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Abstract: This paper focuses on the controller design for a wheeled mobile robot to track a
moving target when its control inputs (linear and angular velocities) are limited. This issue is
significant in practice, as the unpredicted target motions may cause the control actions beyond
the robot’s capability. In the paper, after the system model is formulated in a form suitable for
the controller design, a Lyapunov function considering the limits of the robot’s control efforts
into consideration is proposed. A control law setting the robot’s linear and angular velocities is
then obtained. The conditions for asymptotic target tracking by the robot are also established.
Simulation results are provided to verify the effectiveness of the approach.
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1. INTRODUCTION

It is well known that a wheeled mobile robot is a typical
non-holonomic system which cannot be stabilized through
a time unvarying linear feedback [1]. Many approaches
were proposed to address this challenge. The most popular
method is to treat a wheeled mobile robot as a special
case of general non-honolomic chained systems, for which
different control algorithms have been developed. These
include smooth time varying or discontinuous controls
[2][3][4][5][6][7], nonlinear feedback control[8][9][10], opti-
mal control [11] and fuzzy control[12]. The control objec-
tive is to make the robot to achieve the desired posture
required by the task, e.g., achieving a desired destination
or tracking a target. Those methods are normally complex
in structure and are computationally intensive.

In some researches, the robot state is described in polar
coordinates, from which a system model suitable for the
controller design is set up[13][14]. The polar coordinates
contain all the information regarding the robot’s posture
relative to the target or the desired path. The controller de-
sign is mostly based on Lyapunov theory or potential field
method. The shortcoming common to those approaches
lies in the assumption that the target (or the desired path)
is static and known in prior, and the robot can accept
any control input. Such an assumption is too idealistic
in practice. For example, the robot’s actuators can only
generate the torques within their limits. The trajectories
of the target are normally unknown beforehand, and they
may impose too demanding requirements on the control
efforts for the robot to track the target. In [15], a potential
field method is used to control an omni-wheeled mobile
robot to track a moving target. The potential function
is defined as a weighted sum of quadratic functions of
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the robot’s position and velocity relative to the target.
The robot and the target are simply modeled as point
masses and the whole system is holonomic. By summing
up the terms of different physical quantities (position and
velocity) with different units, the physical meaning of the
potential function disappears. The weight allocation to
each term becomes difficult to be justified and may easily
cause instability of the system. For example, consider the
robot near the target when system potential is supposed
to be low and the robot slows down from our common
sensor, any error between the robot’s velocity and that
of the target will still keep the potential high and cause
the robot continue to move with chattering or other forms
of discontinuity. There is no consideration on the limit
of the robot’s control input in the approach. In [16][17],
the traditional field method are extended for a differential
wheel driven mobile robot to track a moving target. The
limit on the control efforts are not considered. In [18], the
limit on the robot’s angular speed is considered in the
controller design for a robot following a wall, a special
case of target tracking by a robot. The limit on the robot’s
linear velocity and extending the approach to more general
target tracking task are not considered.

In this paper, an approach is proposed to control the
wheeled robot to track a moving target while its control
inputs are limited. The closed loop stability, allowable
linear velocity and angular velocity and their relations are
studied. The controller guarantees that the robot reach
the target’s position and direction asymptotically under
certain conditions.

The paper is organized as follows. The system model and
problem formulation are described in Section 2. Controller
design is given in Section 3. Simulation examples for
verification of the proposed controller are provided in
Section 4. Conclusion is given in Section 5.
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2. SYSTEM MODEL AND PROBLEM
FORMULATION

The robot system to be studied is depicted in Figure 1. The
following notations are used for the system description.
XOY : world coordinate in the workspace; o(x, y): center
of gravity of the robot and its Cartesian coordinates; v:
linear speed of the robot; ω: angular speed of the robot;
φ: angle of v; ot(xt, yt): position of the target and its
Cartesian coordinates; vt: linear speed of the target; φt:
directional angle of vt;ρ: the distance between the robot
and the target; θ: the angle of the vector from or to ot.

The robot’s kinematics is described by:

ẋ= v cosφ

ẏ = v sinφ

φ̇= ω

‖v‖ ≤ vmax (1)

‖ω‖ ≤ ωmax (2)

where vmax > 0 and ωmax > 0 in the last two equations
are the robot’s maximum linear and angular speeds re-
spectively.

The speeds of the left and the right wheels: ωl and ωr are
related to the robot’s speeds by:

v =
(ωr + ωl)L

2
, ω =

(ωr − ωl)R

L

If the maximum wheel speed is ωwmax, we have

vmax = Lωwmax, vmax =
2R

L
ωwmax

and

vmax =
L2

2R
ωmax

Our task is to find u and ω to make the robot track the
target, while they are limited by equations (1) and (2).
For the controller design, the robot’s posture and velocity
relative to the target should be studied first.

The positions of the robot and the target are related by

ρ cos θ= xt − x

ρ sin θ= yt − y

To describe the angular relation between the robot and
the target, the following variables are defined:

α= θ − φ

β = θ − φt

Their derivatives with respect to time t are:

ρ̇ cos θ − ρθ̇ sin θ= vt cosφt − v cosφ (3)

ρ̇ sin θ + ρθ̇ cos θ= vt sinφt − v sinφ (4)

α̇ = θ̇ − ω, β̇ = θ̇ − φ̇t (5)

From equations (3) to (5), we have,

ρ̇= vt cos β − v cosα (6)

α̇= v
sinα

ρ
− vt

sinβ

ρ
− ω, ρ �= 0 (7)

β̇ = v
sinα

ρ
− vt

sinβ

ρ
− φ̇t, ρ �= 0 (8)

This is the kinematic model of the system represented by
new state variables ρ, α and β.

The original target tracking problem becomes the regula-
tion of the system described by equations (6) to (8) by
choosing proper u and ω.

3. CONTROLLER DESIGN

For the controller design, the following candidate Lya-
punov function is defined:

V =
1

2
(ρ2 + α2 + β2)

Its derivative with respect to time t is

V̇ = ρρ̇+ αα̇+ ββ̇ (9)

From equations (6), (8) and (9), we have

V̇=vt(ρ cosβ − β + α

ρ
sinβ)− v(ρ cosα − β + α

ρ
sinα)

−αω − βφ̇t (10)

By defining

γ
∆
= arctan

β + α

ρ2

η
∆
=

√

ρ2 +
(β + α)2

ρ2
=

ρ

cos γ

equation (10) is simplified:

V̇ = η(vt cos(β + γ)− v cos(α+ γ))− αω − βφ̇t (11)

Letting

v=cos(α+ γ)(λ1(η)η + vt(cos(β + γ)) (12)

ω=λ2(α)α−φ̇t

β

α
+

η sin(α+ γ) tan(α+ γ)

α
v (13)

and substituting them into equation (11), we have

V̇ = −λ1(η)η
2 − λ2(α)α

2

where λ1(η) > 0 and λ2(α) are the functions to be decided
to make sure the control constraints in equations (1) and
(2) are met. Obviously they will also affect the rate of the
convergence of the tracking errors.

This shows that V is non-increasing. Given V > 0 as
defined, V converges to a non-negative limit asymptoti-
cally. As a result, the state variables ρ, β and α are all
bounded. This in turn makes V̇ uniformly continuous.
From Barblat’s Lemma [19], V̇ → 0, and accordingly,
α → 0 and η → 0.

From the definition of η, we have

ρ2 +
(β + α)2

ρ2
→ 0 (14)
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and ρ → 0 and β → 0 accordingly.

When α → 0, cos(α + γ) → cos γ. As defined in equation
(11), cos γ > 0. As such, equation (14) implies that

ρ2 +
(β + α)2

ρ2
→ 0

and ρ → 0 and β + α → 0 accordingly. As α → 0, we can
conclude that β → 0.

The fact that β → 0 can also be drawn from the basic
formula 2ab ≤ a2 + b2 (a and b are real numbers),

0 ≤ (β + α)2 ≤ 1

2
(ρ2 +

(β + α)2

ρ2
)

As the both sides of (β+α)2 approximate zero, β+α → 0,
or, β → 0 given that α → 0.

To complete the controller design, the functions λ1(η) >
0 and λ2(α) are to be decided. To begin with, each
control input can be decomposed into two parts, depending
whether it is affected by λ1(η) or λ2(α):

v = v1 + v2 (15)

ω = ω1 + ω2 (16)

v1 = λ1(η) cos(α+ γ)η

v2 = vt cos(α+ γ)(cos(β + γ))

ω1 = λ2(α)α

ω2 = −φ̇t

β

α
+

η sin(α+ γ) tan(α+ γ)

α
v

Obviously the terms v1 and ω1 can be varied with λ1(η)
and λ2(α) respectively. The terms of v2 and ω2 are
contributed by the motion of the target.

Letting

λ1(η) =
k1vmax

a1 + |η| , 0 < k1 ≤ 1 (17)

λ2(α) =
k2ωmax

a2 + |α| , 0 < k2 ≤ 1 (18)

where k1 and k2 are the constants in the interval (0, 1),
and a1 > 0 and a2 > 0 are positive constants.

Substituting equations (17) and (18) into equations (15)
and (16) respectively, we have

v = k1vmax

cos(α+ γ)η

|η| + v2, |η| ≤ k1vmax + |v2|(19)

ω = k2ωmax

α

a2 + |α| + ω2, |ω| ≤ k2ωmax + |ω2| (20)

If the following conditions are met:

|v2| < (1− k1)vmax and|ω2| < (1− k2)ωmax (21)

it follows from equations (19) and (20) that

|v| ≤ vmax and|ω| ≤ ωmax

In summary, under that conditions specified by equation
(21), the limited control inputs derived in equations (12),
(13), (17) and (18) can make the robot successfully track
the moving target.

Remarks:

In practice, a modification to the controller is needed in
either of the following cases:

Case 1: The angle tracking error α is close to zero.
As α is the divisor in the some terms of the controller,
this will cause the robot’s angular velocity to reach an
undesirable magnitude with chatterings. In this case, a
minimum threshold of α should be set in the calculation.

Case 2: One or all the conditions in equation (21) are
not met, and the magnitude of the robot’s angular or
linear velocity will exceed its maximum magnitude. When
this happens, the input should be set at the level of its
maximum magnitude.

Though, in theory the modification made in the above
cases will compromise the performance of the controlled
system, they are necessary in practice. Their affects on
the stability of are also limited by the short period of their
occurrence.

4. SIMULATION

In the simulation example, a wheeled robot is controlled to
track a moving target whose trajectory is a circle defined
by

xt = 3− 50 cos(0.01t), yt = 47 + 50 sin(0.01t), (22)

By default, ISO units are used in all the measurements
in the simulation, e.g, second for time, meter for distance
and meter / second for speed. The angles are normalized
between −π and π. The center of circle is at (3, 47) and
its radius is 50.

The target’s speed and the angle are derived from equation
(22), vt = 0.5 and phit =

π

2
− 0.01t. At t = 0, the robot’s

posture are x = 0, y = 0 and φ = π.

Through some calculations, we get the initial state of the
system on which the controller is designed: ρ = 47

√
2 =

66.468, α = −π

4
and β = π

4
.

The following controller parameters are selected: ωmax =
10, vmax = 4,k1 = 0.15, k2 = 0.10, a1 = a2 = 0.25. we
fix the control parameters λ1(η) = 0.25 and λ2(α) = 0.25.
The system responses are shown in Figures 2 to 4. The
control inputs are plotted in Figures 5 and 6 respectively.
The paths of the robot (dashed line) and the target (solid
line) are plotted in Figure 7. It can be seen that the robot
catches up with the target and alight itself with the target.

It can be observed that all the systems states ρ, α and
β approximate to zero within 140 seconds. It is a good
result considering the big range of the target’s movements
and the distance between the robot and the target at
the beginning. At the initial stage, the robot’s angular
velocity exceeds its maximum level. There are overshoots
and chatterings in ω while it approximate zero quickly. At
the mean time, α exhibits frequent chattering near zero.
Thanks to the moderation of the controller gains and the
limit on the magnitude of α, this only happens in a short
time and the control inputs are within the reasonable range
afterwards.

The paths of the robot and the target are plotted in Figure
7. Beginning from point B0, the robot moves along the
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path B0B1 . . . and catches up and align with the target at
the point C. The target moves from point A0 and travel
along the circle. The directions of the robot and the target
are indicated by arrows.

5. CONCLUSION

The control of a wheeled mobile robot to track a moving
target with limited control inputs is studied in the paper.
Based on a proper system modeling, a Lyapunov based
controller design approach is used to determine the robot’s
angular and linear velocities to achieve the asymptotic
convergence of the tracking errors. Considering the limits
on the control inputs, a condition for a asymptotic stability
of the closed loop system is also established. Simulation
results are provided to verify the effectiveness of the
proposed approach.
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Fig. 2. Distance tracking error: ρ
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Fig. 3. Angle tracking error: α
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Fig. 4. Angle tracking error: β
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Fig. 5. Robot’s linear velocity

0 50 100 150 200 250 300 350 400
−10

−8

−6

−4

−2

0

2

4

6

8

10

Angular velocity of  the robot: ω

Time(Sec)

R
a

d
ia

n
ce

 /
S

e
co

n
d

Fig. 6. Robot’s angular velocity
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(dotted line)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3091


