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Abstract: This paper describes discrete-time and discrete-value (discretized/quantized) PID control and
robust stabilization for continuous plants. Although all control systems are currently realized using
discretized signals, the analysis and design of such nonlinear discrete-time control systems has not
been elucidated. In this paper, the robust stability analysis of discrete-time and discrete-value (digital)
control systems that accompany discretizing units at the input and output sides of a nonlinear element is
performed in the frequency domain, and a method for achieving PID control and robust stabilization for
nonlinear discretized systems on a grid pattern in the time and control variables space is presented. In
the design procedure, a modified Nichols diagram and parameter specifications are applied. Numerical
examples are provided to verify the validity of the designing method.

1. INTRODUCTION

At present, almost all feedback control systems are real-
ized using discretized (discrete-time and discrete-value, i.e.,
digital) signals. However, the analysis and design of dis-
cretized/quantized control systems have not been completely
elucidated. The first attempt to elucidate the problem was de-
scribed in a paper by Kalman [1956]. Since then, many re-
searchers have studied this problem, particularly the aspect of
understanding and mitigating the quantization effects in quan-
tized feedback control (Curry [1970], Delchamps [1990], Elia
and Mitter [2001], Fu [2003]). However, few results for the sta-
bility analysis of the nonlinear discrete-time feedback system
have been obtained (Willems [1971], Desoer and Vidyasagar
[1975], Harris and Valenca [1983]).

This paper describes the robust stability analysis of discrete-
time and discrete-value control systems and presents a method
for designing (stabilizing) PID control for nonlinear discretized
systems. The PID control scheme has been widely used in
practice and theory irrespective of whether it is continuous or
discrete in time (Datta et al. [2000], Takemori and Okuyama
[2000]), since it is a basic feedback control technique.

In the previous study (Okuyama [2006]), a robust stability con-
dition for nonlinear discretized control systems that accompany
discretizing units (quantizers) at equal spaces was examined in
a frequency domain. It was assumed that the discretization is
executed at the input and output sides of a nonlinear actuator
and that the sampling period is chosen such that it is suitable
for discretization in the space. This paper presents a designing
problem for discretized control systems on a grid pattern in the
time and controller variables space. In this study, the concept of
modified Nyquist and Nichols diagrams for nonlinear control
systems explained in Okuyama et al. [1999, 2002a] is applied
to the design procedure in the frequency domain.

2. DISCRETIZED CONTROL SYSTEM

The discretized control system in question is represented by a
sampled-data (discrete-time) feedback system with two sam-
plers, S1 and S2, as shown in Fig. 1. Here, D and H denote the

N(e†) H D C

P (s)HD �

�� � ����� � �

������

	


 


r† e†
h

h

S1

S2

u u† u†
c

υ

yy†
d

+

−

+

+

Fig. 1. Nolinear sampled-data PID control system.
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Fig. 2. Discretized nonlinear PID control system.

unit for the discretization and the zero-order holding, respec-
tively, which are usually performed in the A/D (D/A) conver-
sion. Moreover, N(·), C, and P (s) are a nonlinear continuos
element, digital controller (compensator) based on the PID con-
trol scheme, and linear continuous plant (physical system to be
controlled), respectively. Here, the linear/nonlinear characteris-
tic of continuous element N(·) is not very important because
the discretization is a (stepwise) nonlinear characteristic. (Even
if it is a linear characteristic, the following nonlinear analysis is
needed.)

When the two samplers operate synchronously with a sampling
period h, the nonlinear sampled-data control system can be
transformed into a discrete-time control system as shown in
Fig. 2. Here, P (z) is the z-transform of P (s) together with
the zero-order hold, C(z) is the z-transform of the digital PID
controller C, and D1 and D2 are the discretization units at
the input and output sides of the nonlinear continuous element
(actuator/sensor), respectively. The relationship between e and
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Fig. 3. Discretized nonlinear characteristics on a grid pattern.
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u† = Nd(e) becomes a stepwise nonlinear characteristic on
a grid pattern as shown in Fig. 3. In this study, a round-down
discretization, which is usually executed on a computer, is ap-
plied. Therefore, the relationship between e† and u† is indicated
by small circles on the stepwise nonlinear characteristic.

In Figs. 1 and 2, the symbols e, u, · · · indicate the sequences
e(k), u(k), · · · , (k = 0, 1, 2, · · · ) in discrete time, but for
continuous value. Each symbol e†, u†, · · · indicates discrete
value that can be assigned to an integer number, e.g.,

e† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },
u† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

where γ is the resolution of each variable. In the above ex-
pression, it is assumed that the input and output signals of the
nonlinear characteristic have the same resolution in the dis-
cretization. Here, e†, u†, · · · also represent the sequences e†(k),
u†(k), · · · , respectively. Without loss of generality, hereafter,
we assume that γ = 1.0.

On the other hand, the time variable t can be defined as follows:

t ∈ {0, h, 2h, 3h, · · · },
where h is the sampling period. In other words, the integer time
sequence can be defined as follows:

k ∈ Z+, Z+ = {0, 1, 2, 3, · · · }.
That is, the variables e†(k) and u†(k) are defined on a grid
pattern that is composed of integers in the time and controller
variables space.

In this study, the stepwise nonlinear characteristic of the con-
troller, as shown in Fig. 3, can be represented by the following
equation:

Nd(e) = Ke + g(e), 0 < K < ∞. (1)

It is partitioned into the following two sections:

|g(e)| ≤ ḡ < ∞, (2)

for |e| < ε and

|g(e)| ≤ β |e|, 0 ≤ β < ∞, (3)

for |e| ≥ ε. Equation (2) represents a bounded nonlinear
characteristic that exists in a finite region. On the other hand,
equation (3) represents a sectorial nonlinearity for which the
equivalent linear gain exists in a limited range. It can also be
expressed as follows:

0 ≤ g(e)e ≤ βe2. (4)
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Fig. 4. Nonlinear subsystem.
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Fig. 5. Equivalent feedback system.

When considering the robust stability in a global sense, it is
sufficient to consider the nonlinear term (3) for |e| ≥ ε because
the nonlinear term (2) can be treated as a disturbance signal
(Okuyama [2006]). (In this study, a fluctuation or an offset of
error is assumed to be allowable in |e| < ε.)

3. EQUIVALENT DISCRETE-TIME SYSTEM

Based on the above consideration, the following new sequences
e∗†m (k) and v∗†m (k) are defined as:

e∗†m (k) = e†m(k) + q · ∆e†(k)

h
, (5)

v∗†
m (k) = v†

m(k) − βq · ∆e†(k)

h
. (6)

where q is a non-negative number, e†m(k) and v†m(k) are neutral
points of sequences e†(k) and v†(k),

e†m(k) =
e†(k) + e†(k − 1)

2
, (7)

v†
m(k) =

v†(k) + v†(k − 1)

2
, (8)

and ∆e†(k) is the backward difference of e†(k),

∆e†(k) = e†(k) − e†(k − 1). (9)

The relationship between equations (5) and (6) with respect to
the continuous values is shown by the block diagram in Fig. 4.
In this figure, δ is defined as

δ(z) :=
2

h
· 1 − z−1

1 + z−1
. (10)

Equation (10) corresponds to the bilinear transformation be-
tween z and δ. Thus, the loop transfer function from v∗ to e∗

can be given by W (β, q, z), as shown in Fig. 5, where

W (β, q, z) =
(1 + qδ(z))P (z)C(z)

1 + (K + βqδ(z))P (z)C(z)
, (11)

and r′ and d′ are transformed exogenous inputs. Here, the
variables such as v∗, u′ and y′ written in Fig. 5 indicate the
z-transformed ones.

In this paper, the following assumption is provided on the basis
of the relatively fast sampling and the slow response of the
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controlled system.

Assumption The absolute value of the backward difference of
sequence e(k) does not exceed γ, i.e.,

|∆e(k)| = |e(k) − e(k − 1)| ≤ γ. (12)

If condition (12) is satisfied, ∆e†(k) defined by (9) is exactly
±γ or 0 because of the discretization. That is, the absolute value
of the backward difference can be given as

|∆e†(k)| = |e†(k) − e†(k − 1)| = γ or 0. �

The assumption stated above will be satisfied by the following
examples. The phase trace of ∆e† is shown in the figure.

4. NORM INEQUALITIES

In this section, some lemmas with respect to an ℓ2 norm of
the sequences are presented. Here, we define a new nonlinear
function

f(e) := g(e) + β e. (13)

When considering the discretized output of the nonlinear char-
acteristic, v† = g(e†), the following expression can be given:

f(e†(k)) = v†(k) + βe†(k). (14)

From inequality (3), it can be seen that the function (14) belongs
to the first and third quadrants.

When considering the equivalent linear characteristic, the fol-
lowing inequality can be defined:

0 ≤ ψ(k) :=
f(e†(k))

e†(k)
≤ 2β. (15)

When this type of nonlinearity ψ(k) is used, inequality (3) can
be expressed as

v†(k) = g(e†(k)) = (ψ(k) − β)e†(k). (16)

For the neutral points of e†(k) and v†(k), the following expres-
sion is given from (14):

1

2
(f(e†(k)) + f(e†(k − 1))) = v†

m(k) + βe†m(k). (17)

Moreover, equation (16) is rewritten as

v†
m(k) = (ψ(k) − β)e†m(k).

Since |e†m(k)| ≤ |em(k)|, the following inequality is satisfied
when a round-down discretization is executed:

|v†
m(k)| ≤ β|e†m(k)| ≤ β|em(k)|. (18)

Based on the above premise, the following norm conditions are
examined (Okuyama [2006]).

Lemma 1. The following inequality holds for a positive integer
p:

‖v†
m(k)‖2,p ≤ β‖e†m(k)‖2,p ≤ β‖em(k)‖2,p. (19)

Here, ‖ ·‖2,p denotes the Euclidean norm, which can be defined
by

‖x(k)‖2,p :=

(

p
∑

k=1

x2(k)

)1/2

.

Proof. The proof is clear from inequality (18). �

Lemma 2. If the following inequality is satisfied with respect to
the inner product of the neutral points of (14) and the backward
difference (9):

〈 v†
m(k) + βe†m(k),∆e†(k) 〉p ≥ 0, (20)

the following inequality can be obtained:

‖v∗†
m (k)‖2,p ≤ β‖e∗†m (k)‖2,p (21)

for any q ≥ 0. Here, 〈·, ·〉p denotes the inner product, which is
defined as

〈 x1(k), x2(k) 〉p =

p
∑

k=1

x1(k)x2(k).

Proof. The following equation is obtained from (5) and (6):

β2‖e∗†m (k)‖2
2,p − ‖v∗†

m (k)‖2
2,p

= β2‖e†m(k)‖2
2,p − ‖v†

m(k)‖2
2,p

+
2βq

h
· 〈v†

m(k) + βe†m(k),∆e†(k)〉p. (22)

Thus, (21) is satisfied by using the left inequality of (19).

Moreover, as for the input of g∗(·), the following inequality can
be obtained from (22) and the right inequality of (19):

‖v∗†
m (k)‖2,p ≤ β‖e∗m(k)‖2,p, (23)

when inequality (20) is satisfied. �

The left side of inequality (20) can be expressed as a sum of
trapezoidal areas.

Lemma 3. For any step p, the following equation is satisfied:

σ(p) := 〈 v†
m(k) + βe†m(k),∆e†(k) 〉p

=
1

2

p
∑

k=1

(f(e†(k)) + f(e†(k − 1)))∆e†(k). (24)

Proof. The proof is clear from (17). �

In general, the sum of trapezoidal areas holds the following
property.

Lemma 4. If inequality (12) is satisfied with respect to the
discretization of the control system, the sum of trapezoidal
areas becomes non-negative for any p, that is,

σ(p) ≥ 0. (25)

Proof. Since f(e†(k)) belongs to the first and third quadrants,
the area of each trapezoid

τ(k) :=
1

2
(f(e†(k)) + f(e†(k − 1)))∆e†(k) (26)

is non-negative when e(k) increases (decreases) in the first
(third) quadrant. On the other hand, the trapezoidal area τ(k)
is non-positive when The sum of trapezoidal area is given from
(24) as:

σ(p) =

p
∑

k=1

τ(k). (27)

Therefore, the following result is derived based on the above.

The sum of trapezoidal areas becomes non-negative, σ(p) ≥ 0,
regardless of whether e(k) (and e†(k)) increases or decreases.
Since the discretized output traces the same points on the
stepwise nonlinear characteristic, the sum of trapezoidal areas
is canceled when e(k) (and e†(k) decreases (increases) from
a certain point (e†(k), f(e†(k))) in the first (third) quadrant.
(Here, without loss of generality, the response of discretized
point (e†(k), f(e†(k))) is assumed to commence at the origin.)
Thus, the proof is concluded. �
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5. ROBUST STABILITY IN A GLOBAL SENSE

By applying a small gain theorem to the loop transfer char-
acteristic (11), the following robust stability condition of the
discretized nonlinear control system can be derived.

Theorem 5. If there exists a q ≥ 0 in which the sector parame-
ter β with respect to nonlinear term g(·) satisfies the following
inequality, the discrete-time control system with sector nonlin-
earity (3) is robust stable in an ℓ2 sense:

β < β0 = Kη(q0, ω0) = max
q

min
ω

Kη(q, ω), (28)

when the linearized system with nominal gain K is stable. (That
is, the allowable sector can be given as [0, β0] from (28).) Here,
the η-function is written as follows:

η(q, ω) :=

−qΩV +
√

q2Ω2V 2 + (U2 + V 2){(1 + U)2 + V 2}
U2 + V 2

,

∀ω ∈ [0, ωc]. (29)

Moreover, Ω(ω) is the distorted frequency of angular frequency
ω and is given by

δ(ejωh) = jΩ(ω) = j
2

h
tan

(

ωh

2

)

, j =
√
−1 (30)

and ωc is a cut-off frequency. In addition, U(ω) and V (ω)
are the real and the imaginary parts of KP (ejωh)C(ejωh),
respectively.

By using the polar coordinates, the following expression can be
given:

KP (ejωh)C(ejωh) = ρ(ω)ejθ(ω). (31)

In this case, equality (29) can be expressed as follows:

η(q, ω) :=

−qΩsin θ +
√

q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1

ρ
,

∀ω ∈ [0, ωc]. (32)

Proof. Based on the loop characteristic in Fig. 5, the following
inequality can be given with respect to z = ejωh:

‖e∗m(z)‖2,p ≤ c1‖r′m(z)‖2,p + c2‖d′m(z)‖2,p

+ sup
z=1

|W (β, q, z)| · ‖w∗†
m (z)‖2,p. (33)

Here, r′m(z) and d′m(z) denote the z-transformation for the
neutral points of sequences r′(k) and d′(k), respectively. More-
over, c1 and c2 are positive constants.

By applying inequality (23), the following expression is ob-
tained:

(

1 − β · sup
z=1

|W (β, q, z)|
)

‖e∗m(z)‖2,p

≤ c1‖r′m(z)‖2,p + c2‖d′m(z)‖2,p. (34)

Therefore, if the following inequality (i.e., the small gain theo-
rem with respect to ℓ2 gains) is valid,

|W (β, q, ejωh)|

=

∣

∣

∣

∣

(1 + jqΩ(ω))P (ejωh)C(ejωh)

1 + (K + jβqΩ(ω))P (ejωh)C(ejωh)

∣

∣

∣

∣

=

∣

∣

∣

∣

(1 + jqΩ(ω))ρ(ω)ejθ(ω)

K + (K + jβqΩ(ω))ρ(ω)ejθ(ω)

∣

∣

∣

∣

<
1

β
. (35)

the sequences e∗m(k), em(k), e(k) and y(k) in the feedback
system are restricted in finite values when exogenous inputs
r(k), d(k) are finite and p → ∞. (The definition of ℓ2 stable
for discrete-time systems was given in Okuyama et al. [1999,
2002a].)

From the square of both sides of inequality (35), inequality (28)
is given. �

6. MODIFIED NICHOLS DIAGRAM

In the previous papers (Okuyama et al. [1999, 2002a]), the
inverse function was used instead of the η-function, i.e.,

ξ(q, ω) =
1

η(q, ω)
. Using the notation, inequality (28) can be

rewritten as follows:

M0 = ξ(q0, ω0) = min
q

max
ω

ξ(q, ω) <
K

β
. (36)

When q = 0, the ξ-function can be expressed as:

ξ(0, ω) =
ρ

√

ρ2 + 2ρ cos θ + 1
= |T (ejωh)|, (37)

where T (z) is the complementary sensitivity function for the
discrete-time system.

It is evident that the following curve on the gain-phase plane,

ξ(0, ω) = M, (M : const.) (38)

corresponds to the contour of the constant M in the Nichols
diagram. In this study, since an arbitrary non-negative number
q is considered, the ξ-function that corresponds to (37) and (38)
is given as follows:

ρ

−qΩsin θ +
√

q2Ω2 sin2 θ + ρ2 + 2ρ cos θ + 1
= M. (39)

From this expression, the following quadratic equation can be
obtained:

(M2 − 1)ρ2 + 2ρM(M cos θ − qΩsin θ) + M2 = 0. (40)

The solution of this equation is expressed as follows:

ρ = − M

M2 − 1
(M cos θ − qΩsin θ) (41)

± M

M2 − 1

√

(M cos θ − qΩsin θ)2 − (M2 − 1).

The modified contour in the gain-phase plane (θ, ρ) is drawn
based on the equation given in (41). Although the distorted
frequency Ω is a function of ω, the term qΩ = cq ≥ 0 is
assumed to be a constant parameter. This assumption for M
contours was also discussed in Okuyama et al. [2002a]. Figure
6 shows an example of the modified Nichols diagram for cq ≥ 0
and M = 1.4. Here, GP1 is a gain-phase curve that touches
an M contour at the peak value (Mp = ξ(0, ωp) = 1.4).
On the other hand, GP2 is a gain-phase curve that crosses the
θ = −180◦ line and all the M contours at the gain crossover
point Gc. That is, the gain margin gM becomes equal to

−20 log10

M

M + 1
= 4.68 [dB]. (42)
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Fig. 6. Modified Nichols diagram and gain-phase curves (M =
1.4, cq = 0.0, · · · , 4.0).

ρ

GP2

GP1

Pc

Mp

θ

Gc

The latter case corresponds to the discrete-time system in which
Aizerman’s conjecture is valid (Okuyama et al. [1998]). At the
continuous saddle point Gc, the following equation is satisfied:

(

∂ξ(q, ω)

∂q

)

q=q0,ω=ω0

= 0. (43)

Evidently, the phase margin pM is obtained from the phase
crossover point Pc (e.g., Brown and Campbell [1948]).

7. CONTROLLER DESIGN

The PID controller C applied in this study is given by the
following algorithm:

uc(k) = Kpu
†(k) + Ci

k
∑

j=0

u†(j) + Cd∆u†(k), (44)

where ∆u†(k) = u†(k)−u†(k− 1) is the backward difference
of integers, and each coefficient is defined as

Kp, Ci, Cd ∈ Z+, Z+ = {0, 1, 2, 3 · · · }.
Here, Kp, Ci, and Cd correspond to Kp, Kph/TI , and
KpTD/h in the following (discrete-time z-transform expres-
sion) PID algorithm:

C(z) = Kp

(

1 +
h

TI(1 − z−1)
+

TD

h
(1 − z−1)

)

. (45)

We use algorithm (44) without division because u†, uc, and
coefficients Kp, Ci, Cd are integers.

Using the z-transform expression, equation (44) can be written
as:

uc(z) = C(z)u(z)

=
(

Kp + Ci(1 + z−1 + z−2 + · · · ) + Cd(1 − z−1)
)

u(z).

In the closed form, controller C(z) can be given as

C(z) = Kp + Ci ·
1

1 − z−1
+ Cd(1 − z−1)

=
Kp(1 − z−1) + Ci + Cd(1 − z−1)2

1 − z−1
(46)

for discrete-time systems. When equations (45) and (46) are
compared, Ci and Cd become equal to Kph/TI and KpTD/h,
respectively.

Table 1. PID parameters for Example-1 (gM : gain
margins, pM : phase margins, β0: allowable sec-

tors, Mp: peak values)

.
Kp Ci Cd β0 gM [dB] pM [deg] Mp

(i) 200 0 0 0.71 4.6 18.2 3.4

(ii) 100 0 0 1.23 10.6 46.2 1.32

(iii) 100 2 20 1.02 8.8 30.7 1.93

(iv) 100 4 20 0.92 5.64 15.9 3.70

(v) 100 2 40 1.02 9.18 32.1 1.87

(vi) 100 4 40 0.97 6.12 16.7 3.50

(vii) 80 1 20 1.07 11.8 45.8 1.31

(viii) 60 1 20 1.06 14.0 52.3 1.15

Fig. 7. Discretized nonlinear characteristics.

ε
−ε

The design method adopted in this paper is based on the classi-
cal parameter specifications presented in the modified Nichols
diagram. This method can be conveniently designed, and it is
significant in a physical sense (i.e., mechanical vibration and
resonance).

8. NUMERICAL EXAMPLES

[Example-1] Consider the following plant:

P (s) =
K1

(s + 0.02)(s + 0.1)(s + 0.2)
, (47)

where K1 = 0.00002 = 2.0 × 10−5. (The gain constant is
defined as such a small number because the PID parameters are
integers.) The discretized nonlinear characteristic (discretized
sigmoid, i.e. arc tangent (Okuyama et al. [2002b]) is as shown
in Fig. 7. Here, the resolution value is γ = 1 as described in
section 2. For C-language expression, it can be written as

e† = γ ∗ (double)(int)(e/γ)

u = 0.4 ∗ e† + 3.0 ∗ atan(0.6 ∗ e†)

u† = γ ∗ (double)(int)(u/γ),

where (int) and (double) denote the conversion into an integral
number (a round-down discretization) and the reconversion into
a double-precision real number, respectively. In this paper, the
sampling period is chosen as a base unit h = 1.0.

When choosing the nominal gain K = 1.0 and the threshold
ε = 2.0, the sectorial area of the stepwise nonlinear char-
acteristic for ε ≤ |e| can be determined as [0.5, 1.5] drawn
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Fig. 8. Modified Nichols diagram and gain-phase curves for
Example-1 (M = 1.4, cq = 0.0, · · · , 4.0).

ρ

GP4

GP3

GP2

GP1

θ

Pc

Mp

Gc

Fig. 9. Step responses for Example-1 ((ii), (iii), and (iv)).

(iv)

(iii)

(ii)

by dotted lines in the figure. Fig. 8 shows gain-phase curves
of KP (ejωh)C(ejωh) on the modified Nichols diagram. Here,
GP1, GP2, GP3, and GP4 are cases (i), (ii), (iii), and (iv), re-
spectively. The PID parameters are specified as shown in Table
1. The gain margins gM , the phase margin pM and the peak
value Mp can be obtained from the gain crossover points Gc,
the phase crossover points Pc, and the points of contact with
the M contours, respectively.

The max-min value β0 is calculated from (28) and (29) (e.g.,
(i)) as follows:

β0 = max η(q, ω0) = η(q0, ω0) = 0.71.

Thus, the allowable sector for nonlinear characteristic g(·)
is given as [0.0, 1.71]. The stability of discretized control
system (i) (and also systems (ii)-(viii)) will be guaranteed. In
this example, the continuous saddle point (43) appears (i.e.,
Aizerman’s conjecture is satisfied). The allowable sector of
equivalent linear gain Kℓ can be given as 0 < Kℓ < 1.71.

Figures 9, 11 and 12 show time responses for the eight cases,
and Figure 10 shows the phase traces of cases (ii), (iii) and
(iv). As is obvious from the figure, Assumtion (12) is satisfied.
In Fig. 9 the step response (ii) remains a sutained oscillation
and an off-set. However, as for (iii) and (iv) the responses are
improved by using the PID, especially integral (I: a summation

Fig. 10. Phase traces for Example-1 (cases (ii), (iii), and (iv)).

∆e

e

Fig. 11. Step responses for Example-1 (cases (v) and (vi)).

(vi)

(v)

Fig. 12. Step responses for Example-1 (cases (vii) and (viii)).

(vii)

(viii)

in this study) algorithm.

[Example-2] Consider the following plant:

P (s) =
K2(s + 0.1)(−s + 0.2)

(s + 0.01)(s + 0.02)(s + 0.5)
, (48)

where K2 = 0.0005 = 5.0 × 10−4. The same nonlinear
characteristic and the nominal gain are chosen as shown in
Example-1. The modified Nichols diagram with gain-phase
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Fig. 13. Modified Nichols diagram and gain-phase curves for
Example-2 (M = 1.09, cq = 0.0, · · · , 4.0).

ρ

GP3

GP2

GP1

θ

Fig. 14. Step responses for Example-2.

(iii)

(ii)

(i)

curves of KP (ejωh)C(ejωh) is as shown in Fig. 13. Here,
GP1, GP2 and GP3 are cases (i), (ii), and (iii), and the PID
parameters are specified as shown in Table 1. Figure 14 shows
time responses for the three cases. In this example, although
the allowable sector of equivalent linear gain (e.g., case (iii)) is
0 < Kℓ < 3.1, the allowable sector for nonlinear characteristic
becomes [0.0, 1.42] as shown in Table 2. Since the sectorial
area of the stepwise nonlinear characteristic is [0.5, 1.5], the
stability of the nonlinear control system cannot be guaranteed.
The response for (iii) actually fluctuates as shown in Fig. 14.
This is a counter example for Aizerman’s conjecture (Okuyama
et al. [1998]).

Table 2. PID parameters for Example-2 (gM : gain
margins, pM : phase margins, β0: allowable sec-

tors, Mp: peak values)

Kp Ci Cd β0 gM [dB] pM [deg] Mp

(i) 100 0 0 0.94 16.6 42.3 1.40

(ii) 100 1 100 0.61 8.8 31.3 1.85

(iii) 100 2 100 0.42 17.5 19.9 2.93

9. CONCLUSION

In this paper, we have described the discrete-time discrete-
value PID control and robust stabilization for continuous plants.
A robust stability condition for nonlinear discretized feedback
systems was presented along with a method for designing PID
control. The design procedure employs the modified Nichols
diagram and its parameter specifications. The stability margins
of the control system are specified directly in the diagram.
Further, the numerical examples showed that the time responses
can be stabilized for the required performance.
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