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Abstract: The present work addresses the control of torsional micro-mirrors assisted by a constant bias
voltage. It is shown that such a configuration will have an effect of torque multiplication and hence, it
will reduce the dynamic range of actuation signal. A nonlinear controller using backstepping and barrier
functions is developed, which can guarantee closed-loop stability in a restricted range covering a big
portion of the physically allowable one, while eliminating the singularities due to uncontrollability and
contact dynamics. In this study, the actuation voltage is taken as a state variable. This would further
simplify the implementation of experimental systems. The development of the control algorithm has
been demonstrated through a rectangular micro-mirror and the performance of the system is verified by
numerical simulations. As a generic model is used in the design, the control algorithm developed can be
applied to any device with the same structure regardless of the geometric shape.

1. INTRODUCTION

It is known that electrostatic actuation of torsional structures
leads to a nonlinear dependency of the torque on the applied
voltage across the device and to high nonlinear electrical dy-
namics due to the varying capacitance between the electrodes
(see, e.g., Senturia [2002]). Due to this nonlinearity, the actu-
ator moves hardly in the range of small deflection from its flat
position (zero tilt angle) and becomes more sensitive to the span
of the actuation signal as the tilt angle increases. This motivates
the use of such a scheme in which a constant bias voltage
is applied to shift the actuation signal to a steeper region on
the voltage actuation curve (see Fig. 1), implementing the so-
called torque multiplication (see, e.g., Hornbeck [1990], Pareek
et al. [2005]) and helping to reduce the amplitude of the control
signal. A schematic of such a configuration for one-degree of
freedom (1DOF) torsional micro-mirrors is shown in Fig. 2.
However, the bias voltage applied in such schemes causes a
spring softening effect that makes the pull-in angle decrease,
shortening the stable range of the micro-mirror when an open-
loop control is used (see, e.g., Degani et al. [1998], Pareek et al.
[2005]). This problem can be solved by using an appropriate
closed-loop control which is capable of removing the pull-in.

Note that electrostatic actuation leads to systems which are not
linearly controllable when the charge on the device is zero (see,
e.g., Maithripala et al. [2005], Zhu et al. [2007], Agudelo et al.
[2007a]). Therefore, any linearization-based control design will
result in a singularity at this point. Applying a bias voltage
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Fig. 1. Typical voltage actuation curve.

Fig. 2. Schematic cross section of torsional actuator with a bias
configuration.

would bring the operation point far from this singular point and
therefore helps enhancing the controllability of the system.

The movement of the micro-mirror is limited by physical con-
straints. It can be seen later on that when the movable plate hits
the fixed one, the dynamics of the actuator exhibit a singularity.
This might affect the stability of the system if the contact dy-
namics are not taken into account in controller design. As the
behavior at the contact can be modelled by a switching system,
the overall stability might be achieved by a proper design (see,
e.g., Maithripala et al. [2005]). Another viable solution is to
impose a hard constraint on the movement of the actuator. In the
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literature, various techniques have been developed for control
of constraint nonlinear systems, e.g., artificial potential field
(Rimon and Koditschek [1992]), invariance control (Wolff and
Buss [2005]), nonlinear reference governor (Bemporad [1998],
Gilbert and Kolmanovsky [2001]), and Nonlinear Model Pre-
dictive Control (Bemporad [2003]). The method used in this
work is the one based on backstepping with barrier functions
introduced by Ngo et al. [2005]. This approach has the advan-
tage of dealing with multiple state constraints using a recursive
design procedure. This method has been applied to the control
of a parallel-plate MEMS in the work of Tee et al. [2006] in
order to saturate the movement of the device. In this work, we
adapted this method to the control of torsional micro-mirrors.
In addition to preventing the mirror from hitting the fixed elec-
trode, we also consider the constraint on the actuation voltage,
hence avoiding the aforementioned different singularities.

In this work we consider state feedback control. In practice,
the angular velocity being not available for measurement, we
can use state observers for closed-loop systems implementation
(see, e.g., Zhu et al. [2006a], Agudelo et al. [2007a]).

The rest of the article is organized as follows. Section 2 ad-
dresses the modelling of generic 1DOF torsional micro-mirrors
with bias voltage. Section 3 presents the control synthesis.
Section 4 deals with the design details of the control of a
rectangular micro-mirror. Section 5 reports on the simulations
of the device being considered. Finally, Section 6 contains some
concluding remarks.

2. MODELLING OF 1DOF MICRO-MIRRORS WITH BIAS
VOLTAGE

First of all, we establish the dynamical model of 1DOF tor-
sional micro-mirrors. When considered as a rigid body, the
equation of motion of such devices is given by:

Jθ̈ + bθ̇ + kθ = Te, (1)

where J is the mass moment of inertia of the movable electrode,
b is the viscous damping coefficient, k is the the mechanical
stiffness coefficient, and Te is the applied electrical torque.

The capacitance due to a single electrode can be expressed as

Ca(θ) = C0γ(θ), (2)

where C0 is the capacitance at the flat position and γ(θ) is
a dimensionless scaling function satisfying γ(0) = 1. An
advantage of expressing the capacitance of the device in the
above generic form is that the control algorithm developed can
be applied to any device of the same structure but with an
arbitrary geometric shape.

The electrical torque produced by a single electrode can be
obtained from differentiating the capacitance with respect to the
angular deflection according to Senturia [2002]:

Te =
1

2
V 2

a

∂Ca(θ)

∂θ
=

1

2
V 2

a C0γ
′(θ), (3)

where Va is the applied voltage across the device.

The dynamics of the electrical subsystem can be deduced from
the equivalent circuit, including the amplifier and the actuator,
as shown in Fig. 3, where R is output impedance of the voltage
amplifier and Cp represents the parallel capacitor including the
output capacitance of the voltage amplifier and the parasitics
due to current leak. The control voltage Vs is composed of the
bias VB and the actuation signal u. When the charge on the

Fig. 3. Equivalent circuit.

device Qa is taken as a state variable, the dynamical model of
the electrical subsystem is given by Zhu et al. [2006b]:

Q̇a =
Ca

R(Ca + Cp)

(

Vs −
Qa

C2
a

(

Ca − RCpĊa

)

)

. (4)

In the literature, it is common to consider the charge as a state
variable. However, the implementation of on-chip charge mea-
surement apparatus often results in a complex structure (see,
e.g., Anderson et al. [2005]). In addition, the charge measure-
ment is based essentially on the accumulation of the current
across the actuator which is very weak for capacitive devices.
For this reason, the charge measurement is prone to noise and
low resolution, in addition to the off-set due to integration.
Voltage measurement however is instantaneous and easy to
implement, making the actuation voltage a better state variable
candidate for control system design and implementation. By
using the relationship Va = Qa/Ca we can deduce from (4)
that

V̇a =
Vs − Va

RC0 (ρ + γ(θ))
− θ̇γ′(θ)Va

ρ + γ(θ)
, (5)

where ρ := Cp/C0, representing the influence of the parasitic
capacitor.

Note that it is important to take into account the influence of
the dynamics of the voltage amplifier. In particular, the output
capacitance of the amplifier can be much higher than the one
of the device in a large operating range. This has the effect of
slowing down the actuation speed thus affecting the transition
behavior as well as the stability of the system.

When the two electrodes are both charged, they will generate
opposite electrical torques. In the sequel, we refer to the elec-
trode that produces a counterclockwise (resp. clockwise) tilt
when a voltage is applied as the positive (resp. negative) one.
Letting Cep and Cen be the capacitances due to the positive and
negative electrodes, respectively, we then have

Cep(θ) =C0γ(θ),

Cen(θ) =Cep(−θ) = C0γ(−θ).

Denoting γθ = γ(θ) and γ−θ = γ(−θ), the total electrical
torque is given by:

Te =
1

2

(

C ′

ep(θ)V
2

ap + C ′

en(θ)V 2

an

)

=
C0

2

(

γ′

θV
2

ap + γ′

−θV
2

an

)

(6)

where Vap and Van are the voltages across the positive and the
negative electrodes, respectively.

Denoting by ω the angular velocity, we obtain from (1), (5), and
(6) that

θ̇ =ω (7a)

ω̇ =
1

J

(

−bω − kθ +
C0

2

(

γ′

θV
2

ap + γ′

−θV
2

an

)

)

(7b)

V̇ap =
1

RC0 (ρ + γθ)
(Vsp − (1 + RC0ωγ′

θ) Vap) (7c)
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where Vsp is the control signal for the positive electrode. In the
present scheme, the voltage across the negative electrode Van

is a constant.

Note that the contact of the movable and the fixed electrodes
will result in shorting and rendering the electrical dynamics
singular. A practical solution for preventing the device from
shorting is to make the movable electrode bigger, so that the
device cannot attain the angle at which the movable electrode
touches the fixed one. Subsequently, the maximal tilt angle,
denoted by θmax, is smaller then the touch angle and the system
(7) is defined in the restricted state space X = {(θ, ω, Vap) ∈
R

3|θ ∈ [−θmax, θmax]}.

We make the following basic assumption on the structure of the
devices addressed in this study:

Structural Assumption: The structure for positive and negative
actuation is identical and the maximal tilt angle is smaller than
the one at the position of touch.

For devices whose capacitance is monotonic increasing with
respect to θ, γθ will be strictly positive and γ′

θ will be non zero
and bounded for all |θ| ≤ θmax, if the above assumption holds.

In order to apply backstepping design, we transform System
(7) into the so-called strict-feedback form. Letting vap = V 2

ap,
denoting

ωn =

√

k

J
, ξ =

b

2Jωn

, βθ =
2

RC0 (ρ + γθ)
,

and expressing the control signal as the sum of the bias voltage
VB and the actual actuation control u

Vsp = u + VB,

we obtain

θ̇ =ω (8a)

ω̇ =
1

J

(

−bω − kθ +
C0

2

(

γ′

θvap + γ′

−θV
2

B

)

)

(8b)

v̇ap =βθ

(√
vap(u + VB) − (1 + RC0ωγ′

θ) vap

)

(8c)

It is important to note that, since Vap = ±√
vap, System (8) rep-

resents only one branch of the dynamics of the original system.
However, we can see later that it is possible to find a control that
will render the domain X̄ = {(θ, ω, Vap) ∈ R

3|Vap > 0, θ ∈
[θmin, θmax]} invariant. Therefore, no trajectory of the system
will cross the boundary Vap = 0 and, consequently, (8) is a
viable representation of the dynamics of the system. Further-
more, as the electrostatic force is always attractive regardless of
the sign of the applied voltage, any feasible operating position
can be achieved by using only positive (or negative) actuation
voltage.

3. CONTROL SYNTHESIS

We consider in this work the tracking control problem with
y = θ as the output. Following a classical approach, we choose
a sufficiently smooth reference trajectory yd for θ as a function
of time and use backstepping to make this trajectory attractive.
The design method employed is basically the one introduced by
Ngo et al. [2005]. One of the particular feature of their method
is that it guarantees the boundness of the virtual control at
each step of backstepping, a necessary condition for achieving
multiple constraints on state variables. The controller design
consists of the following three steps corresponding to the three
subsystems expressed in (8).

Step 1: Define the error signal z1 = θ − yd. Letting κ1 be a
positive constant representing the desired bound on tracking
error z1, then the desired constraints on the tilt angle can be
expressed as

θmin ≤ y
d
− κ1 ≤ θ ≤ ȳd + κ1 ≤ θmax (9)

where y
d

and ȳd are, respectively, the biggest lower bound and

the least upper bound of yd.

A candidate CLF is chosen as

V1 =
k1

2
log

(

κ2

1

κ2

1
− z2

1

)

, (10)

where k1 is a design parameter. As V1 has a barrier function
structure:

|z1| → κ1 ⇒ V1 → ∞
and the reference trajectory yd is bounded, z1 will be bounded
by κ1 if |z1(0)| < κ1 and, consequently, θ will be bounded by
(9).

Let α1 be the virtual control, also called the stabilizing function,
and z2 = ω − α1 be the corresponding error signal. The
time derivative of V1 along the solutions of the corresponding
dynamics is

V̇1 =
k1z1

κ2

1
− z2

1

ż1 =
k1z1 (z2 + α1 − ẏd)

κ2

1
− z2

1

.

If the virtual control is chosen as

α1 = −c1z1 + ẏd, (11)

where c1 is a design parameter, then we have

V̇1 = − k1c1

κ2

1
− z2

1

z2

1
+

k1

κ2

1
− z2

1

z1z2. (12)

Step 2: Similarly to Step 1, we augment V1 by adding another
barrier structure:

V2 = V1 +
k2

2
log

(

κ2

2

κ2

2
− z2

2

)

, (13)

where k2 is a design parameter and κ2 represents the desired
bound on error signal z2.

The time derivative of V2 along the solutions of the correspond-
ing dynamics is

V̇2 =V̇1 +
k2z2

κ2

2
− z2

2

ż2

= − k1c1

κ2

1
− z2

1

z2

1
+

k1

κ2

1
− z2

1

z1z2 +
k2z2

κ2

2
− z2

2

(

−2ζω − ω2

nθ

+
C0

J

(

γ′

θ (z3 + α2) + γ′(−θ)V 2

B − α̇1

)

)

, (14)

where α2 is the second virtual control and z3 is the error signal
defined as z3 = vap − α2. If α2 is chosen as

α2 = −
γ′

−θ

γ′

θ

V 2

B +
2J

C0γ′

θ

(

−c2z2 + 2ζω + ω2

nθα̇1

)

, (15)

where c2 is a design parameter, then we have

V̇2 = − k1c1

κ2

1
− z2

1

z2

1
+

k1

κ2

1
− z2

1

z1z2 −
k2c2

κ2

2
− z2

2

z2

2

+
γ′

θC0

2J

k2

κ2

2
− z2

2

z2z3.

Note that in order to keep the virtual control α2 bounded, one
did not try to directly cancel the cross-term k1z1z2/

(

κ2

1
− z2

1

)

in (14), but rather dominate it by using suitable nonlinear
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damping. More specifically, by completing the square, we can

express V̇2 as

V̇2 = −W1 −
k2c2

2 (κ2

2
− z2

2
)
z2

2
+

γ′

θC0

2J

k2

κ2

2
− z2

2

z2z3, (16)

where

W1 =
k1

2 (κ2

1
− z2

2
)

(z1 − z2)
2

+
k1c1

κ2

1
− z2

1

z2

1
− k1

2 (κ2

1
− z2

1
)
z2

1

− k1

2 (κ2

1
− z2

1
)
z2

2
+

k2c2

2 (κ2

2
− z2

2
)
z2

2
. (17)

It has been shown by Ngo et al. [2005] that if

c1 ≥ κ2

2

κ2

1
σ2

z1

+
1

2
, (18)

where σz1
∈ (0, 1) is a constant, and

c2 ≥ k1κ
2

2

k2κ2

1

(

1 − σ2
z1

) , (19)

then W1 is positive-definite in z1 and z2.

It can be shown from (15) that α2 is bounded if the Structural
Assumption holds and z2 remains bounded.

Step 3: Finally, in order to bound vap, it suffices to saturate the
error signal z3. To this end, we augment V2 by adding a third
barrier structure as

V = V2 +
k3

2
log

(

κ2

3

κ2

3
− z2

3

)

, (20)

where k3 is a design parameter and κ3 is the desired bound on
z3.

The time derivative of V along the solutions of System (8) is
given by

V̇ =V̇2 +
k3z3

κ2

3
− z2

3

ż3

= − W1(z1, z2) −
k2c2

2 (κ2

2
− z2

2
)
z2

2
+

γ′

θC0

2J

k2

κ2

2
− z2

2

z2z3

+
k3

κ2

3
− z2

3

z3

(

βθ

(√
vap(u + VB) − (1 + RC0ωγ′

θ) vap

)

− α̇2) .

We chose a control law of the form

u =
1

√
vap

(

α̇2 − c3z3

βθ

−√
vapVB + (1 + RC0ωγ′

θ) vap

)

,

(21)

where c3 is a design parameter, α̇2 is given by

α̇2 =

(

γ′

−θγ
′′

θ

γ′2

θ

+
γ′′

−θ

γ′

θ

)

ωV 2

B +
2J

C0γ′

θ

(

−c2ż2 + 2ζω̇ + ω2

nω

+α̈1) −
2Jγ′′

θ ω

C0γ′2

θ

(

−c2z2 + 2ζω + ω2

nθ + α̇1

)

, (22)

and α̇1 and α̈1 can be computed directly from (11). With this

control, V̇ becomes

V̇ = −W1 − W2, (23)

where

W2 =
k2c2

2 (κ2

2
− z2

2
)
z2

2
− γ′

θC0

2J

k2

κ2

2
− z2

2

z2z3 +
k3c3

κ2

3
− z2

3

z2

3
.

(24)

Similar to the analysis in Step 2, we can show that W2 will be
positive-definite if

Fig. 4. Schematic representation of the rectangular micro-
mirror.

c2 ≥ κ2

3

κ2

2
σ2

z2

+
1

2
, (25)

where σz2
∈ (0, 1) is a constant, and

c3 ≥ C0 |γ′

θ|max

4J

k2κ
2

3

k3κ2

2

(

1 − σ2
z2

) . (26)

Hence, if the design parameters are tuned in such way that (18),

(19), (25), and (26) are all satisfied, then V̇ will be negative-
definite in the domain

D = {zi ∈ R : |zi| < κi, i = 1, 2, 3} . (27)

In addition, V → ∞ as zi → κi. Therefore D will be an
invariant set and any trajectory starting from the inside of D
will asymptotically converge to the origin. We can thus infer
that the closed-loop system is stable.

4. CONTROL OF A RECTANGULAR MICRO-MIRROR

In the following we consider a micro-mirror whose schematic
representation is shown in Fig. 4. The geometric, mechanical,
and electrical parameters of the device used in the study are
those of a micro-mirror in our lab. The values of these param-
eters are obtained from design specifications and experimental
measurements and are given in Table 1.

Table 1. Parameters of the Micro-mirror.

Parameter Value

Mirror width W 500 (µm)

Mirror length L 230 (µm)

Distance of electrodes l 40 (µm)

Air gap d 12 (µm)

Damping ratio ζ 0.2

Natural frequency ωn 26500 (rad/s)

Stiffness coefficient k 3.9 10−6 (N/rad)

Pull-in voltage VPIN ∼ 280V

Pull-in angle θPIN ∼ 1◦

Maximal tilt angle θmax 2.7◦

Output resistance R 100 (Ω)

Output capacitance Cp 3.0 × 10−7 (F)

Permittivity ε 8.85 × 10−12 (F/m)

As the air gap of this device is much smaller than its extent, the
fringing field effect can be ignored (Chan and Dutton [2000]).
The capacitance due to a single electrode is then given by

Ca = εW

∫ L

l

2 cos θ

dx

d − x sin θ
=

εW

sin θ
ln

(

d − 0.5l tan θ

d − L sin θ

)

,

(28)
where ε is the permittivity in the air gap, W is the width of the
mirror and the electrodes, L is the length of the mirror, l is the
distance separating the two electrodes, and d is the air gap. Note
that to obtain (28), we suppose that the length of the actuation
electrode is sufficiently longer than that of the mirror.
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Fig. 5. Dynamical range of the control signal vs. bias voltage.

The capacitance at the flat position is given by

C0 =
εWL

d
, (29)

therefore the scaling function can be expressed as

γθ =
d

L sin θ
ln

(

d − 0.5l tan θ

d − L sin θ

)

. (30)

It is straightforward to verify that the above scaling function
satisfies the properties we have imposed earlier in control
design.

Note that for a small tilt angle, we have sin θ ≈ θ. Then the
capacitance given in (28) will reduce to a popular formula often
used in the literature (see, e.g., Chan and Dutton [2000]) when
l = 0.

In order to explore the capacity of torque multiplication, a high
bias voltage is expected. However, as the actuation voltage
curve is highly nonlinear, it is also of interest to minimize
the dynamical range of the control signal. A numerical study
on the dynamical range of actuation voltage versus different
biases has been performed the result of which is shown in
Fig. 5. We can see that a bias close to the pull-in voltage can
result in an efficient torque multiplication while keeping the
dynamical range of the control signal reasonable in a big part of
the operating range. It is also preferable to choose a bias lower
than the pull-in voltage, in order for the device not to snap down
when the control loop is open.

We can follow the line of ideas proposed by Ngo et al. [2005] to
find the worst case constraints and to optimize the overall tun-
ing. However, as we deal with a specific device, the controller
tuning is based on numerical analysis.

Our objective is to find suitable constraints on tilt angle and ac-
tuation voltage, in order to avoid the singularity. We chose then
to bound the tilt angle according to −0.2◦ ≤ θ ≤ 2.7◦. When
the bias voltage is fixed to 200 Volts, the corresponding actu-
ation voltage will be bounded as 124.6 Volts ≤ Vap ≤ 338.6
Volts. The desired bound on angular tracking error is 0.2◦ and
the one on voltage regulation error is 25 Volts. We do not
impose an explicit constraint on the angular velocity but only on
the corresponding error signal. We choose then κ1 = 0.0035,
κ2 = 1, κ3 = 25. For simplicity, we choose k1 = k2 = k3 = 1.
We obtain 9.5 ≤ γ′

θ ≤ 318.2 in the desired operating range. We
then tune the controller parameters c1, c2, and c3 by varying the
value of αz1

and αz2
.

5. SIMULATION RESULTS

Two reference signals are used in simulations. The first one is a
sine wave of the following form:

yd(t) = 0.5A (1 + sin (2πt/T − π/2)) , (31)
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Fig. 6. Closed-loop responses of scanning control: (a) tilt angle
θ; (b) angular velocity ω; (c) actuation voltage Vap; (d)
control signal u.

where A is the pick-to-pick amplitude and T is the period. This
reference trajectory is used for scanning control applications.

Figures 6(a)-6(d) show the simulation results for scanning
trajectories with an amplitude of 2.5◦ and a period of 20ms
and 5ms, respectively. It can be seen that the mirror follows
smoothly the reference without distortion in the full deflection
range while respecting the constraints, hence delivering an
enhanced performance. Figure 6(d) shows the control signal u.
Obviously, the relationship between the input and the output is
highly nonlinear.

The reference trajectory used in set-point control consists of
three segments: the initial position, the final position, and a
polynomial connecting these two positions, which is of the
following form:

yd(t) = θ(ti) + (θ(tf ) − θ(ti))τ
5(t)

4
∑

i=0

aiτ
i(t), (32)

where θ(ti) is the initial tilt angle at time ti, θ(tf ) is the desired

tilt angle at time tf , and τ(t) � (t − ti)/(tf − ti). The
coefficients in (32) can be determined by imposing the initial
and final conditions, which yields a0 = 126, a1 = −420,
a2 = 540, a3 = −315, and a4 = 70.

Figures 7(a)-7(d) show the simulation results for trajectories
bringing the mirror to, respectively, set-point of 2.5◦ and of
0.5◦, and then bring it back to the flat position. The travelling
time for each transition is set to 5ms. It can be seen that the
controller provides a solid performance and all constraints are
respected. It is clear that the system can attain the flat position
with a bounded control (see Fig. 7(d)).
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Fig. 7. Closed-loop responses for set-point control: (a) tilt angle
θ; (b) angular velocity ω; (c) actuation voltage Vap; (d)
control signal u.

Note that for both scanning and set-point control, the maximal
amplitude of actuation voltage is considerably reduced com-
pared to the control schemes without bias off-set (see Agudelo
et al. [2007a]). This makes the implementation of control sys-
tems much easier.

6. CONCLUDING REMARKS

This paper addressed the control of 1DOF torsional micro-
mirrors with constant bias voltage in order to take advantage
of torque multiplication and to enhance the controllability at
some critical operating points. A generic model of this type
of systems, including the electrical subsystems, has been es-
tablished. A nonlinear control based on backstepping and bar-
rier functions has been developed. It is shown by both stabil-
ity analysis and numerical simulations that this controller can
achieve closed-loop stability in the whole desired operating
range while respecting the constraints on state variations and
avoiding singularities due to uncontrollability and contact dy-
namics. Finally, it is worth noting that it is possible to further
explore the feature of the structure considered in this work by
simultaneously controlling the actuation of the two electrodes
as shown in Agudelo et al. [2007b], in order to achieve a two-
sided full range actuation.
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