS considerations (recall Theorem 1).

The next theorem characterizes F o
1 (z), F o

2 (z) and Jo.

Theorem 3. (Optimal Coders). The optimal coders F o
i (z),

i ∈ {1, 2}, are such that

∣

∣F o
i (ejω)

∣

∣

4
= αi

Mi(e
jω)Mi(e

jω)H

(Sd(ejω)εi)
H

Sd(ejω)εi

,

where

M1(z) , C12(z)εT
2 S(z)Ωr(z),

M2(z) , C21(z)εT
1 S(z)Ωr(z),

and αi is an arbitrary positive constant. With this choice,

Jo =
2

∑

i=1

(

∫ π

−π
Di(e

jω)dω
)2

4π2 (γi − Bi)
,

where

Di(e
jω) ,

√

Mi(ejω)Mi(ejω)H (Sd(ejω)εi)
H Sd(ejω)εi .

Proof. The definition of the 2−norm allows one to con-
clude that, for every X(z) ∈ Ln×1

2 , the following identities
hold:

||X(z)||22 =
∣

∣

∣

∣X(z−1)T
∣

∣

∣

∣

2

2
=

∣

∣

∣

∣

∣

∣

∣

∣

√

X(z−1)T X(z)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (12)

Equation (12) and the Cauchy Schwartz inequality imply
that, for every i ∈ {1, 2},

4π2 ||Ai(z)Ωr(z)||22 ||Sd(z)εiFi(z)||22

= 4π2

∣

∣

∣

∣

∣

∣

∣

∣

√

Ai(z)Ωr(z) (Ai(z−1)Ωr(z−1))
T

∣

∣

∣

∣

∣

∣

∣

∣

2

2

×
∣

∣

∣

∣

∣

∣

∣

∣

√

Fi(z−1)T (Sd(z−1)εi)
T

Sd(z)εiFi(z)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≥
(

∫ π

−π

√

Mi(ejω)Mi(ejω)H (Sd(ejω)εi)
H

Sdεi(ejω) dω

)2

,

(13)

where we have used the definitions of Mi(z) and Ai(z).
In (13), equality holds if and only if there exists αi ∈ R

+

such that
√

Ai(ejω)Ωr(ejω) (Ai(ejω)Ωr(ejω))
H

=

1√
αi

√

Fi(ejω)H (Sd(ejω)εi)
H

Sd(ejω)εiFi(ejω),

for every ω ∈ [−π, π]. Since Bi does not depend on F1(z)
or F2(z), both results are now immediate. �

Theorem 3 shows how to synthesize coding systems that
minimize the impact of the communication links on overall
closed loop performance. An interesting feature of the
proposed filters is that they do not depend on the channel
signal-to-noise ratios. This allows one to conjecture that
the optimal filters will perform well for a large class
of communication channels. Moreover, our result opens
the possibility of investigating optimal communication
resource allocation schemes, as discussed in, e.g., Xiao
et al. (2003); Quevedo et al. (2007); Ishii and Hara (2006).

5. DESIGN STUDIES

This section illustrates the results in this paper with
two examples that employ bit rate limited channels. We
assume that each channel is able to transmit bi bits per
sampling interval, and that a bi-bit uniform quantizer is
employed to quantize vi prior to transmission. In this
context, it is well known that one can use the model
described in Section 2 to model quantization noise, with a
channel signal-to-noise ratio given by

γi = k−1
i

(

2bi − 1
)2

. (14)

(see, e.g., Jayant and Noll (1984); Goodwin et al. (2008);
Xiao et al. (2003)). In (14), ki is a constant that depends
on the assumed statistics of vi and on the quantizer
parameters. We choose a quantizer dynamic range equal
to ασvi

, 3 and assume that vi is Gaussian, that overflow
is rare, and that qi is uniformly distributed. Under these
conditions, ki = α2/3 (see Jayant and Noll (1984) for the
details).

For simplicity, we consider channels with equal bit rates,
i.e., b1 = b2 = b, 4 and take the sampling interval as
1[s] (in both channels). In the sequel, we will consider

3 Usually, α = 4 (Jayant and Noll (1984)).
4 One can envisage alternative bit allocation schemes: For example,
given a total budget of bT bits, one can choose b1 and b2 so as to
minimize J , while respecting bT = b1 + b2 (we refer the reader to
Jayant and Noll (1984) for details).
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fractional bit rates to illustrate our theoretical analysis.
We also include simulation results that use actual b-bit
uniform quantizers in both channels and, of course, only
integer bit rates are then considered.

Example 4. We first consider the following simple plant
model:

G1(z) =

[

0.6
(z−0.8)

0.4
(z−0.8)

1
(z−0.5)

1
(z−0.5)

]

.

For this plant we synthesize the decentralized controller

Cd1(z) =

[

1.3333(z−0.8)
(z+0.8)(z−1) 0

0 0.8(z−0.5)
(z+0.8)(z−1)

]

,

and the full MIMO controller

C1(z) =

[

5(z−0.8)
z−1

−2(z−0.5)
z−1

−5(z−0.8)
z−1

3(z−0.5)
z−1

]

.

We also assume that the reference description is given by

Ωr(z) =
0.0049627(z + 0.9934)

(z2 − 1.97z + 0.9802)
I,

and that α = 4.

Fig. 3 shows the tracking error variance in the partially
networked MIMO architecture as a function of the per-
channel bit-rate b in several situations: “Analytical no
coding” refers to the performance predicted by (3) and (9)
when no coding is employed; “Empirical no coding” refers
to simulated 5 performance when no coding is considered;
“Analytical opt. coding” and “Empirical opt. coding” refer
to analytical and simulated performance when the coders
suggested by Theorem 3 are employed. For comparison
purposes, Fig. 3 also shows the non networked full MIMO
performance (“Ideal full MIMO”) and the performance
achieved when using Cd1(z) (“Decentralized”). The results
allow one to conclude that, in this case, the benefits of cod-
ing are significative. Indeed, for b = 4 and no coding, the
performance achieved by the partially networked MIMO
controller is more than 5 times worse that the ideal full
MIMO performance. On the other hand, if optimal coding
is employed, then the performance deterioration is only
3.5%. We also note in passing that the match between the
predictions of our model and the results of non idealized
simulations is remarkably good.

As expected, non-networked full MIMO performance is
recovered as b → ∞, irrespective of the coders used.
Moreover, it is apparent that the non coded networked
full MIMO architecture should be preferred to the decen-
tralized one for b > 3.36. On the other hand, the optimally
coded networked MIMO architecture provides significant
improvement in performance for b > 3.20, when compared
to the decentralized architecture. It is also interesting to
note that, if b → 3.07, then the performance becomes arbi-
trary poor no matter what the coding is. This is consistent
with Corollary 2 as straightforward calculations reveal. �

We next examine a second example, where the plant is
much harder to control.

5 The simulations use actual b-bit uniform quantizers in both
channels. For each b the results correspond to the average of 200
simulations (each one 105 samples long and using a different reference
realization).
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Fig. 3. Tracking error variance as a function of the per-
channel bit rate (Example 4).
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Example 5. (Distillation process). We consider a classical
2 × 2 model of a distillation process, as described in
Skogestad and Postlethwaite (1996). Assuming properly
scaled variables and a zero order hold at the plant input,
it is possible to derive the following discrete time model:

G2(z) =
1

z − 0.9868

[

1.1629 −1.1444
1.4331 −1.4516

]

.

Although simple in appearance, this plant is extremely
difficult to control. This is due to the fact that it is almost
singular (Skogestad and Postlethwaite (1996)).

For the full MIMO controller we use

C2(z) =
z − 0.9868

z − 1

[

30.1564 −23.7729
29.7712 −24.1582

]

,

and for the decentralized controller we use

Cd2(z) =

[

0.261(z−0.734)
(z−1) 0

0 −0.375(z−0.6979)
(z−1)

]

.

We note that Cd2(z) is a discretized version of a carefully
tuned MIMO PI controller for G2(z), as proposed in Sko-
gestad and Postlethwaite (1996). The reference description
is assumed to be given by Ωr(z) = 0.1(z−0.9)−1I, and we
take α = 5. 6

6 For this plant, saturation may compromise loop stability even
when transparent channels are employed. To avoid this, we extended
the quantizer dynamic range so that quantizer overflow (i.e., satura-
tion) probability becomes completely negligible.
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Fig. 4 shows the partially networked MIMO tracking error
variance as a function of the per-channel bit-rate in the
same cases as those in Figure 3. The same qualitative
behavior as in Example 4 is observed. However, the per-
formance gains arising from coding are negligible in this
case. This is due to the fact that the optimal coders have
an almost flat frequency response.

An interesting feature of this example is that the perfor-
mance achieved by the networked full MIMO controller
may become significatively worse than the decentralized
performance for relatively high bit rates (namely, for b →
7.15). Again, this is consistent with Corollary 2 and can
be easily visualized when looking at (7). In this case, (7)
leads to (γ1−1.1607 ·103)(γ2−1.1607 ·103) > 1.4274 ·106,
i.e., only relative high signal-to-noise ratios (bit rates) are
allowable. �

6. CONCLUSIONS

This paper has studied a partially networked MIMO con-
trol architecture aimed at improving the performance of
standard decentralized control loops. In this context, and
assuming a given MIMO controller design, we have shown
how to design LTI coding systems that optimize overall
closed loop performance. An interesting byproduct of our
analysis is that, in some cases, the additional channels need
to be of high quality if the partially networked architecture
is to outperform a given decentralized design. This opens
the question of how to actually design partially networked
MIMO controllers. This is the subject of future study,
together with extensions to the n × n case.
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S. Yüksel and T. Başar. Communication constraints for
decentralized stabilizability with time-invariant policies.
IEEE Trans. on Automatic Control, 52(6):1060–1066,
2007.

K. Zhou, J.C. Doyle, and K. Glover. Robust and optimal
control. Prentice Hall, Englewood Cliffs, N.J., 1996.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8049


