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Abstract: In this paper, a direct adaptive fuzzy tracking control scheme is presented for a
class of stochastic nonaffine uncertain nonlinear systems with unknown dead-zone input. Based
on the first-type fuzzy logic system’s online approximation capability, a direct adaptive fuzzy
tracking controller is developed by using the backstepping approach. It is proved that the design
scheme ensures that all the error variables are bounded in probability while the mean square
tracking error becomes semiglobally uniformly ultimately bounded(SGUUB) in an arbitrarily
small area around the origin. Simulation results show the effectiveness of the control scheme.
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1. INTRODUCTION

Recently, the adaptive control of uncertainty nonlinear
system has been extensively studied. As a breakthrough
in nonlinear control area, a recursive design procedure,
backstepping approach, was presented to obtain global sta-
bility and asymptotic tracking for a large class of nonlinear
system, mostly the strict-feedback system(Krstic et al.
[1995]). In addition, some adaptive fuzzy or neural network
controllers, which ensured the stability of the closed-loop
systems, have also been constructed for nonlinear systems
with unknown nonlinear functions (Chen et al. [2007];
Wang et al. [2006]; Zhang et al. [2007a]) by means of the
backstepping approach.

Nevertheless, relatively fewer results have been obtained
for the nonaffine feedback systems. The nonaffine feedback
system has a more representative form than the strict-
feedback systems, and there are many systems falling into
this category(Wang et al. [2006]). Several special cases
of pure-feedback systems are studied by combined the
backstepping technique with the neural network or fuzzy
system function approximation property in (Wang et al.
[2002]; Ge et al. [2002]), while they are still affine in control
u, the paper of Yu et al. [2004] considered the exter-
nal disturbances or unmoulded dynamics in some pure-
feedback systems, the completely pure-feedback system are
investigated in the work of Wang et al. [2006] via small
gain theory. On the other hand, some backstepping-based

⋆ This work is partially supported by the Hwaying Education
and Culture Foundation, the Natural Science Foundation of China
(60404006,60574006), the Natural Science Foundation of the Jiangsu
Higher Education Institutions of China (Grant No.07KJB510125).

control laws (Deng et al. [1997]; Deng et al. [2000]; Arslan
et al. [2002]; Arslan et al. [2003]; Pan [2002]; Liu et al.
[2004]; Ji et al. [2002]; Liu et al. [2003]; Wu et al. [2007];
Liu et al. [2007]) for stochastic strict-feedback systems that
include a Wiener process have been developed to guarantee
stability, known as stability in probability. Combined prob-
lem of the control of stochastic strict-feedback nonlinear
system with nonlinear uncertainties is firstly studied in the
paper of Psillakis et al. [2005].

Nonsmooth nonlinear characteristics such as dead-zone,
backlash, hysteresis are common in actuator and sensors
such as mechanical connections, hydraulic actuators and
electric servomotors. Dead-zone is one of the most im-
portant non-smooth nonlinearities in many industrial pro-
cesses (Tao et al. [1996], Lewis et al. [1999]). Its presence
severely limits system performance, and its study has been
drawing much interest in the control community for a long
time (Zhou et al. [2006], Zhou et al. [2007], Zhang et al.
[2007a], Zhang et al. [2007b]). In the paper of Zhang et al.
[2007a], an adaptive neural controller was developed for a
class of uncertain multi-input multi-output nonlinear state
time-varying delay systems in triangular control structure
with unknown nonlinear dead-zones and gain signs.

In this paper, we consider adaptive fuzzy tracking con-
troller for a class of stochastic nonaffine uncertain nonlin-
ear systems with dead-zone input. With the mean value
theorem, we change the nonaffine nonlinear system into
the structure that backstepping can handle. As in the work
of Zhang et al. [2007a], the dead-zone output is repre-
sented as a simple linear system with a static time-varying
gain and bounded disturbance by introducing character-
istic function. The first type fuzzy system is employed
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to approximate the unknown nonlinear system. Extensive
stability analysis proves that all the error variables are
bounded in probability while the mean square tracking
error becomes semiglobally uniformly ultimately bounded
in an arbitrarily small area around the origin.

This paper is organized as follows. The preliminaries
and problem formulation are presented in Section 2. In
Section 3, a systematic procedure for the synthesis of
the adaptive fuzzy tracking controller is developed. In
Section 4, simulation example is used to demonstrate
the effectiveness of the proposed scheme. Finally, the
conclusion is given in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Stochastic Stability

The following notation will be used throughout the paper.
R+ denotes the set of all nonnegative real numbers, Rn

denotes the real n−dimensional space. For a given vector
or matrix X, XT denotes is transpose, Tr{X} denotes its
trace when X is square, and |X| denotes the Euclidean
norm of a vector X. Ci denotes the set or all functions
with continuous ith partial derivatives. K denotes the set
of all functions: R+ → R+, which are continuous, strictly
increasing and vanishing at zero, K∞ denotes the set of
all functions which are of class K and unbounded; K L

denotes the set of all functions β(s, t) : R+ × R+ → R+

which is of class K for each fixed t, and decreases to zero
as t → ∞ for fixed s.

Consider the following stochastic nonlinear system:

dx = f(x)dt + h(x)dω, ∀x ∈ Rn (1)

where x ∈ Rn is the state of the system, ω is
r−dimensional independent standard Wiener process de-
fined on a probability space (Ω,F , P ). f(·), h(·) are locally
Lipschitz in x.

Definition 1 For any given V (x) ∈ C2, associated with
stochastic system (1), we define the differential operator
L as follows:

L V (x) =
∂V

∂x
f(x) +

1

2
Tr{

∂2V

∂x2
h(x)hT (x)}. (2)

Definition 2 For the stochastic system (1) with f(0) =
h(0) = 0, the equilibrium x(t) = 0 is
(i) globally stable in probability if for any ǫ > 0, there
exists a class K function γ(·) such that P{|x(t)| <
γ(|x0|)} ≥ 1 − ǫ,∀t ≥ 0,∀x0 ∈ Rn − {0};
(ii) globally asymptotically stable in probability if ∀ǫ >
0, there exists a class K L function β(·, ·) such that
P{|x(t)| < β(|x0|, t) ≥ 1 − ǫ,∀t ≥ 0,∀x0 ∈ Rn − {0}.

Lemma 1. (Psillakis et al. [2005]) Consider the stochas-
tic nonlinear system (1). If there exists a positive definite,
radially unbounded, twice continuously differentiable Lya-
punov function V : Rn → R, and constants c1 > 0, c2 > 0
such that

L V (x) ≤ −c1V (x) + c2, (3)

then (i) the system has a unique solution almost surely
and (ii) the system is bounded in probability.

2.2 Fuzzy System

In this paper, we adopt the singleton fuzzifier, product
inference and the center-defuzzifier to reduce the following
fuzzy rule:
Ri: IF x1 is F i

1 and · · · and xn is F i
n, THEN y is Bi

(i = 1, 2, · · · , N).
where x = [x1, · · · , xn]T ∈ Rn and y are the input and
output of the fuzzy system, respectively. Since the strategy
of singleton fuzzification, center-average defuzzification
and product inference is used, the output of the fuzzy
system can be formulated as

y(x) =

∑N
i=1 θiΠ

n
j=1µF i

j
(xj)

∑N
i=1[Π

n
j=1µF i

j
(xj)]

, (4)

where µF i
j
(xj) is the membership of F i

j , and θi =

maxy∈R µBi(y). Let ξj(x) =

∏

n

i=1
µ

F i
j

(xj)

∑

N

j=1
[
∏

n

i=1
µ

F i
j

(xj)]
, ξ(x) =

[ξ1(x), ξ2(x), · · · , ξN (x)]T and θ = [θ1, · · · , θN ]T . Then the
fuzzy logic system above can be expressed as follows:

y(x) = θT ξ(x). (5)

If all membership functions are taken as Gaussian func-
tions, then the following lemma holds.

Lemma 2. Let f(x) be a continuous function defined on a
compact set Ω. Then for any constant ǫ > 0, there exists
a fuzzy logic system (5) such that

sup
x∈Ω

|f(x) − ϕ(x)| = sup
x∈Ω

|f(x) − θT ξ(x)| ≤ ǫ. (6)

Define the ideal estimation parameter as

θ∗ = arg min
θ∈Θ

[sup
x∈Ω

|f(x) − θT ξ(x)|],

where Θ and Ω denote the sets of suitable bounds on θ
and x.

2.3 Problem

Consider a SISO nonaffine nonlinear systems in the follow-
ing form:
Plant:































dx1 = x2dt
dx2 = x3dt
...
dxn−1 = xndt

dxn = F (x, u)dt + hT (x)dω
y = x1

(7)

Dead-zone:

u = D(v) =

{

gr(v) if v ≥ br,
0 if bl < v < br,
gl(v) if v ≤ bl,

(8)
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where x = (x1, · · · , xn)T , y ∈ R are state variables
and output, respectively. ω is r−dimensional independent
standard Wiener process defined on a probability space
(Ω,F , P ). F (x, u) is unknown smooth function. u ∈ R
is the output of the dead-zone. v(t) ∈ R is the input
to the dead-zone, bl and br are the unknown parame-
ters of the dead-zone. The reference signal is yd(t), and

yd(t), y
(1)
d (t), · · · , y

(n)
d (t) are smooth and bounded.

For the unknown dead-zone input, we make the following
assumptions

Assumption 1. The dead-zone output, u, is not available.

Assumption 2. The dead-zone parameters, br and bl, are
unknown bounded constants, but their signs are known,
i.e., br > 0 and bl < 0.

Assumption 3. The functions, gl(v) and gr(v), are smooth,
and there exist unknown positive constants, kl0, kl1, kr0,
and kr1 such that

0 < kl0 ≤ g
′

l(v) ≤ kl1, ∀v ∈ (−∞, bl] (9)

0 < kr0 ≤ g
′

r(v) ≤ kr1, ∀v ∈ [br,+∞) (10)

and β0 ≤ min{kl0, kr0} is a known positive constant, where

g
′

l(v) = dgl(z)
dz |z=v and g

′

r(v) = dgr(z)
dz |z=v.

Based on Assumption 3, the dead-zone (8) can be rewritten
as follows as shown Zhang et al. [2007a]:

u = D(v) = KT (t)Φ(t)v + d(v), (11)

where

Φ(t) = [ϕr(t), ϕl(t)]
T , (12)

ϕr(t) =

{

1 if v(t) > bl,
0 if v(t) ≤ bl,

(13)

ϕl(t) =

{

1 if v(t) < br,
0 if v(t) ≥ br,

(14)

K(t) = [Kr(v(t)),Kl(v(t))]T (15)

Kr(v(t)) =

{

0 if v(t) ≤ bl,

g
′

ir(ξr(v(t))) if bl < v(t) < +∞,
(16)

Kl(v(t)) =

{

g
′

l(ξl(v(t))) if −∞ < v(t) < br,
0 if v(t) ≥ br,

(17)

d(v) =







−g
′

r(ξr(v))br if v ≥ br,

−[g
′

l(ξl(v)) + g
′

r(ξr(v))]v if bl < v < br,

−g
′

l(ξl(v))bl, if v ≤ bl

(18)

and |d(v)| ≤ p∗, p∗ is an unknown positive constant with
p∗ = (kr1 + kl1) max{br,−bl}.

Remark 1 There are many results for the case of linear
dead-zone outside the deadband, but equation (11) is to
capture the most realistic situation. As shown in Zhang
et al. [2007a], we known that KT (t)Φ(t) ∈ [β0, kl1 +
kr1] ⊂ (0,+∞).

The control objective is to design an adaptive fuzzy con-
troller v(t) for the system (7) such that the output y fol-
lows the specified desired trajectory yd with guaranteeing
that the system is bounded in probability.

Define g(x, u) =
∫ 1

0
∂F (x,ξ)

∂ξ |ξ=suds, which is an unknown

nonlinear function satisfying the following assumption.

Assumption 4. There exist positive constants g0, g1 such
that 0 < g0 ≤ g(x, u) ≤ g1,∀x ∈ Ωx ⊂ Rn, where Ωx is a
compact set.

Remark 2 In Assumption 4, although g(·) appears to be
similar with the affine terms in a strict-feedback system,
a major difference lies in that g(·) is a function of u, and
thus, it is still a nonaffine term in character. Furthermore,
we don’t need the assumption that g(·) is independent
from xn.

3. CONTROL DESIGN AND STABILITY ANALYSIS

In this section, we will use backstepping to design an
adaptive fuzzy controller. First, we introduce the error
variables

zi = xi − αi−1(z[i−1], y
[i−1]
d ), i = 1, 2, · · · , n (19)

where αi−1(z[i−1], y
[i−1]
d ) to be given in the following steps,

α0 = yd, αn = u, z[i−1] = [z1, · · · , zi−1]
T , y

[i−1]
d =

[yd, ẏd, · · · , y
i−1
d ]T , z = z[n].

step 1 The derivation of z1 is

dz1 = dx1 − ẏddt = (z2 + α(z1, yd, ẏd) − ẏd)dt.

Consider the following Lyapunov function candidate

V1 =
z2
1

2
, (20)

the time derivative of V1 is

dV1 = z1dz1

= z1(z2 + α1(z1, yd, ẏd) − ẏd)dt. (21)

Select virtual control α1(z1, yd, ẏd) as

α1(z1, yd, ẏd) = −k1z1 + ẏd, (22)

with design constat k1 > 0, it is easy to get

dV1 ≤ (z1z2 − k1z
2
1)dt. (23)

step 2 The derivation of α1 is dα1 = ∂α1

∂z1
dz1 + ∂α1

∂yd
dyd +

∂α1

∂y
(1)

d

dy
(1)
d , so the derivation of z2 is dz2 = (z3 + α2 −

dα1)dt = [z3 + α2 − (∂α1

∂z1
dz1 + ∂α1

∂yd
dyd + ∂α1

∂y
(1)

d

dy
(1)
d )]dt.

Consider the following Lyapunov function candidate

V2 = V1 +
1

2
z2
2 , (24)

the time derivative of V2 is

dV2 ≤ (z1z2 − k1z
2
1 + z2(z3 + α2 − dα1))dt

= [z1z2 − k1z
2
1 + z2(z3 + α2 − (

∂α1

∂z1
dz1 +

∂α1

∂yd
dyd
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+
∂α1

∂y
(1)
d

dy
(1)
d ))]dt. (25)

Select virtual control α2(z1, z2, yd, ẏd, ÿd) as

α2(z1, z2, yd, ẏd, ÿd) =−k2z2 − z1 +
∂α1

∂z1
dz1 +

∂α1

∂yd
y
(1)
d

+
∂α1

∂ẏd
y
(2)
d , (26)

with design constat k2 > 0, it is easy to get

dV2 ≤ (z2z3 − k1z
2
1 − k2z

2
2)dt. (27)

step k (3 ≤ k ≤ n − 1) A similar procedure is employed
recursively for each step k. The derivation of αk−1 is

dαk−1 = (
k−1
∑

j=1

∂αk−1

∂zj
dzj +

k−1
∑

j=0

∂αk−1

∂y
(j)
d

y
(j+1)
d )dt

then the derivation of zk is

dzk = [zk+1 + αk − dαk−1]dt

= [zk+1 + αk −
k−1
∑

j=1

∂αk−1

∂zj
dzj −

k−1
∑

j=0

∂αk−1

∂y
(j)
d

y
(j+1)
d ]dt,

choose the Lyapunove candidate functions and the virtual
control laws as follows,

Vk = Vk−1 +
1

2
z2
k, (28)

αk =−kkzk − zk−1 +
k−1
∑

j=1

∂αk−1

∂zj
dzj

+
k−1
∑

j=0

∂αk−1

∂y
(j)
d

y
(j+1)
d , (29)

and we get

dVk ≤ (zkzk+1 −
k

∑

j=1

kjz
2
j )dt. (30)

step n The derivation of zn is

dzn = dxn − dαn−1

= F (x, u)dt + hT (x)dω − (
n−1
∑

j=1

∂αn−1

∂zj
dzj

+
n−1
∑

j=0

∂αk−1

∂y
(j)
d

y
(j+1)
d )dt, (31)

use the mean value theorem, we get

dzn = F (x, 0)dt + g(x, u)udt + hT (x)dω

−(
n−1
∑

j=1

∂αn−1

∂zj
dzj +

n−1
∑

j=0

∂αk−1

∂y
(j)
d

y
(j+1)
d )dt, (32)

choose Lyapunov candidate as

Vn = Vn−1 +
z4
n

4
, (33)

then

L Vn ≤−k1z
2
1 − k2z

2
2 − · · · −

kn

2
z4
n +

3

2
z2
nhT h + zn[zn−1

+
kn

2
z3
n + z2

n(F (x, 0) + g(x, u)u − α̇n−1)].

Consider the following inequalities:

3

2
z2
nhT (x)h(x)≤

1

ζ
+

9

16
ζ‖h(x)‖4z4

n ∀ζ > 0 (34)

znzn−1 ≤
1

ξ
+

1

4
(
3ξ

4
)3z4

n−1z
4
n (35)

So,

L Vn ≤
1

ζ
+

1

ξ
−

n−1
∑

j=1

kjz
2
j −

kn

2
z4
n + z3

n{F (x, 0) + g(x, u)u

−α̇n−1 + [
9

16
ζ‖h(x)‖4 +

1

4
(
3ξ

4
)3z4

n−1 +
kn

2
]zn},

Then use the first type fuzzy systems to approximate
f̄(x) = g−1

0 (F (x, 0) − α̇n−1 + 9
16ζ‖h(x)‖4zn)

f̄(x) = θ∗T ξ(x) + ǫf , (36)

where ǫf is approximation error, according to Lemma 2,

there exist ǫM > 0 such that |ǫf | < ǫM . Let θ̂ is the

estimation of θ∗, and θ̃ = θ̂ − θ∗.
We define the overall Lyapunov function as

V = Vn +
1

2
θ̃T Γ−1θ̃, (37)

and choose the adaptive law as

˙̂
θ = Γ[g0ξ(x)z3

n − σ(θ̂ − θ0)], (38)

with gain matrix Γ > 0, then

L V ≤
1

ζ
+

1

ξ
−

n−1
∑

j=1

kjz
2
j −

kn

2
z4
n + z3

n{g0(θ
∗T ξ(x) + ǫ)

+g(x, u)u + [
1

4
(
3ξ

4
)3z4

n−1 +
kn

2
]zn} + θ̃T Γ−1 ˙̂

θ,

on the other hand

−θ̃T σ(θ̂ − θ0)≤−
1

2
‖θ̃‖2 +

1

2
‖θ∗ − θ0‖

≤−
σλmin(Γ)

2
θ̃T Γ−1θ̃ +

1

2
‖θ∗ − θ0‖2(39)

So, we get

L V ≤
1

ζ
+

1

ξ
− 2µ1V + z3

n{g0θ̂
T ξ(x) + g(x, u)u

+[
1

4
(
3ξ

4
)3z4

n−1 +
kn

2
+

1

4
z2
n]zn} + µ2. (40)

Let µ1 = min1≤i≤n{(1 − ǫi)ki, σλmin(Γ)}, µ0
2 = 1

2‖θ
∗ −

θ0‖2 + g0ǫ
2
M . It is easy to see µ1 > 0 and µ0

2 > 0. Choose
the control law v as follows:
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v = −
1

β0
(−ur − uf ). (41)

where

uf = −θ̂T ξ(x) tanh(
znθ̂T ξ(x)

δ
), (42)

ur =−g−1
0 [

1

4
(
3ξ

4
)3z4

n−1 +
kn

2
+

1

2
z2
n +

g2
1

4
z2
n]zn, (43)

with δ is a positive constant. Using the inequality

0 ≤ |x| − xtanh(
x

δ
) ≤ 0.2785δ (44)

Then

z3
n(g0θ̂

T ξ(x) + g(x, u)uf )

= z2
n(g0znθ̂T ξ(x) − g(x, u)znθ̂T ξ(x) tanh(

znθ̂T ξ(x)

δ
))

≤ z2
ng0(|znθ̂T ξ(x)| − znθ̂T ξ(x) tanh(

znθ̂T ξ(x)

δ
))

≤ 0.2785δz2
ng0

≤ κ +
1

3
z6
n, (45)

where κ = 2
3 (0.2785g0δ)

3/2 is a positive constant,

z3
ng(x, u)d(v) ≤

g2
1

4
z6
n + p∗2 (46)

From (40), it holds true that

L V ≤ −2µ1V + µ2. (47)

with µ2 = µ0
2 + κ + p∗2.

The main result on the asymptotic stability of the closed-
cloop system is summarized in the following theorem.

Theorem 3. For the stochastic uncertain nonaffine non-
linear systems (7) satisfying Assumptions 1-4, with control
law (41) and adaptive law (38), then the tracking error is
bounded and the mean square tracking error enters inside
the region

Ω = {y(t) ∈ R|E[(y(t) − yd(t))
2] ≤

2µ2

µ1
, ∀t ≥ T1}(48)

wherein it remains for all time thereafter, and the variable
T1 will be given later.

Proof From (47) and Lemma 1, it is easy to get that
the system is bounded in probability and the mean value
of the Lyapunov function satisfies

d

dt
[E(V )] ≤ −2µ1E[V (t)] + µ2. (49)

So,

E[V (t)]≤ e−2µ1tVn(0) + µ2

t
∫

0

≤ e−2µ1(t−τ)dτ

≤ e−2µ1tVn(0) +
µ2

2µ1
, ∀t ≥ 0 (50)

there exists a time T1

0 10 20 30 40
−1

−0.5

0

0.5

1

Time(sec)

 

 

y
d

x
1

Fig. 1. The response of x1

T1 = max{0,
1

2µ1
ln[

2µ1Vn(0)

µ2
]}. (51)

such that

E[(y(t) − yd(t))
2] ≤ 2E[V (t)] ≤

2µ2

µ1
. 2 (52)

4. COMPUTER SIMULATION

Consider the following nonlinear systems:










dx1 = x2dt

dx2 = (x1x2 + 1.1u + cos u)dt +
1

3
(x2 + sinx1)dω

y = x1

(53)

where D(v) as follows:

u = D(v) =

{

1.5(v − 2) if v ≥ 2,
0 if − 1.5 < v < 2.5,
v + 0.5 if v ≤ −0.5.

(54)

with initial conditions x1(0) = 0.5, x2(0) = 0.1, and the
reference signal yd = 0.5(sin t + sin(0.5t)). It is easy to get
g0 = 0.1, g1 = 2.1, β0 = 1. In the simulation, the fuzzy
membership functions are defined as

µF 1
j
(x) = exp[−(x+2)2

4 ], µF 2
j
(x) = exp[−(x+1)2

4 ],

µF 3
j
(x) = exp[−(x)2

4 ], µF 4
j
(x) = exp[−(x−2)2

4 ],

µF 5
j
(x) = exp[−(x−1)2

4 ].

We choose the virtual control law and the control law as

α1 = −k1z1 + ẏd, (55)

v =−θ̂T ξ(x) tanh(
z2θ̂

T ξ(x)

δ
) − 10[

1

4
(
3ξ

4
)3 +

k2

2
+

1

2
z2
2

+
g2
1

4
z2
2 ]z2, (56)

where z1 = y − yd = x1 − yd, z2 = x2 − α1, k1 = k2 = 2,
δ = 0.2, ξ = 2. The adaptive law

˙̂
θ = Γ[ξ(x)z3

2 − σ(θ̂ − θ0)], (57)

where Γ = 2I, σ = 2, θ0 is randomly taken in the intervals
[−1, 1]. The simulation results are shown in Figure 1 and
Figure 2. From Figure 1, it can be seen that fairly good
tracking performance is obtained.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12240



0 10 20 30 40
−4

−2

0

2

4

Time(sec)

Fig. 2. Control signal

5. CONCLUSION

In brief, a novel adaptive fuzzy control scheme has been
presented for a class of nonaffine uncertain nonlinear
systems with unknown dead-zone input, which is driven
by unknown covariance noise inputs. The proposed control
scheme ensures that all the error variables are bounded in
probability while the mean square tracking error becomes
SGUUB in an arbitrarily small area around the origin.
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