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Abstract:
Maximizing the precision in estimating parameters in a quantum system subject to instrumentation
constraints is cast as a convex optimization problem.

1. INTRODUCTION

Making measurements based on quantum mechanics is gen-
erally referred to as quantum metrology. Some of the cur-
rent and envisioned applications include: measuring physical
properties, (e.g., electrical, thermal, photonic), atomic clocks,
imaging, communications, quantum computation, biometrics,
magentometry, and gravimetry. Quite often the information of
interest is contained in a single parameter which cannot be mea-
sured directly, e.g., the phase difference between the arms of an
optical interferometer, or the transition frequency of an atomic
clock. For single parameter estimation the limit of theoretical
accuracy has been examined in depth, e.g., Holevo (1982),
Braunstein and Caves (1994), Sarovar and Milburn (2006), Gio-
vannetti et al. (2006), Boixo et al. (2007). These studies reveal
that special preparation of the instrumentation – the probe – can
achieve an asymptotic variance smaller than the Cramér-Rao
lower bound, the so-called Quantum Cramér-Rao bound, or the
Quantum Fisher Information. In addition, the unique quantum
property of entanglement can increase the parameter estimation
convergence rate for N repeated experiments from the shot-

noise limit of 1/
√

N to the Heisenberg limit 1/N , which arises
from the uncertainty principle (see, e.g., Brif and Mann (1996)).

It is reasonable to expect that the theoretical Quantum Fisher
Information bound will not be obtained with imperfect and
limited instrumentation resources, i.e., not all states can be
prepared and not all measurement schemes are possible. Under
these conditions what exactly is the best that can be done?

In this paper we present an approach which maximizes the pa-
rameter estimation accuracy in the presence of limits on instru-
mentation, specifically, input states and measurement schemes.
The method is based on the convex optimization approach to
optimal experiment design as developed in Boyd and Vanden-
berghe (2004) and as applied to quantum system identification
in Kosut et al. (2004). We develop a worst-case and average
case objective for optimizing the precision. Focusing on the sin-
gle parameter case, we show that the optimization problems are
linear programs. For the average case the solution to the linear
program can be expressed analytically and involves a simple
search, i.e., finding the largest element in a list. This means
that an enormous number of combinations of state and sensor
configurations can be examined. In principal, with enough com-
puter resources, the multi-parameter case can also be addressed.
We leave that for a future effort.

1 Research supported by the DARPA QuIST Program.

Limited space does not permit any in-depth discussion of the
origin of the quantum mechanical expressions. As this work
is closely related to quantum information processes we recom-
mend M.A. Nielsen and I.L. Chuang (2000) for further exposi-
tion.

The paper is organized as follows: Section §2 describes the
underlying method and introduces the worst-case and average-
case criteria. Section §3 applies the method to the single pa-
rameter estimation problem which is further specialized in Sec-
tion §4 to quantum parameter estimation. The quantum Fisher
bound is described in Section §5 and an example is presented
in Section §6. Some concluding remarks are in Section §8 with
a few suggestions for further studies.

2. OPTIMAL EXPERIMENT DESIGN

What is presented in this section is completely classical; no
quantum mechanics is required. Following this we will show
how the ideas apply to quantum metrology.

Consider a system dependent on an unknown nθ × 1 vector of
real parameters θ which is known a priori to be in a set Θ. The
parameter θ is to be estimated from a set of measured data from
repeated independent, identical experiments. In each experi-
ment the system can be put in any one of Nconfig configurations
x selected from the set of configurations,

X = {xk | k = 1, . . . , Nconfig } (1)

The outcome from each experiment in configuration x k is one
of Nout possibilities with outcome probability denoted by,

pi(xk, θ), i = 1, . . . , Nout (2)

Let ni(xk, θ) denote the number of times outcome i is obtained
from N(xk) identical experiments in configuration xk. Thus,

E ni(xk, θ) = N(xk)pi(xk, θ),

Nout∑

i=1

ni(xk, θ) = N(xk) (3)

where E is the expected value operator with respect to the
probability distribution (2). Let N denote the total number
of experiments and λ(xk) the distribution of experiments in
configuration xk . Thus,

λ(xk) = N(xk)/N ⇒
Nconfig∑

k=1

λ(xk) = 1 (4)

The problem is to select the distribution of experiments per
configuration, λ(xk), k = 1, . . . , Nconfig, or equivalently the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2720 10.3182/20080706-5-KR-1001.0902



number of experiments per configuration, N(xk), so as to
obtain an estimate of θ ∈ Θ with the best accuracy from
N experiments. The “best” attainable estimation accuracy is
defined here as the smallest possible Cramér-Rao bound on the
estimation variance Cramér (1946).

Specifically, if θ̂N is an unbiased estimate of θ, then the estima-
tion error variance satisfies,

E ‖θ̂N − θ‖2 ≥ 1

N
Tr F (λ, θ)−1

F (λ, θ) =

Nconfig∑

k=1

λ(xk)G(xk, θ)

G(x, θ) =

Nout∑

i=1

(
∇θ pi(x, θ)

) (
∇θ pi(x, θ)

)T

pi(x, θ)

(5)

F (λ, θ) is the To achieve the best accuracy we would like to
make the Cramér-Rao lower bound as small as possible, or
more generally, maximize a measure of the size of the Fisher
information matrix, F (λ, θ), for all possible θ ∈ Θ. One way
to obtain such an estimate is to solve the worst-case experiment
design problem:

minimize V (λ) = max
θ∈Θ

Tr F (λ, θ)−1

subject to
∑Nconfig

k=1 λ(xk) = 1
λ(xk) is an integrer multiple of 1/N

(6)

Although F (λ, θ) is convex in λ it is not, in general, convex in
θ. In addition, the integer constraint on λ is not a convex set.
Utilizing the optimal experiment design method presented in
(Boyd and Vandenberghe, 2004§7.5), we can relax the integer
constraints to the convex constraints λ(xk) ≥ 0. In addition,
suppose we take a finite number of samples from the set Θ, say,

{ θr | r = 1, . . . , Nθ } (7)

Then the non-convex integer optimization (6) is approximated
by,

minimize V (λ) = max
r=1,...,Nθ

Tr F (λ, θr)
−1

subject to
∑Nconfig

k=1 λ(xk) = 1, λ(xk) ≥ 0
(8)

This is a convex optimization problem in λ. The solution to
this (relaxed and approximated) problem provides upper and
lower bounds to the unknown solution of (8) with the integer
constraint on the λ(xk) from (6). Specifically, let λopt denote
a solution to (8) with the integer constraint, a solution which
is not known. Let λrlx be a solution to the convex optimization
(8). From the latter we can determine a nearby solution which
satisfies the integer constraint, e.g.,

λ̂(xk) = round
(
Nλrlx(xk)

)
/N (9)

Then,

V (λrlx) ≤ V (λopt) ≤ V (λ̂) (10)

Thus N(xk) = Nλ̂(xk) is the number of experiments to repeat
in configuration xk . This method was applied to the experiment
design for quantum system identification in Kosut et al. (2004).

A variation on this problem is the average-case experiment
design problem:

minimize V (λ) = Tr Favg(λ)−1

subject to Favg(λ) =
∑Nθ

r=1 p(θr)F (λ, θr)∑Nconfig

k=1 λ(xk) = 1, λ(xk) ≥ 0

(11)

where p(θr) is the probability that θ is θr. For example, if all
that is known is that θ ∈ Θ, then it suffices to assume that θ is
uniformly distributed in Θ, and hence, p(θr) = 1/Nθ.

3. SINGLE PARAMETER ESTIMATION

If θ is a scalar, then problems (8) and (11) become, respectively,

minimize V (λ) = max
r=1,...,Nθ

1/F (λ, θr)

subject to F (λ, θr) = λT g(θr), r = 1, . . . , Nθ

λ ≥ 0, 1
T λ = 1

(12)

and

minimize V (λ) = 1/Favg(λ)
subject to Favg(λ) = λT gavg

λ ≥ 0, 1
T λ = 1

(13)

with the k-th element of the Nconfig × 1 vectors g(θ) and gavg

are given by,

(g(θ))k = g(xk, θ) =
∑Nout

i=1 (∂pi(xk, θ)/∂θ)
2
/pi(xk, θ)

(gavg)k = gavg(xk) =
∑Nθ

r=1 p(θr)g(xk, θr)

Problem (12) can be expressed more compactly as,

maximize min
r=1,...,Nθ

λT g(θr)

subject to λ ≥ 0, 1
T λ = 1

(14)

Similarly, problem (13) is equivalent to,

maximize λT gavg

subject to λ ≥ 0, 1
T λ = 1

(15)

These latter formulations reveal that these optimization prob-
lems (12)-(15) are linear programs (LP) in λ which can be
solved efficiently for a very large number of configurations
Nconfig. In particular, it is easy to see that a solution to (13),
or equivalently (15), is given explicitly by,

λ̂k =

{
1 k = arg max

k′=1,...,Nconfig

gavg(xk′ )

0 otherwise

⇓
x̂ = argmax

x∈X
gavg(x)

V (λ̂) = 1/gavg(x̂)

(16)

It is possible that there is more than one optimal distribution
because maxk gavg(xk) may not be unique. It is more likely that
there are other choices which give similar results. Nonetheless,
an advantage of the average-case solution over the worst-case
solution is that only a single configuration is required. As we
will see in the example to follow, the two solutions can be quite
different.

4. QUANTUM SYSTEM PARAMETER ESTIMATION

Consider the quantum system in Figure 1.
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Input
ρ(β)

→ OSR
Q(θ)

→ POVM
M(φ)

→ Outcomes
1, . . . , Nout

Fig. 1. Quantum system for estimating parameter θ.

• Input The n × n state ρ(β) is dependent on the input
configuration parameter β ∈ R

nβ , for which the available
values are,

{ βℓ | ℓ = 1, . . . , Ninput } (17)

• OSR The quantum system dynamics depends on the un-
known parameter θ ∈ R and is described in terms of
what is known as the Kraus Operator Sum Representation
(OSR) (M.A. Nielsen and I.L. Chuang, 2000§8.2).

Q(θ) {ρ(β)} =
∑

k

Qk(θ)ρ(β)Qk(θ)† (18)

The n × n matrices Qk, called operation elements, sat-

isfy
∑

k Q†
kQk = In. A special case is when there is

one OSR element, i.e., the unitary channel, U(θ), where
Q(θ) {ρ(β)} = U(θ)ρ(β)U(θ)† and U(θ)†U(θ) = In. A
further special case is when,

U(θ) = exp(−iθH0) (19)

where H0 is a known n × n Hamiltonian.
• POVM (Positive Operator Value Measure) provides for

a generalization of the quantum measurement postulate
(M.A. Nielsen and I.L. Chuang, 2000§2.2). Any mea-
surement scheme can be represented by a POVM with
elements satisfying the completeness relation,

Mi(φ) ≥ 0,

Nout∑

i=1

Mi(φ) = In (20)

Here the elements, Miφ) are n×n matrices which depend
on the POVM configuration parameter φ ∈ R

nφ for which
the available values are,

{φk | k = 1, . . . , Npovm } (21)

• Outcomes The probability of recording the i-th outcome
with i ∈ {1, . . . , Nout} is given by,

pi(φ, β, θ) = Tr Mi(φ)σ(θ, β)
σ(θ, β) =

∑
k Qk(θ)ρ(β)Qk(θ)†

(22)

The state σ(θ, β) is the output of the quantum channel
Q(θ) and the input to the POVM.

We ought to mention that the form of the system of Figure 1
is not the most general. For example, it may be that the “OSR”
block depends on φ as well as θ, and that the POVM is not at
all adjustable. The method, however, remains the same. Hence,
under the stated conditions, the worst-case experiment design
problem (14) becomes,

maximize min
r=1,...,Nθ

∑Npovm

k=1

∑Ninput

ℓ=1 λkℓ g(φk, βℓ, θr)

subject to λkℓ ≥ 0,
∑Npovm

k=1

∑Ninput

ℓ=1 λkℓ = 1
(23)

with

g(φ, β, θ) =
∑Nout

i=1 (∂pi(φ, β, θ)/∂θ)
2
/pi(φ, β, θ) (24)

Similarly, the average-case experiment design problem (15)
becomes,

maximize
∑Npovm

k=1

∑Ninput

ℓ=1 λkℓ gavg(φk, βℓ)

subject to λkℓ ≥ 0,
∑Npovm

k=1

∑Ninput

ℓ=1 λkℓ = 1
(25)

with

gavg(φk, βℓ) =

Nθ∑

r=1

p(θr)g(φk, βℓ, θr) (26)

Following (16), the solution to (25) is,

λ̂kℓ =

{
1 k, ℓ = argmax

k′,ℓ′
gavg(φk′ , βℓ′)

0 otherwise

V (λ̂) = 1/max
k,ℓ

gavg(φk, βℓ)

(27)

Solutions to (23) and (27) give, respectively, the worst-case and
average-case levels of Fisher information as a function of the
uncertain parameter θ:

Fwc(θ) =
∑Npovm

k=1

∑Ninput

ℓ=1 λwc
kℓ g(φk, βℓ, θ) (28)

Fac(θ) = λac
kℓ g(φk, βℓ, θ) (29)

In addition, as a benchmark we can also compute the maximum
possible subject to the constraints on the input and measure-
ment scheme,

Fmax(θ) = max
φk,βℓ

g(φk, βℓ, θ) (30)

5. QUANTUM FISHER UPPER BOUND

The quantum Fisher bound represents the maximum possible
with no measurement constraints, i.e., the POVMs do not de-
pend upon a configuration parameter as in (20). For the system
of Figure 1 with a single parameter to be estimated, this maxi-
mum achievable Fisher information is given by solving,

maximize F (θ, β) =
∑Nout

i=1 (∂pi/∂θ)
2
/pi

subject to pi = TrMiσ(θ, β)

Mi ≥ 0,
∑Nout

i=1 Mi = In

(31)

with σ(θ, β) from (22). The optimization variables are the
POVM matrices Mi. For the single parameter case, a solution
method has been developed, see, e.g., Holevo (1982), Braun-
stein and Caves (1994). Specifically,

FQmax(θ, β) = Tr S(θ, β)2σ(θ, β)

S(θ, β)σ(θ, β) + σ(θ, β)S(θ, β) = 2
∂σ(θ, β)

∂θ

(32)

with S(θ, β) the solution to the above Lyapunov equation.
The quantum Fisher bound, FQmax(θ, β) generally depends on
the unknown parameter value θ, and in this case also on the
input configuration parameter β. As developed in the previous
references, for arbitrary pure state inputs ρ = |ψ〉〈ψ|, and with
a unitary channel given by (19),

FQmax(θ) = (λmax(H0) − λmin(H0))
2

(33)

with λmax, λmin here denoting the maximum and minimum
eigenvalues of the Hamiltonian H0. Although the Fisher bound
does not depend on θ, the optimizing pure state input does.

6. EXAMPLE: PERTURBED UNITARY CHANNEL

To illustrate the optimization methods we assume the quantum
channel in Figure 1 is a unitary channel whose output is
corrupted by amplitude damping, an effect attributed to energy
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dissipation, e.g., spontaneous photon emission. The unitary is
given by (19), specifically,

U(θ) = exp(−iθH0), H0 =
1√
2

[
1 1
1 −1

]
, (34)

with the unknown parameter θ in the range,

0.2 ≤ θ/(π/2) ≤ 0.8 (35)

The amplitude damping channel can be described by an OSR
with two elements (see, e.g., M.A. Nielsen and I.L. Chuang
(2000)),

A1(γ) =

[
1 0

0
√

1 − γ

]
, A2(γ) =

[
0
√

γ
0 0

]
,

with γ the probability of dissipation, e.g., photon loss. It follows
that the OSR of Q(θ) in Figure 1 has two elements, Qk(θ) =
Ak(γ)U(θ), k = 1, 2.

The available input for the experiment is the 2 × 1 pure state
|ψ(β)〉 which can be adjusted via an angle β as follows:

|ψ(β)〉 = cosβ|0〉 + sin β|1〉, 0 ≤ β ≤ π (36)

with the standard basis,

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]

The POVMs can be adjusted via an angle φ,

M1(φ) = |z(φ)〉〈z(φ)|
M2(φ) = I2 − M1(φ)
|z(φ)〉 = cosφ|0〉 + sin φ|1〉

}
0 ≤ φ ≤ π (37)

We determine the Fisher information for three amplitude damp-
ing probabilities: γ = 0, 0.05, 0.25 with Nθ = 100 uniformly
spaced samples of θ from (35). The POVM and input configu-
ration angles β, φ are selected from the ranges in (36) and (37)
with Ninput = 10 and Npovm = 10 uniformly spaced samples
for each of the following three configuration constraints:

(1) POVM configured (0 ≤ φ ≤ π), input fixed (β = 0)
(2) POVM fixed (φ = 0), input configured (0 ≤ β ≤ π)
(3) POVM & input configured (0 ≤ φ, β ≤ π)

Figures 2-4 show the Fisher information as a function of the
parameter θ for the three values of amplitude damping and the
three configuration constraints. In each figure the solid line is
the maximum achievable for each value of θ that maximizes
the Fisher information under the configuration constraints from
(30). The dashed-line is what is achieved by using the worst-
case distribution of experiments from (28), and the dotted line
is the average-case distribution of experiments from (29). The
dot-dash line is the quantum Fisher upper bound for each θ from
(32).

In all cases, the Fisher information with the average-case dis-
tribution, Fac(θ) from (29) perfectly matches the maximum
possible, Fmax(θ) from (30), over a portion of the θ range.
The constrained information is of course always lower than the
quantum Fisher bound. When both POVM and input are jointly
configured the constrained information begins to approach the
ideal upper bound. The curves for the case where only the
POVM is configured are generally below those where only the
input is configured. This clearly shows that the constraints can
have a significant impact on accuracy.
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POVM configured, input fixed, γ = 0
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POVM & input configured, γ = 0
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Q−max at each θ

max at each θ

worst−case over θ

average−case over θ

Fig. 2. Comparison of configuration constraints with γ = 0
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POVM configured, input fixed, γ = 0.05

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

POVM fixed, input configured, γ = 0.05
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POVM & input configured, γ = 0.05

θ/(π/2)

Q−max at each θ

max at each θ

worst−case over θ

average−case over θ

Fig. 3. Comparison of configuration constraints with γ = 0.05

Input configuration also an effect on the quantum Fisher bound.
The solid lines in Figure 5 show the bound for each value of
γ vs. the input configuration angle β for a large number of
samples in the range. It turns out that the bound is independent
of θ – the solid lines reflect that value. (Why it is constant in this
example, or if this is a more general feature, is not understood
at this time.) The triangles show the Ninput = 10 available
values. The solid lines indicate that multiple inputs can achieve
the bound whereas the restricted set forces a unique maximizer
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POVM configured, input fixed, γ = 0.25
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POVM & input configured, γ = 0.25
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Q−max at each θ

max at each θ

worst−case over θ

average−case over θ

Fig. 4. Comparison of configuration constraints with γ = 0.25

which does not necessarily occur at the true maximum. For
example, as seen in the top plot for γ = 0, the constrained
maximum is near the global value, but not quite. The global
value for γ = 0, computed from (33) with H0 from (34)
is FQmax(θ) = 4. This value is achieved only in the case
with γ = 0 and clearly over bounds all the other plots where
γ > 0. As might be expected, a perturbation of the unitary
channel, in this case via amplitude damping, makes it harder to
attain the quantum Fisher bound. Observe also that if the inputs
were further constrained, say β/π ∈ {0, 0.2, 0.5, 0.8}, then the
achieved quantum Fisher bound would not be nearly as close
to the maximum possible. Figure 5 provides the designer with
information about the limit of performance and if the potential
performance increase is significant, then new instrumentation
might be considered.

Another way to see the results in Figures 2-4 is presented in
Table 1 which gives the minimum number of experiments to
achieve an estimation accuracy of 0.01 as predicted by the
Cramér-Rao bound (5). For the three test values of ampli-
tude damping and the three configurations, the table shows,
Nmin = 1/

(
(0.012 minθ F (θ)

)
for F (θ) from the quantum

Fisher bound (32), the maximum subject to the constraints (30),
the worst-case (28), and the average-case (29). As the Cramér-
Rao bound is asymptotic in the number of experiments, there is
no guaranty that these are the number of experiments actually
required to saturate the bound. The table thus only gives a
representation of the effort required in each case.

The numerically non-zero elements of the worst-case and
average-case optimal distributions for all the cases are shown
in Table 2. By construction, only one input configuration is
required for the average-case distribution (27). The worst-case
distribution requires up to 3 configurations when γ > 0. In this
example the configuration angles remain relatively unchanged
exhibiting some robustness to the amplitude damping probabil-
ity γ. The worst-case distributions change more significantly.
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4

β/π

γ = 0.25

input configurations

Fig. 5. Quantum Fisher bound vs. all possible input configura-
tions β for each γ. △ are those available.

γ Configured Qmax Max Worst-Case Average-Case

0 POVM 5000 5380 8480 10,822

input 2519 5380 8485 10,824

both 2519 2703 2703 2703

0.05 POVM 5128 7719 10,725 14,569

input 2617 7294 9506 13,225

both 2617 2983 3335 3873

0.25 POVM 5714 31,097 31,097 51,625

input 3099 7991 10,508 12,486

both 3099 3687 4743 5401

Table 1. Minimum number of experiments to
achieve 0.01 deviation in estimation accuracy

γ Configured Average-Case Worst-Case
φ

π/2

β
π/2

λac
φ

π/2

β
π/2

λwc

0 POVM .89 0 1 .44 0 .57

input 0 .89 1 0 .44 .57

0 .78 .43

both .89 .89 1 .89 .89 .89

0.05 POVM .89 0 1 .44 0 .43

.78 0 .57

input 0 .33 1 0 0 .15

0 .33 .70

0 1 .15

both .89 .33 1 .89 .33 .65

.89 .89 .35

0.25 POVM .44 0 1 .78 0 1

input 0 .33 1 0 0 .14

0 .33 .72

0 1 .14

both .89 .33 1 .89 .33 .80

.89 .89 .20

Table 2. Optimal distributions

7. COMPUTING THE ESTIMATE

Figures 2-4 and/or Tables 1-2 are clearly useful in assessing
the effort required to obtain an estimate of the parameter. In
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Fig. 6. Average negative log-likelihood function for γ = 0.25

addition, it is also necessary to know if the search space is easy
or hard, e.g., convex or not. Using the notation from Section
§2, consider the Maximum Likelihood (ML) estimate. That is,
solve for θ ∈ Θ which minimizes the negative log-likelihood
function,

L(θ) = −∑Nout

i=1

∑Nconfig

k=1 ni(xk) log pi(xk, θ) (38)

For analysis purposes consider the average log-likelihood func-
tion, Lavg(θ) = (1/N) < L(θ) >, which when evaluated for
the previous example gives,

Lavg(θ) =
∑Npovm

k=1

∑Ninput

ℓ=1 λkℓLkℓ(θ)

Lkℓ(θ) = −∑Nout

i=1 pi(φk, βℓ, θ0) log pi(φk.βℓ, θ)
(39)

where θ0 is the true parameter and θ is the optimization vari-
able. Figure 6 shows this function for γ = 0.25 and for three
values of θ0 (vertical lines), with both the POVM and input
jointly configured, and with λkℓ optimized for θ in the range
(35). The search space is clearly convex, which it also is for all
the other cases in this example. In general the search space is
not guaranteed to be convex.

To increase the precision would require a more refined knowl-
edge of the parameter range. A standard approach to circumvent
not knowing the true value, or a more refined range, is to
proceed adaptively, by “bootstrapping.” Use the current esti-
mate to solve for the corresponding optimal configuration, and
then repeat the estimation procedure. This clearly introduces
additional computational effort, not only increasing the overall
rate of convergence, but also potentially decreasing the preci-
sion since the configuration is tuned to the current estimate.
A potential advantage to the approach presented here is the
capability of accounting for a parameter range which could
also be estimated adaptively. In addition, the set of samples
of θ (35) used for calculating the experiment design does not
likely contain either the true parameter or the estimate obtained
from maximum likelihood. The latter, however, for the next
iteration, can be added to the sample set as well as refining the
range, perhaps by also estimating the variance. Clearly issues of

convergence – both rate and precision – need to be investigated
for this approach.

8. CONCLUSION

We have shown that maximizing the precision in estimating
a single parameter in a quantum system subject to input and
POVM constraints reduces to a linear program for both what
is defined here as a worst-case and average-case objective.
For the average-case, the solution to the linear program can
be expressed analytically and involves a simple search, i.e.,
find the largest element of an easily computed vector. Both
solutions provide different levels of Fisher information over
the range of anticipated parameter variation. Comparing these
constrained solutions to the best possible under the constraints
as well as to the quantum Fisher bound gives an indication of
the performance limitations imposed by the constraints.

There are several directions worth pursuing. Perhaps most im-
portantly is the overall rate of parameter estimation conver-
gence. This should include not just the asymptotic rate from
the classical or quantum Cramér-Rao inequalities, but also the
effort required to compute the estimate, e.g., with bootstrapping
or other adaptive approaches. It will also be interesting to see
how constraints effect the rate of convergence, with or with-
out bootstrapping, when entanglement is introduced, e.g., see
Giovannetti et al. (2006) and the references therein. A further
refinement of what has been presented here is to solve a robust
optimization problem where both the parameters of interest
and the parameters associated with loss (amplitude damping
probability in the example) are taken into account.
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