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Abstract: In this paper, we develop a global set stabilization method for the attitude control
problem of spacecraft system based on quaternion. The control law which uses both optimal
control and finite-time control techniques can globally stabilize the attitude of spacecraft system
to an equilibrium set. First for the kinematic subsystem, we design a virtual optimal angular
velocity. Then for the dynamic subsystem, we design a finite-time control law which can force the
angular velocity to track the virtual optimal angular velocity in finite time. It is rigorously proved
that the closed loop system satisfies global set stability. The control method is more natural and
energy-saving. The effectiveness of the proposed method is demonstrated by simulation results.

1. INTRODUCTION

Spacecraft requires attitude control system to provide
attitude-maneuver, tracking, and pointing. However, due
to inherent nonlinearity of attitude dynamic, control sys-
tem design is a complex undertaking. Various nonlinear
control methods have been proposed for solving the atti-
tude stabilization problem. These methods include optimal
control method(Kang (1995); Krstic et al. (1999); Park
(2005); Debs et al. (1969); Tsiotras (1996b)) and other
methods such as Lyapunov control method(Fragopoulos
et al. (2004); Joshi et al. (1995)), sliding mode control
method (Vadali (1986)), H-infinity control method (Kang
(1995)), finite-time control method(Ding et al. (2007)),
etc.

Optimal control of rigid spacecraft has a long history
stemming. The main objective of optimal control is to
determine a control law that will cause a process to satisfy
physical constraints and minimize a performance criterion.
Usually, the optimal control results in the literature can
be mainly classified into the following two methods: direct
optimal control method and inverse optimal method.

The former is to first select a performance index and
then derive an optimal control law from it. Usually, the
performance index includes a penalty term on the control
effort. It is a very difficult thing to get the solution
by solving the associated Hamilton-Jacobi equation. The
latter is to first derive a control law, then construct a
corresponding performance index for it.

Considering both of the above mentioned methods, the
main obstruction stems from the difficulties in either
solving complex differential equations for the former or
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constructing complex performance indices for the latter.
Hence, some researchers have also developed optimal con-
trol laws only for dynamic subsystem(Debs et al. (1969))
or kinematic subsystem (Tsiotras (1996b)).

To enhance the flight envelope of a spacecraft system,
global control result is always highly desirable for the
attitude control problem. However, for those global sta-
bilization results in the literature including Joshi et al.
(1995); Park (2005); Vadali (1986), there exist two main
problems.

One problem is that rigorously speaking, they are not
global results. It is well known that to obtain a global
attitude stabilization result, usually quaternion is used
to ensure the global attitude description. Note that, the
spacecraft attitude system belongs to multiple equilib-
ria systems. For each system based on quaternion, there
should have two equilibria. Observing these global attitude
stabilization methods, one can find that the attraction do-
main of one of the equilibria is the global state space except
one point. According to this fact, it should be pointed out
that most of the global attitude stabilization results can
not be really considered as global results. In fact, these
results can be considered as almost global stabilization
results like Chaturvedi et al. (2006). Moreover, for those
methods using continuous feedbacks (Joshi et al. (1995);
Park (2005)), it is rigorously proved in Bhat et al. (2000b)
that the spacecraft attitude can not be globally stabilized
through continuous feedback.

Another problem is that these control laws are not energy-
saving. One reason for this is due to the fact that for any
given initial value, the system states have to be driven to
the desired equilibrium even if they are much closer to
the other equilibrium of the system. This phenomenon is
called “unwinding” phenomenon in Bhat et al. (2000b).
Therefore, these nonlinear controllers show some stiffness
and are not energy-saving for attitude control (See Section
2.2 for more detail discussion).
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To solve the above mentioned problems, one should first
consider a question: Can both of the equilibria in the
spacecraft attitude control system based on quaternion
be designed to be stable under the same controller? The
answer is positive. These problems may be overcome if
we consider the stabilization of both equilibria instead of
only one equilibrium. As pointed out in Rouche et al.
(1977), the attractivity or asymptotic stability of a set
are natural concepts fitting many practical applications.
In this case, the stability involved is the stability with
respect to a set (lin et al. (1994); Lin et al. (1995);
Rouche et al. (1977)), which we call set stability here in
agreement with Lin et al. (1995). In Fragopoulos et al.
(2004), by constructing a Lyapunov function, a global
control law has been derived for the set stabilization of
the spacecraft attitude. However, the control law obtained
is not continuous in the states and may cause chattering
phenomenon.

In this paper, we concentrate on the design of global set
stabilization law. We also consider the optimal control
design only on the kinematic subsystem. First, by solving
a Hamilton-Jacobi equation we try to develop an optimal
angular velocity for the kinematic subsystem regarding the
angular velocity as an input. However, the optimal solution
is not unique. To get a global solution, we have to employ a
special control law which can be regarded as a combination
of open loop control and closed loop control. This optimal
angular control law is only discontinuous in initial values,
which will not cause chattering phenomenon in the closed
loop system. Secondly, we design a global finite-time
control law for dynamic subsystem. The attitude can
be stabilized to a set consisting of two equilibria. We
show that the control method avoids the “unwinding”
phenomenon and is energy-saving. The effectiveness of the
proposed method is illustrated by simulations.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

Before designing the control law, we first give some defini-
tions and lemmas.

Consider the system

ẋ = f(x), (1)

where x ∈ Rn , f : Rn → Rn is continuous.

Definition 1:(Bhat et al. (2005, 2000a)) The equilibrium
x = 0 of system (1) is finite-time stable if it is Lyapunov
stable and finite time convergent in a neighborhood of
U0 ⊆ Rn of the origin. The finite-time convergence means
the existence of a function T : U0\{0} → (0,+∞), such
that, ∀x0 ∈ U0 ⊂ Rn, the solution of (1) satisfies x(t, x0) ∈
U0\{0} for t ∈ [0, T (x0)), and lim

t→T (x0)
x(t, x0) = 0 with

x(t, x0) = 0 for t > T (x0).

By combination of the definitions in Liao (1988),lin et al.
(1994)and Rouche et al. (1977), the definition of globally
asymptotically stable with a set M is given as follows.

Definition 2: Suppose M is a non-empty set. The solution
of (1) is

• stable with respect to M if for each ε > 0, there exists
δ(ε) > 0 such that for all t ≥ 0

d(x0,M) < δ(ε) ⇒ d(x(t, x0),M) < ε;

• globally attractive with respect to M , if for each x0 ∈ Rn,

lim
t→∞

d(x(t, x0),M) = 0;

• globally bounded, if for all x0 ∈ Rn, there exists a
positive constant K(x0) such that for all t ≥ 0

d(x(t, x0),M) ≤ K(x0);

• globally asymptotically stable with respect to M , if it
is globally bounded, stable and globally attractive with
respect to M .

Lemma 1:(Bhat et al. (2005, 2000a)) Considering system
(1), suppose there exists a continuous function V : U → R
such that the following conditions hold:
(i)V is positive definite,
(ii)There exist real numbers c > 0 and α ∈ (0, 1) and an
open neighborhood U0 ⊂ U of the origin such that

V̇ (x) + c(V (x))α ≤ 0, x ∈ U0\{0}.
Then the origin is a finite-time stable equilibrium of system
(1). If U = U0 = Rn, then the origin is a globally finite-
time stable equilibrium of (1).

Lemma 2:(Qian et al. (2001)) Let i = 1, · · · , n and
0 < p ≤ 1, for all xi ∈ R, the following inequality holds:

(|x1| + · · · + |xn|)p ≤ |x1|p + · · · + |xn|p.

Lemma 3:(Fragopoulos et al. (2004); Liao (1988))Con-
sider a positive-definite function V (x) with respect to M
for system (1), where M is a compact set and V (x) is

continuous in x on Rn, satisfying V̇ (x) ≤ 0 for all x ∈ Rn−
M. Then system (1) is stable with respect to M.

2.2 Problem formulation

The spacecraft attitude can be described by two sets of
equations, namely, the kinematic equation and the dy-
namic equation. Available parameterization methods in-
clude Euler angles, Cayley-Rodrigues parameters, modi-
fied Rodrigues parameters and quaternion. Only quater-
nion description really is a global description since other
parameterization methods have associated with singular
problems. Therefore, we use quaternion to describe space-
craft attitude in this paper.

The dynamic equation can be described by(Kane et al.
(1983))

Jω̇ = s(ω)Jω + u (2)

where J = diag(J1, J2, J3) is the inertia matrix, ω =
[ω1, ω2, ω3]

T is the angular velocity, u = [u1, u2, u3]
T is

the control signal, and s(ω) is the following matrix,

s(ω) =

[

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

]

.

The kinematic equation can be described as follows(Kane
et al. (1983))

q̇ =
1

2
E(q)ω (3)
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where q = [q0, q1, q2, q3]
T = [q0, q

T
v ]T is the quaternion,

and

E(q) =

(

−qT
v

−s(qv) + q0I3

)

,

where I3 denotes the 3 × 3 identity matrix.

Actually, let Φ denote the principal angle and e =
[e1, e2, e3]

T denote the principal axis associated with Eu-
ler’s Theorem with e2

1 + e2
2 + e2

3 = 1. Then the quaternion
can be defined as

q0 = cos(Φ/2), qi = eisin(Φ/2), i = 1, 2, 3 (4)

From (4), we obtain

q2
0 + q2

1 + q2
2 + q2

3 = 1 (5)

Furthermore, we have

ET (q)E(q) = I3×3.

For the attitude stabilization problem, the desired quater-
nion is (1, 0, 0, 0)T or (−1, 0, 0, 0)T which means the de-
sired principle angle should be Φ = 4mπ, m ∈ Z or
Φ = 4mπ + 2π, m ∈ Z respectively according to (4).

In Joshi et al. (1995); Park (2005); Vadali (1986), the
desired quaternion is designed to be (1, 0, 0, 0)T while
(−1, 0, 0, 0)T is designed to be a unstable equilibrium, or a
repeller. Then it is said that since in physical space both of
the equilibria are the same, global asymptotical stability
can be obtained.

However, it is not right. According to the stability theory,
if (−1, 0, 0, 0)T is definitely unstable it can not be consid-
ered the same as the stable equilibrium (1, 0, 0, 0)T . One
can observe clearly from Fig. 1(a) that all the states near
it just escape from it. Moreover, under those controllers,
all the states have to be driven to (1, 0, 0, 0)T even if they
are located very close to (−1, 0, 0, 0)T . This phenomenon
is called “unwinding” in Bhat et al. (2000b).

Our purpose in this paper is to design a set stabilization
law to make both of the equilibria stable so that states can
converge to the equilibrium which is closer to them (see
Fig.1(b)).

Fig. 1: The sketch maps of principle angle response
(a) conventional stabilization method, (b) set

stabilization method

3. CONTROL LAW DESIGN

From dynamic subsystem (2) and kinematic subsystem
(3), we can regard the state ω as a virtual input of
subsystem (3). Hence, the control method in this paper
can be written as follows:

(i) Giving a performance index for kinematic subsystem
(3) and regarding ω as the input, by solving a Hamilton-
Jacobi equation, we can derive a virtual optimal angular
velocity ω∗ which stabilizes the kinematic subsystem and
minimizes the performance index.

(ii) For dynamic subsystem (2), we use finite-time control
techniques to design the control law such that ω will track
the virtual optimal angular velocity ω∗.

3.1 Optimal angular velocity design

Design procedure

The performance index for the kinematic subsystem can
be selected as:

Ξ(0, q(0), ω(0)) =
1

2

+∞
∫

0

{

qT
v G−1qv + ωT Gω

}

dt (6)

where G = GT is a 3 × 3 matrix and satisfies G > 0.

Hamilton function can be selected as

H(t, q, ω) =
1

2

(

qT
v G−1qv + ωT Gω

)

+

1

2

(

∂Ξ∗(t, q, ω∗)

∂qv

)T

E1(q)ω
(7)

where Ξ∗(t, q, ω∗) is the optimal value of performance
index Ξ(t, q, ω), ω∗ is the optimal velocity, and E1(q) =
(−s(qv) + q0I3×3). Because the optimal control problem
here is an unconstrained optimization problem, it is ob-
tained that

∂H

∂ω
= Gω +

1

2
ET

1 (q)
∂Ξ∗

∂qv
= 0 (8)

From (8), it follows that

ω∗(q) = −1

2
G−1ET

1 (q)
∂Ξ∗

∂qv
(9)

We have Hamilton-Jacobi equation as follows:

−∂Ξ∗

∂t
= H(t, q, ω∗) (10)

Since G is time invariant and since the optimization is for a
process of infinite duration, it follows that Ξ∗ will depend
only on the state q. This implies that

−∂Ξ∗

∂t
= 0 (11)

Hence, according to (10),(11) and (7), we have

0 =
1

2

(

1

2
G−1ET

1 (q)
∂Ξ∗

∂qv

)T

G

(

1

2
G−1ET

1 (q)
∂Ξ∗

∂qv

)

+
1

2
qT
v G−1qv − 1

4

(

∂Ξ∗

∂qv

)T

E1(q)G
−1ET

1 (q)
∂Ξ∗

∂qv

(12)

From (12), we have

4qT
v G−1qv −

(

∂Ξ∗

∂qv

)T

E1(q)G
−1ET

1 (q)
∂Ξ∗

∂qv
= 0 (13)

Let
∂Ξ∗

∂qv
=

2qv(t)sgn(q0(0))

q0
(14)
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where q0(0) denotes the initial state of q0, and sgn(x) is
defined as follows:

sgn(x) =

{

1, for x ≥ 0
−1, for x < 0

.

Since sT (qv)qv = (0, 0, 0)T , one obtains that ET
1 (q)qv =

(−sT (qv)+q0I3×3)qv = q0qv. Hence, using (9) and (14) we
obtain the optimal angular velocity as follows

ω∗ = −sgn(q0(0))G−1qv (15)

Verification and analysis

Noting that q0 = ±
√

1 − q2
1 − q2

2 − q2
3 and solving partial

equation (14), we obtain that

Ξ∗(t, q(t), ω∗(t)) = c − 2sgn(q0(0))q0(t)

where c is a constant. Moreover, since Ξ∗(0, q(0), ω∗(0))
should equal to 0 when the system initial states are at the
equilibria, i.e., q0(0) = ±1, we have c = 2 which means
that

Ξ∗(t, q(t), ω∗(t)) = 2 − 2sgn(q0(0))q0(t). (16)

Thus if ω is optimal, from (16) we will have

Ξ(0, q(0), ω(0)) = Ξ∗(0, q(0), ω∗(0)) = 2 − 2|q0(0)|.
Next let us verify it. Substituting control law (15) into (3)
yields

q̇=
1

2
E(q)ω∗=−1

2

(

−qT
v

−s(qv)+q0I3×3

)

sgn(q0(0))G−1qv (17)

Hence, we have E(q)G−1qv = −2sgn(q0(0))q̇. Note that
q̇0 = 1

2sgn(q0(0))qT
v G−1qv. If q0(0) ≥ 0, we have q̇0(t) ≥ 0,

which yields q0(t) ≥ 0,∀t ≥ 0. Also in this case, we have
lim

t→∞

q0(t) = 1, which we will prove it later. Similarly, if

q0(0) < 0, we also have q0(t) < 0,∀t ≥ 0 and lim
t→∞

q0(t) =

−1.

Now suppose that q0(0) > 0. Substituting control law (15)
into (6) yields

Ξ(0, q(0), ω(0))=

+∞
∫

0

qT
v G−1qv dt

Noting that ET (q)E(q) = I3×3, E
T (q) = (−qv, s(qv) +

q0I3×3), then we have

Ξ(0, q(0), ω(0))

=

+∞
∫

0

qT
v G−1qv dt =

+∞
∫

0

qT
v ET (−2sgn(q0(0))q̇) dt

= −2

+∞
∫

0

(−qT
v qv q̇0 + q0q1q̇1 + q0q2q̇2 + q0q3q̇3) dt

= 2

1
∫

q0(0)

(1−q2
0) dq0−

+∞
∫

0

√

1−q2
1−q2

2−q2
3

d(q2
1+q2

2+q2
3)

dt
dt

= 2

1
∫

q0(0)

(1 − q2
0) dq0 −

0
∫

1−q2
0(0)

√
1 − sds

= 2 − 2q0(0)

If q0(0) < 0, by a similar calculation procedure, we will
have Ξ(0, q(0), ω(0)) = 2 + 2q0(0). Therefore we have
Ξ(0, q(0), ω(0)) = Ξ∗(0, q(0), ω∗(0)) = 2 − 2|q0(0)|.
Now let us verify the Lyapunov stability of the kinematic
subsystem (3) under the optimal angular velocity (15). We
can select a candidate Lyapunov function as follows:

Vq = (q0 − sgn(q0(0)))2 + qT
v qv.

Using the property that qT
v s(qv) = (0, 0, 0), according to

(17) we have the derivative of Vq along system (3) and (15)
as follows

V̇q = 2(q0 − sgn(q0(0)))q̇0 + 2qT
v q̇v = −qT

v G−1qv (18)

Note that G > 0, we have G−1 > 0. Hence, it is obtained
that V̇q < 0 for qv 6= 0 such that qv can converge to zero.
If q0(0) ≥ 0, we have lim

t→∞

q0(t) = 1. If q0(0) < 0, we have

lim
t→∞

q0(t) = −1.

It should point out that the optimal solution for the
performance index (6) is not unique. Two trivial solutions
can also be obtained. To make Eq.(13) satisfied, we can
also choose

∂Ξ∗

∂qv
=

2qv(t)

q0
or

∂Ξ∗

∂qv
= −2qv(t)

q0

which means the following control laws

ω∗ = −G−1qv (19)

and

ω∗ = G−1qv (20)

are also optimal solutions under the performance in-
dex (6). The optimal performance indices in such cases
are Ξ∗(0, q(0), ω∗(0)) = 2 − 2q0(0) for the former and
Ξ∗(0, q(0), ω∗(0)) = 2+2q0(0) for the latter. These results
can be obtained under a similar design and verification
procedure.

The question arises: among these three optimal control
laws, which is the best one? In both cases, almost global
control results can be obtained and the control laws
employ continuous feedback. However, both cases can
merely obtain local minima, not a global minimum for the
performance index (6).
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0
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  Ξ
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Fig. 2: Performance indices

The reason for such circumstance is that here we are han-
dling the control problem of two equilibria. The optimal
control laws (19) and (20) only consider one of the two
equilibria which can only locally optimize the closed loop
system. From Fig. 2, one can observe that the performance
index 2−2q0(0) is only minimal in the right half area, i.e.,
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0 ≤ q0(0) ≤ 1 and 2+2q0(0) is only minimal in the left half
area, i.e., −1 ≤ q0(0) < 0. A natural way to get a globally
optimal solution is to combine these two local properties
together, i.e.,

Ξ∗ = min
q0(0)

{2 − 2q0(0), 2 + 2q0(0)} = 2 − 2|q0(0)|.

As shown in Fig. 2, the solid curve which consists of two
lines is a globally optimal solution. That is, to design a
set control law considering both equilibria. To this end,
we employ a nontrivial optimal control law (15) to get a
global minimum 2−2|q0(0)| for the performance index (6).

3.2 Finite-time control law design

In this section, We design a finite-time control law u such
that the angular velocity ω will track the optimal angular
velocity ω∗. Then we give a rigorous set stability analysis
about the attitude control system. Let

ε(t) = (ε1(t), ε2(t), ε3(t))
T = ω − ω∗, (21)

Combining (21)with (2) and (3), we have the following
error model:

q̇ =
1

2
E(q)ω =

1

2
E(q)ω∗ +

1

2
E(q)ε (22)

Jε̇ = s(ω)Jω − Jω̇∗ + u (23)

where ω̇∗ = dω∗

dt .

System (22) and (23) can be regarded as a cascaded
system. The interconnection term is 1

2E(q)ε. Now, we have
the following main theorem:

Theorem 1: For spacecraft attitude control system (2)
and (3), if the control law u is chosen as

u = −s(ω)Jω + Jω̇∗ − ksigα(ε) (24)

where k > 0, sigα(εi) = |εi|αsign(εi), 0 < α < 1, i =
1, 2, 3,sigα(ε) = (sigα(ε1), sig

α(ε2), sig
α(ε3))

T , and sign
the sign function. Then system (2)-(3) is globally asymp-
totically stable with respect to the equilibrium set M1 =
{(qT , εT ) : (−1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0)}.
Proof: Substituting the control law (24) into system (23)
yields

Jε̇ = −ksigα(ε) (25)

(a)Local stability with respect to set M1

The candidate Lyapunov function for system (22) and (25)
can be selected as

V (q, ε) = (q0 − sgn(q0(0)))2 + qT
v qv +

1

2
εT Jε. (26)

The derivative of V along system (22) and (25) yields

V̇ (q, ε) = −kεT sigα(ε) − qT
v G−1qv + sgn(q0(0))qT

v ε. (27)

Note that qiεi ≤ γ|qi|2 + ε2
i /(4γ), i = 1, 2, 3, where γ > 0

is the minimum eigenvalue of G−1. We have

qT
v ε ≤ γqT

v qv + εT ε/(4γ).

Hence, we have the follow inequality:

V̇ (q, ε) ≤ −kεT sigα(ε) + εT ε/(4γ). (28)

Let Ω = {(qT , εT )T : |εi| ≤ (4kγ)
1

1−α }. From (28), for all

states in the set Ω, we have V̇ (q, ε) ≤ 0. From Lemma 3,

system (22) and (25) is local stable with respect to set M1

.

(b)Global attractivity with respect to set M1.

Let’s first consider the stability of error ε(t). The candidate
Lyapunov function for error ε(t) can be selected as

Vε =
1

2
εT Jε.

Substituting the control law (24) into the derivative of Vε

with (25) yields

V̇ε = εT [s(ω)Jω − Jω̇∗ + u] = −kεT sigα(ε) (29)

From (29), it follows that

V̇ε = −k(|ε1|1+α + |ε2|1+α + |ε3|1+α).

By using Lemma 2, we have

(ε2
1 + ε2

2 + ε2
3)

(1+α)/2 ≤ |ε1|1+α + |ε2|1+α + |ε3|1+α. (30)

Let Jmax = max{J1, J2, J3}, from (30), we have

|ε1|1+α + |ε2|1+α + |ε3|1+α ≥ 2(1+α)/2V
(1+α)/2
ε

J
(1+α)/2
max

.

Hence, it is obtained that

V̇ε = −k(|ε1|1+α + |ε2|1+α + |ε3|1+α)

≤ −k
2(1+α)/2V

(1+α)/2
ε

J
(1+α)/2
max

.
(31)

Let c = 2(1+α)/2

J
(1+α)/2
max

k. Using (31), we have

V̇ε + cV (1+α)/2
ε ≤ 0. (32)

Note that 0 < (1 + α)/2 < 1. Using Lemma 1, we obtain
that ε(t) can be stabilized to zero in finite time.

Supposing that ε(t) converge to zero at the moment t =
T1, we obtain ω = ω∗ for t ≥ T1. Hence, (3) reduces
to system (17). According to the description in Section
3.1.2, we know that qv converges to zero, q0 converges
to 1 or −1 and ω can also converge to zero since ω =
ω∗ = −sgn(q0(0)))G−1qv at time t > T1. Hence we
obtain that the states (q0, q

T
v , εT ) can converge to the

set M1 = {(−1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0)} and ω can
also converge to zero.

(c)Global boundedness

Note that qi, i = 0, 1, 2, 3 is always bounded. We only need
to prove that ε is bounded. From (25), we know that ε is
also bounded.

By Definition 2, we conclude that system (22)-(23) is
globally asymptotically stable with respect to set M1. Note
that ω∗ = −sgn(q0(0)))G−1qv also converges to zero. The
Lyapunov function (26) can also be considered as a set
Lyapunov function for system (2)-(3), which implies the
local set stability of system (2)-(3). It can be easily verified
that system (2)-(3) also satisfies the global set attractivity
and global boundedness. Hence, we can finally conclude
that system (2)-(3) is globally asymptotically stable with
respect to set M1. This completes the proof.
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4. SIMULATION RESULTS

In this section, we illustrate the previous theoretical results
by means of numerical simulations. The parameters of
model are given as: J1 = 72kg.m2, J2 = 60kg.m2, J3 =
50kg.m2. The parameters of control law (24) are se-

lected as : α = 0.5, G =

(

2 1 0
1 1 0
0 0 0.6

)

. Hence, we have

G−1 =

(

1 −1 0
−1 2 0
0 0 5/3

)

, which implies γ = 0.382, ‖

G−1 ‖= 2.618. We select k as k = 8. Substituting ω∗ =
−sgn(q0(0))G−1qv into (24) yields:

u = −s(ω)Jω − 1

2
sgn(q0(0))JG−1(q0ω − s(qv)ω)−

ksigα(ω + sgn(q0(0))G−1qv)
(33)

Let e(0) = (0.4896, 0.2030, 0.8480)T ,Φ(0) = 4mπ +
2.4647rad, m ∈ Z (not unique). Then, the corresponding
initial quaternion is q(0) = [0.332,0.4618,0.1915,0.7999]T .
Let ω(0) = [−0.2, 0.3, 0.5]T . Note that q0(0) ≥ 0. Under
the control law (33), we conclude that q0 will be stabilized
to 1. Fig.3 shows the response curves of attitude in the
case of q0(0) ≥ 0. In Fig.3, we can see that q0 converges
to 1 since q0(0) ≥ 0.

5. CONCLUSION

In this paper, a control method based on optimal control
and finite-time control techniques has been proposed for
spacecraft attitude stabilization. To avoid the unwinding
phenomenon and stabilize the states of the closed loop
system to both of the two equilibria, we use set stabi-
lization method to design the control law. In the design
procedure of optimal angular velocity, we have demon-
strated that only the stabilization law based on set control
idea can obtain a globally optimal solution. The states
can be stabilized to an equilibrium set. We have shown
that the control method based on set control idea is more
natural. The effectiveness of the proposed method has been
demonstrated by simulation results.
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Fig.3 Simulation results in the case of q0(0) ≥ 0
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