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Abstract: A new integral type sliding surface (ISM) is design for sampled-data systems for
output tracking. ISM surface design is based on Output Feedback with a State Observer.
Discrete-time control based on ISM achieves good tracking performance while allowing the
pole assignment of m poles, which are otherwise zero in a deadbeat design. In particular, the
new scheme can avoid overlarge control actions by avoiding the deadbeat response inherent in
conventional sliding mode control designed for sampled-data systems. It will be shown in this
work that, the discrete-time version of the sliding mode control based on the integral type sliding
surface has O(T 2) tracking error for output tracking. An experimental example demonstrates
the validity of the proposed scheme.

1. INTRODUCTION

Sliding mode control is a very popular robust control
method owing to its ease of design and robustness to
‘matched’ disturbances. However, full state information is
required in the controller design which is a drawback since
in most practical applications only the output measure-
ment is available. To solve this problem, focus was placed
on output feedback based sliding mode control Żak et al.
(1993)-Lai et al. (2004). Two approaches arose: a design
based on obervers to construct the missing states, Edwards
and Spurgeon (1996), Slotine et al. (1987), the other design

focused on using only the output measurement, Żak et al.
(1993), El-Khazali and DeCarlo (1995). Both approaches
present certain strengths and limitations.

Computer implementation of control algorithms presents
a great convenience and has, hence, caused the research
in the area of discrete-time control to intensify. This also
necessitated a rework in the sliding mode control strategy
for sampled-data systems. Most of the discrete-time sliding
mode approaches are based on the availability of full state
information, Su et al. (2000)-Abidi et al. (2007). A few
approaches did focus on the ouput measurement, Lai et al.
(2004), Lai et al. (2004). In Lai et al. (2004), the control
design was based on the assumption that the state matrix
of a discrete-time system is invertible. This is true for
sampled-data systems. In this work we will focus on state
based approaches as well as expand upon the work of Lai
et al. (2004) by focusing on arbitrary reference tracking of
a linear time invariant system with matched disturbance.

Delays in the state or disturbance estimation in sampled-
data systems is an inevitable phenomenon and must be
studied carefully. In Abidi et al. (2007) it was shown that
in the case of delayed disturbance estimation a worst case
accuracy of O(T ) can be guaranteed for deadbeat sliding
mode control design and a worst case accuracy of O(T 2)

for integral sliding mode control. While deadbeat response
is a desired phenomenon, deadbeat control is undesirable
in practical implementation due to the overlarge control
action required. In Abidi et al. (2007) the integral sliding
mode design avoided the deadbeat response by eliminating
the poles at zero. In this work, we extend the integral
sliding mode design to output tracking problems.

A challenging issue in output tracking control is to perform
arbitrary reference tracking when only output measure-
ment is available. To accomplish the task of arbitrary
reference tracking a controller based on output feedback
with a state observer will be designed. The objective is to
drive the output tracking error to a certain neighbourhood
of the origin. For this purpose a discrete-time integral
sliding surface (ISM) is proposed. The proposed scheme
allows full control of the closed-loop error dynamics and
the elimination of the reaching phase. The elimination of
deadbeat response helps to avoid the generation of over-
large control inputs. It is also worth to highlight that the
discrete-time ISM control can achieve the O(T 2) boundary
for output tracking error even in the presence of O(T )
accuracy in the state estimation.

2. PROBLEM FORMULATION

Consider the following continuous-time system with a
nominal linear-time-invariant model and matched distur-
bance

ẋ(t) = Ax(t) + B(u(t) + f (t))
y(t) = Cx(t)

(1)

where the state x ∈ ℜn, the output y ∈ ℜm, the control
u ∈ ℜm, and the disturbance f ∈ ℜm is assumed smooth
and bounded. The discretized counterpart of (1) can be
given by

xk+1 = Φxk + Γuk + dk

yk = Cxk, y0 = y(0)
(2)
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where

Φ = eAT , Γ =

T
∫

0

eAτ dτB

dk =

T
∫

0

eAτ Bf ((k + 1)T − τ )dτ,

and T is the sampling period. Here the disturbance dk

represents the influence accumulated from kT to (k +1)T ;
in the sequel, it shall directly link to xk+1 = x((k + 1)T ).
From the definition of Γ it can be shown that

Γ = BT +
1

2!
ABT 2 +

1

3!
A2BT 3 + · · · (3)

= BT + MT 2 + O(T 3) ⇒ BT = Γ − MT 2 + O(T 3)

where M is a constant matrix. From (4), it can be
concluded that the magnitude of Γ is of the order O(T ).

Based on the smoothness assumption on the disturbance
f (t), several useful properties were derived in Abidi et al.
(2007):

Property 1. The discretized disturbance satisfies:

P 1.

dk =

T
∫

0

eAτ Bf ((k + 1)T − τ )dτ = Γfk +
1

2
ΓvkT + O(T 3)

, where vk = v(kT ), v(t) = d
dt

f (t). Note that the
magnitude of the mismatched part in the disturbance dk

is of the order O(T 3).

P 2. dk = O(T ).

P 3. dk − dk−1 = O(T 2).

P 4. dk − 2dk−1 + dk−2 = O(T 3).

Property 2. Assume

ek+1 = Λek + δk

where matrix Λ is asymptotically stable, the magnitude of
δk is of the order O(T 3). Then the magnitude of ek is of
the order O(T 2).

The primary control objective is to desgign an appropriate
controller uk, such that the output yk of (2) can follow
an arbitrary trajectory rk whose magnitue is of the order
O(1).

It is worth to highlight that arbitrary trajectory tracking
differs significantly from regulation or set-point control
problems. Comparing output tracking for arbitrary tra-
jectory with output regulation or set-point control, the
minimum-phase property of the plant (2) is in general a
necesary condition for the former but not so for the latter.

Let the control law be uk = −Kxk + G(q)rk, where G(q)
is a design tranfer matrix, q is a forward shifting operator.
Substituting the control law into (2) yields

yk = C (qIm − Φ + ΓK)
−1

ΓG(q)rk (4)

where Im ∈ ℜm is a unity matirx. From (4) we can see
that for the precise tracking of an arbitrary reference rk,
G(q) must be the inverse of C(qIm−Φ+ΓK)−1Γ. Since K
is selected such that (Φ−ΓK) is stable, the only concern is

that the inverse C(qIm−Φ+ΓK)−1Γ will contain the zeros
of (Φ, Γ, C) and, therefore, will require that the system be
minimum-phase.

The control objective is to design a discrete-time integral
sliding manifold and a discrete-time SMC law that will
stabilize the sampled-data system (2) and achieve as pre-
cisely as possible output tracking. Meanwhile the closed-
loop dynamics of the sampled-data system has m closed-
loop poles assigned to desired locations.

3. OUTPUT TRACKING ISM

In this section we will discuss the state feedback based
output tracking controller. The controller will be designed
based upon an appropriate integral sliding-surface. Fur-
ther, the closed-loop system will be analyzed to derive the
stability conditions and tracking error-bound.

3.1 Controller Design

Consider the discrete-time integral sliding surface defined
below,

σk = ek − e0 + εk

εk = εk−1 + Eek−1
(5)

where ek = rk − yk is the tracking error, σk, εk ∈ ℜm are
the sliding function and integral vectors, and E ∈ ℜm×m

is the integral gain matrix.

By virtue of the concept of equivalent control, a SMC law
can be derived by letting σk+1 = 0. From (5), −e0 +
εk = σk − ek, we have

σk+1 = ek+1 − e0 + εk+1 = ek+1 − e0 + εk + Eek

= ek+1 − (Im − E)ek + σk. (6)

From the system dynamics (2), the output error ek+1 is

ek+1 = rk+1 − [CΦxk + CΓuk + Cdk],

and

σk+1 = rk+1 − [CΦxk + CΓuk + Cdk] − (Im − E)e + σk.

= ak − CΓuk − Cdk (7)

where ak = rk+1 − Λek − CΦxk + σk, and Λ = Im − E.
Assuming σk+1 = 0, we can derive the equivalent control

u
eq
k = (CΓ)−1(ak − Cdk). (8)

Note that the control (8) is based on the current value of
the disturbance dk which is unknown and therefore cannot
be implemented in the current form. To overcome this, the
disturbance estimate will be used. When the system states
are accessible, a delay based disturbance estimate can be
easily derived from the plant (2)

d̂k = dk−1 = xk − Φxk−1 − Γuk−1. (9)

Note that dk−1 is the exogenous disturbance and bounded,

therefore d̂k is bounded for all k. Using the disturbance
estimation (9), the actual ISMC law is given by

uk = (CΓ)−1(ak − Cd̂k). (10)
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3.2 Stability Analysis

Since the integral switching surface (5) consists of outputs
only, it is necessary to examine the closed-loop stability in
state space when the ISMC (10) and disturbance esitmate
(disturbance-estimation) are used.

Expressing ek = rk − Cxk, the ISMC law (10) can be
rewritten as

uk = (CΓ)−1(rk+1 − Λek − CΦxk + σk − Cd̂k)

= −(CΓ)−1(CΦ − ΛC)xk − (CΓ)−1Cd̂k

+(CΓ)−1(rk+1 − Λrk) + (CΓ)−1σk. (11)

Substituting the above control law (11) into the plant (2)
yields the closed-loop state dynamics

xk+1 = [Φ − Γ(CΓ)−1(CΦ − ΛC)]xk + dk − Γ(CΓ)−1Cd̂k

+Γ(CΓ)−1(rk+1 − Λrk) + Γ(CΓ)−1σk .
(12)

It can be seen from (12) that the stability of xk is
determined by the matrix [Φ − Γ(CΓ)−1(CΦ − ΛC)] and
the boundedness of σk.

According to Xu and Abidi (2008) the eignvalues of [Φ −
Γ(CΓ)−1(CΦ−ΛC)] are the eigenvalues of Λ and the non-
zero eigenvalues of [Φ−Γ(CΓ)−1CΦ], therefore, the matrix
[Φ − Γ(CΓ)−1(CΦ − ΛC)] has m poles to be placed at
desired locations while the remaining n − m poles are the
open-loop zeros of the plant (Φ, Γ, C). Since, the plant
(2) is assumed to be minimum-phase, the n − m poles
are stable. Therefore, stability of the closed-loop state
dynamics is guaranteed. Note that if Λ is a zero matrix
then m poles are zero and the performance will be the
same as the conventional deadbeat sliding-mode controller
design.

Since we use disturbance estimate, σk 6= 0. To show the
boundedness and facilitate later analysis on the track-
ing performance, we derive the relationship between the
switching surface and the distrubance estimate, as well as
the relationship between the output tracking error and the
disturbance estimate.

Theorem 1. Assume that the system (2) is minimum-
phase and the eigenvalues of the matrix Λ are within the
unit circle. Then by the control law (10) we have

σk+1 = C(d̂k − dk) (13)

and the error dynamics

ek+1 = Λek + δk (14)

where δk = C(d̂k − dk + dk−1 − d̂k−1).

Proof:

In order to verify the first part of theorem 1, substitute
the control law (10) into (7)

σk+1 = ak − CΓuk − Cdk = ak − CΓu
eq

k
− Cdk + CΓ(ueq

k
− uk)

= CΓ(ueq

k
− uk),

where we use the property of equivalent control σk+1 =
ak − CΓu

eq
k − Cdk = 0. Comparing two control laws (8)

and (10), we obtain

σk+1 = C(d̂k − dk).

Note that the switching surface σk+1 is no longer zero

as desired but a function of the difference dk − d̂k. This,

however, is acceptable since the difference is dk−d̂k = dk−
dk−1 by the delay based disturbance estimation; thus,
according to Property 1 the difference is O(T 2) which is
quite small in practical applications.

To derive the second part of theorem 1 regarding the error
dynamics, rewritting (7) as

ek+1 = Λek + σk+1 − σk,

and substituting the relationship (13), lead to

ek+1 = Λek + C(d̂k − dk) − C(d̂k−1 − dk−1)

= Λek + C(d̂k − dk + dk−1 − d̂k−1) = Λek + δk.

Since d̂k = dk−1, δk is bounded, thus from Property 2 ek is
bounded. Remark: From (14) we can see that the reference
tracking dynamics depends on the choice of Λ which is a
design matrix.

3.3 Disturbance Observer Design

Note that according to Property 1, the disturbance can
be written as

dk = Γfk +
1

2
ΓvkT + O(T 3) = Γηk + O(T 3) (15)

where ηk = fk + 1

2
vkT . If ηk can be estimated, then the

estimation error of dk would be O(T 3) which is acceptable
in practical applications.

Define the observer

xd,k = Φxd,k−1 + Γuk−1 + Γη̂k−1

yd,k−1 = Cxd,k−1
(16)

where xd,k−1 ∈ ℜn is the observer state vector, yd,k−1 ∈
ℜm is the observer output vector, η̂k−1 ∈ ℜm is the
disturbance estimate and will act as the ‘control input’ to

the observer, therefore we can write d̂k−1 = Γη̂k−1. Since
the disturbance estimate will be used in the final control
signal, it must not be overly large. Therefore, it is wise
to avoid a deadbeat design. For this reason we design the
disturbance observer based on an integral sliding surface

σd,k = ed,k − ed,0 + εd,k

εd,k = εd,k−1 + Eded,k−1
(17)

where ed,k = yk − yd,k is the output estimation error,
σd,k, εd,k ∈ ℜm are the sliding function and integral
vectors, and Ed is an integral gain matrix.

Note that the sliding surface (17) is analogous to (5), that
is, the set (yk,xd,k,uk + η̂k,yd,k, σd,k) has duality with
the set (rk,xk,uk,yk, σk), except for an one-step delay in
the observer dynamics (16). Therefore, let σd,k = 0 we can
derive the virtual equivalent control uk−1 + η̂k−1, thus

η̂k−1 = (CΓ)−1
[

yk − Λded,k−1 − CΦxd,k−1 + σd,k−1

]

− uk−1(18)

where Λd = Im − Ed.

In practice, the quantity yk+1 is not available at the time
instance k when computing η̂k. Therefore we can only
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compute η̂k−1, and in the control law we use the delayed

estimate d̂ = Γη̂k−1.

The stability and convergence properties of the observer
(16) and the disturbance estimation (18) are analyzed in
the theorem 2.

Theorem 2. The observer outputs yd,k converge asymp-
totically to the true outputs yk, and the disturbance

estimate d̂k−1 converges to the actual disturbance dk−1

with the precision order O(T 2).

Proof:

Substituting (18) into (16), and using the relation ed,k−1 =
C(yk−1 − yd,k−1), yield

xd,k =
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

xd,k−1 (19)

+Γ(CΓ)−1[yk − Λdyk−1] + Γ(CΓ)−1σd,k−1.

Since the virtual control uk−1 + η̂k−1 is chosen such that
σd,k = 0 for any k > 0, (20) renders to

xd,k =
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

xd,k−1 + Γ(CΓ)−1 [yk − Λdyk−1].

(20)

The second term on the right hand side of (20) can be
expressed as

Γ(CΓ)−1[yk − Λdyk−1] = Γ(CΓ)−1(CΦ − ΛdC)xk−1

+Γuk−1 + Γ(CΓ)−1Cdk−1

by using the relations yk = CΦxk−1 + CΓuk−1 + Cdk−1

and yk−1 = Cxk−1. Therefore (20) can be rewritten as

xd,k = Φxd,k−1 + Γ(CΓ)−1(CΦ − ΛdC)∆xd,k−1

+Γuk + Γ(CΓ)−1Cdk−1 (21)

where ∆xd,k−1 = xk−1 − xd,k−1.

Further subtracting (21) from the system (2) we obtain

∆xd,k =
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

∆xd,k−1

+[I − Γ(CΓ)−1C]dk−1 (22)

where [I − Γ(CΓ)−1C]dk−1 is O(T 3) because

[I − Γ(CΓ)−1C][Γηk−1 + O(T 3)] = [I − Γ(CΓ)−1C]O(T 3) = O(T 3).

Applying the Property 2, ∆xd,k−1 = O(T 2).

From (22) we can see that the stability of the dis-
turbance observer depends only on the system matrix
[

Φ − Γ(CΓ)−1(CΦ − ΛdC)
]

and is guaranteed by the se-
lection of the matrix Λd and the fact that system (Φ, Γ, C)
is minimum phase. It should also be noted that the residue
term [I −Γ(CΓ)−1C]dk−1 in the state space is orthogonal
to the output space, as C[I−Γ(CΓ)−1C]dk−1 = 0. There-
fore premultliplication of (22) with C yields the output
tracking error dynamics

ed,k = Λded,k−1 (23)

which is asymptotically stable through choosing a stable
matrix Λd.

Finally we discuss the convergence property of the esti-

mate d̂k−1. Subtracting (16) from (2) with one-step delay,
we obtain

∆xd,k = Φ∆xd,k−1 + Γ(ηk−1 − η̂k−1) + O(T 3). (24)

Premultiplying (24) with C, and substituing (23) that
describes C∆xd,k, yield

η̂k−1 = ηk−1 + (CΓ)−1(CΦ − ΛdC)∆xd,k−1 + (CΓ)−1O(T 3).

(25)

The first term on the right hand side of (25) is O(T )
because ∆xd,k−1 = O(T 2) but (CΓ)−1 = O(T−1). As a
result, from (25) we can conclude that η̂k−1 approaches
ηk−1 with the precision O(T ). In terms of the relationship

d− d̂ = Γ(η − η̂) + O(T 3)

and Γ = O(T ), we conclude d̂k−1 converges to dk−1 with
the precision of O(T 2).

3.4 State Observer

State estimation will be accomplished with the following
state-observer

x̂k+1 = Φx̂k + Γuk + L(yk − ŷk) + d̂k (26)

where x̂k, ŷk are the state and output estimates and L
is a design matrix. Observer (26) is well-known, however,

the term d̂k has been added to compensate for the dis-
turbance. It is necessary to investigate the effect of the
disturbance estimation on the state estimation. Subtract-
ing (26) from (2) we get

x̃k+1 = [Φ− LC]x̃k + dk − d̂k. (27)

It can be seen that the state estimation is indepdendent
of the control inputs. Under the assumption that (Φ, Γ, C)
is controllable and observable, we can choose L such that
Φ − LC is asymptotically stable. From Theorem 4, dk −

d̂k = O(T 2), thus, from Property 2 the ultimate bound of
x̃k is O(T ). Later we will show that, for systems of relative
degree greater than 1, by virtue of the integral action in
the ISM control, the state estimation error will be reduced
to O(T 2) in the overall closed-loop system.

3.5 Tracking Error Bound

From the error dynamics of the state estimation (27), the
solution is

x̃k = [Φ − LC]kx̃0 +

k−1
∑

i=0

(

[Φ− LC]k−1−i(di − d̂i)
)

. (28)

The difference x̃k − x̃k−1 can be calculated

x̃k − x̃k−1 = [(Φ− LC) − In](Φ− LC)k−1x̃0

+

k−1
∑

i=0

(

[Φ − LC]k−1−i(di − d̂i)
)

−

k−2
∑

i=0

(

[Φ − LC]k−1−i(di − d̂i)
)

which can be simplified to

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14202



x̃k − x̃k−1 = [(Φ − LC) − In](Φ − LC)k−1x̃0 + (dk − d̂k).

Since (Φ − LC) is asymptotically stable, the ultimate
bound is

x̃k − x̃k−1 = dk − d̂k, (29)

and δk can be expressed ultimately as

δk = C(d̂k − dk + dk−1 − d̂k−1) − CΦ(x̃k − x̃k−1)

= C(d̂k − dk + dk−1 − d̂k−1) − CΦ(dk − d̂k). (30)

From theorem 3, the disturbance estimation error dk − d̂k

is O(T 2). Therefore

δk = C ·
(

O(T 2) + O(T 2)
)

− CΦ · O(T 2) = O(T 2),

the ultimate bound on σk is O(T 2), and the ultimate
bound on ‖ek‖ is O(T ).

Remark: Note that the the guaranteed tracking precision
is O(T ) because the control problem becomes highly chal-
lenging in the presence of state estimation and disturbance
estimation errors, and meanwhile aiming at arbitrary ref-
erence tracking.

In many motion control tasks the system relative degree is
2 when the torque or force control is designed for position
tracking. Now we derive an interesting property by the
following corollary.

Corollary: For a continuous system of relative degree
greater than 1, the ultimate bound of ‖ek‖ is O(T 2).

Proof:

From theorem 2 (14) and Property 2, ‖ek‖ is O(T 2) if δk =
O(T 3). When the system relative degree is 2, CB = 0, and

CΓ = C

(

BT +
1

2!
ABT 2 +

1

3!
A2BT 3 + · · ·

)

=
1

2!
CABT 2 +

1

3!
CA2BT 3 + · · · = O(T 2).

Similarly

CΦΓ = C(I + AT +
1

2!
A2T 2 + · · ·)Γ

= C(I + O(T ))Γ = CΓ + O(T 2) = O(T 2).

Now rewrite

δk = C(d̂k − dk + dk−1 − d̂k−1)− CΦ(dk − d̂k) (31)

= CΓ(η̂k − ηk + ηk−1 − η̂k−1)− CΦΓ(ηk − η̂k) + O(T 3).

Note that the ultimate bound of ηk − η̂k, derived in
Theorem 3, is O(T ). Thus we conclude from (32)

δk = O(T 2) · (O(T ) + O(T ))− O(T 2) · O(T ) + O(T 3) = O(T 3)

and consequently ‖ek‖ is ultimately O(T 2).

4. EXPERIMENTAL INVESTIGATION

To verify the effectiveness of the discrete-time integral slid-
ing control design, experiments have been carried out using
a linear piezoelectric motor which has many promising
applications in industries. Piezoelectric motors are mainly
applied to high precision control problems as it can easily

reach the precision scale of micro-meters or even nano-
meters. This gives rise to extra difficulty in establishing an
accurate mathematical model for piezoelectric motors: any
tiny factors, nonlinear and unknown, will severely affect
their characteristics and control performance.

The configuration of the whole control system is outlined
in Fig.1. The driver and the motor can be modeled
approximately as a second order system shown in (1) with
the system matrices

A =

[

0 1

0 −
kfv

M

]

, B =

[

0
kf

M

]

, C = [ 1 0 ]

where M = 1kg, kfv = 144N and kf = 6N/V olt.

Fig. 1. System Block Diagram

This simple linear model does not contain any nonlinear
and uncertain effects such as the frictional force in the
mechanical part, high-order electrical dynamics of the
driver, loading condition, etc., which are hard to model
in practice. In general, producing a high precision model
will require more efforts than performing a control task
with the same level of precision.

For the state observer approach the system (Φ, Γ, C) is
required to be minimum phase. From Fig.2 we see that for
a sampling-time between 0.1ms and 1s the open-loop zero
is stable, therefore, the system is minimum phase. From
Fig.2 a selection of sampling-time T = 1ms would provide
a fast enough convergence while having a good enough
tracking error. Upon sampling at T = 1ms the resulting

10
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−2
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−1

10
0

−1

−0.8

−0.6

−0.4

−0.2

0

sampling−time [sec]

o
p

e
n

−
lo

o
p

 z
e

ro

Fig. 2. Open-loop zero of (Φ, Γ, C) w.r.t sampling-time

sampled-data system state and gain matrices are

Φ =

[

1.0000 0.0009
0 0.8659

]

, Γ =

[

2.861× 10−6

5.6 × 10−3

]

The open-loop zero for this sampling-time are −0.954. To
proceed with the implementation three sets of parameters
need to be designed: the state observer gain matrix L,
the disturbance observer integrator gain matrix Ed, and
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the controller integrator gain E. The state observer gain
is selected such that the observer poles are (0.4, 0.4).
This selection is arbitrary, but, the poles are selected to
ensure quick convergence. Next, the matrix Ed is designed.
Note that for this second order system Ed is a scalar. To
ensure the quick convergence of the disturbance observer,
Ed is selected such that the observer pole is λd = 0.9
which corresponds to s = −105.4 in the continuous-time.
Since the remaining pole of the observer is the non-zero
open-loop zero z = −0.954 corresponding to a pole with
real part of s = −47.1 in the continuous-time, it is the
dominant pole. Finally, the controller pole is selected as
λ = 0.958 which is found to be the best possible after
some trials. Thus, the design parameters are as follows

L = [ 1.06 231.05 ] , Ed = 1 − λd = 0.1, E = 1 − λ = 0.042.

The reference trajectory rk used is a sigmoid curve as
shown in Fig.3a. The ISM results are compared to that
of a PI controller as seen in Fig.3a and Fig.3b. From
the results we see that the ISM controller has a better
tracking performance compared to a PI controller. The
results in Fig.4 are for the control inputs for the PI and
ISM. Finally, an extra load of 2.5kg is added without
modifying the controller parameters. We see from the
results that the change of load barely effects the ISM
controller performance as seen in Fig.5a, as the error
magnitude is only varied slightly around 0.01 mm. The
control for this case is seen in Fig.5b. We can observe from
the figures that the control input needed to overcome the
deadzone is increased from around 1.25V to around 1.5V
when the load is added.
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Fig. 3. Position and tracking error of ISMC and PI
controllers
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Fig. 4. Comparison of the control inputs of ISMC and PI
controllers

5. CONCLUSION

This work presents a form of the discrete-time integral
sliding control design for sampled-data systems with out-
put tracking. Proper disturbance and state observers were
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Fig. 5. Tracking error and control input of ISMC loaded
with 2.5kg

presented. The closed-loop stability of the system was not
dependent on either observer and is designed seperately.
It was shown that the maximum bound on the tracking
error is O(T 2) at steady state. It was also shown that even
though the state observer produced O(T ) estimation error,
the ISM state observer approach could still produce O(T 2)
tracking error. Experimental comparison with a PI con-
troller proves the effectiveness of the proposed methods.
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