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Abstract:

We study the effects of time-delay on the stability of a primal-dual controller applied to an
optical communication network. Signal powers are adjusted at the sources while the links return
dynamic pricing information. The objective of the source algorithm is to adjust the signal powers
such that predefined OSNR targets are achieved according to the OSNR channel optimization
problem. We incorporate time-delay into the closed loop system for the multi-source single-link
case. Sufficient conditions for stability are derived based on a tuning parameter in the control
algorithm. The work utilizes singular perturbation theory and Lyapunov-Razumikhin time-delay
techniques. We also include simulations based on realistic network parameters.

1. INTRODUCTION

Optical networks are essential to providing high band-
width for the Internet. They have more bandwidth than
any other communication medium. Optical networks are
distributed across oceans and continents.

The transmission of error-free data in optical communi-
cation networks depends on the optical signal to noise
ratio (OSNR) at reception (Rx). In Pavel (2004) an OSNR
optimization problem is formulated as a non-cooperative
game between signal channels (players). As power in one
signal increases, thereby increasing its OSNR, the noise in
the other channels increases, thus decreasing their OSNRs.
The work in Pavel (2004) also devises a network level
power control algorithm at the signal sources to converge
to a unique Nash equilibrium. In addition, Pavel (2007)
augments the system with a link pricing algorithm result-
ing in a primal-dual algorithm. We take the signal powers
at the sources and the pricing parameter as the inputs to
the optical network system, and the OSNR outputs as the
feedback signal. For simplicity, the work discussed herein
assumes only one link, but multiple inputs and outputs.

Due to the fiber optical cable being spread out over a
vast surface area, the signal propagation delay can not
be considered negligible. In practical terms, for a signal to
propagate across an optical span and return a distance of
100km, the propagation delay is approximately 1ms. When
such spans are cascaded, it is not uncommon to see delays
up in the tens of milliseconds. Despite having a convergent
control algorithm for the OSNR optimization problem, the
practical implementation of such a control law would have
to take time-delay into account. In fact, we can no longer
assume the control algorithm would even be stable given
a sufficiently large time-delay.
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The effects of time-delay in primal-dual control strategies
are only beginning to be studied in literature. A series of
papers Paganini et al. (2001); Wang and Paganini (2002,
2003, 2004); Paganini et al. (2005) provide the best start-
ing point for the work presented herein. The main body of
work by Paganini et. al. is extended in Wang and Paganini
(2002, 2003, 2004) to utilize Lyapunov analysis techniques.
These papers also touch upon timescale decoupling which
can simplify time-delay analysis for nonlinear systems.
However, the network is restricted to a single source single
link case, and the utility function is decoupled with respect
to the state. Another paper, Paganini et al. (2003), nicely
summarizes previous time-delay work by Paganini et. al. A
paper by Wen and Arcak (2004) uses a passivity approach
and Lyapunov techniques to present a unifying framework
for several flow control schemes. In addition, the control
schemes show similarities to the optical network control
schemes due to gradient-like positive projection dynam-
ics and the use of primal-dual algorithms. However, the
utility function is decoupled. The paper Liu et al. (2003)
summarizes past work very well, and analyzes a positive
projection gradient algorithm which is similar to the al-
gorithm used herein. The work of Mazenc and Niculescu
(2003) is a good reference for the application of Lyapunov
analysis to time-delayed systems. Finally, the work Alpcan
and Basar (2003) considers fixed heterogeneous delays in
the network using Lyapunov stability theory. The work
herein will focus on the Lyapunov-Razumikhin approach,
as Gu et al. (2003) to studying time-delays. We couple
this technique with a singular-perturbation approach as
in Khalil (2002). Optical networks are multi-input multi-
output systems characterized by a coupled utility function,
and with decentralized control laws.

In this paper, we study the effects of time-delay in optical
communication networks, based on the OSNR model and
the network level control algorithm presented in Pavel
(2004) and Pavel (2007). The algorithm of Pavel (2004)
is analyzed for stability in the presence of time-delays
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in Stefanovic and Pavel (2007). We extend those results
to include dynamic pricing at the links. We simplify the
time-delay primal control algorithm from Stefanovic and
Pavel (2007) by only considering the single link case and
performing the link pricing calculations at the sources. We
utilize singular perturbation theory enhanced to handle
time-delayed differential equations. We obtain an upper
bound for time-delays to ensure stability in the system
using Lyapunov-Razumikhin theory. The compensating
factor is a tunable gain parameter, ρi, at the sources.

The paper is organized as follows. Section 2 reviews the
OSNR model, control algorithms and link algorithms.
Section 3 modifies the resulting model Stefanovic and
Pavel (2007) and presents a continuous-time closed loop
system. The following section introduces time-delays into
the closed loop system. Section 5 presents the main sta-
bility result and corresponding proof. Section 6 shows the
ensuing simulations. The last section provides conclusions
and future work.

2. REVIEW OF OSNR MODEL AND CONTROL
ALGORITHMS

We begin by reviewing the OSNR model. The discrete-
time control algorithm from Pavel (2004) is presented next.
We then introduce the link control law from Pavel (2007).

2.1 OSNR Model

Consider an optical network that is defined by a sin-
gle optical link. Channels in the network can be added
or dropped. The link is composed of N spans that in-
clude one optical amplifier per span. A set of channels,
M = {1, ..., m}, (intensity modulated wavelengths) are
multiplexed together and transmitted across the link. We
denote ui, si, and ni, the optical input power for channel i
at the transmitter (Tx), the output signal at the receiver
(Rx), and the output noise at Rx, respectively. The Optical
Signal-to-Noise Ratio (OSNR) for any channel, i ∈ M , is
defined as

OSNRi =
si

ni

(1)

The following provides the framework for modeling OSNR
in a single link optical network. An optical span is com-
posed of an optical amplifier (OA) with channel dependent
gain, Gi and optical fiber with wavelength independent
loss coefficient, Lk. The amplifiers have the same spectral
shape and are operated in automatic power control (APC)
mode with total power targets P0. The OA introduces am-
plified spontaneous emission (ASE) noise power, denoted
ASEk,i.

The following lemma from Pavel (2004) describes the
OSNR model for optical networks.

Lemma 1. The OSNR for the ith channel is given as

OSNRi =
ui

n0,i +
∑

j∈M Γi,juj

(2)

where Γi,j , elements of the full (n x n) system matrix Γ,
are defined as

Γi,j =
N

∑

k=1

Gk
j

Gk
i

ASEk,i

P0

and n0,i is the noise optical power at transmitter (Tx) for
the ith channel.

With Lemma 1 presented, we can next introduce the
primal-dual control law presented in Pavel (2007). The
control law is introduced in two parts, the channel algo-
rithm and the link algorithm. The channel algorithm is
the same game-theoretic algorithm derived in Pavel (2004)
with the exception that the constant cost parameter, αi

is substituted for an adjustable variable µ(k̄). The link
algorithm is a computed every K iterations of the channel
algorithm at the network links. Its purpose is to feedback
the channel price parameter µ(k̄) to the channel sources.

2.2 Channel Algorithm

Given the OSNR model in Lemma 1, a non-cooperative
game between channels was defined in Pavel (2004). The
objective of each channel (player) is to maximize its utility
related to OSNR in the presence of other channels. We use
the utility function Pavel (2004)

Ui = ln

(

1 + ai

OSNRi

1 − Γi,iOSNRi

)

where ai is a channel dependent design parameter. A
greater utility implies greater OSNR values which further
implies a lower bit error rate in the optical network. Each
channel adjusts its power towards this goal in the presence
of other channels. The game settles at an equilibrium when
no channel can improve its utility unilaterally; the equilib-
rium of the game being a Nash equilibrium. By converging
to the Nash equilibrium the distributed system will achieve
optimal OSNR values for its channels without centralized
control. A full Nash game solution was presented in Pavel
(2004). This work was then modified in Pavel (2007) to
include an adjustable cost parameter, µ, that reflects the
network channel utilization. The OSNR game admits a
unique Nash equilibrium, u∗, which is the solution of

aiu
∗
i +

∑

j 6=i

Γi,ju
∗
j =

aiβi

µ(k̄)
− n0,i ∀i (3)

Based on this solution an iterative network level control
algorithm was proposed in Pavel (2004) to control the
network (2) at the sources

ui(k + 1) =
βi

µ(k̄)
− 1

ai

(

1

OSNRi(k)
− Γi,i

)

ui(k) (4)

where βi and ai are design parameters and k is the
iteration time step. The parameter µ(k̄) is the channel
price. The control algorithm (4) converges to the Nash
equilibrium (3) if

ai >
∑

j 6=i

Γi,j (5)

2.3 Link Algorithm

The link algorithm is computed every K iterations of the
control algorithm (4). The value K is a large number
such that the link algorithm is updated infrequently with
respect to the control algorithm (ie. K=100). The link
algorithm Pavel (2007) is:

µ(k̄ + 1) = [µ(k̄) + ν(
∑

j=1

uj(K) − P0)]
+
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Fig. 1. Discrete-time Control Algorithm (4) and Link
Algorithm (6) applied to OSNR system (2)

where ν is the step-size and [z]+ = max{z, 0}. The
variable k̄ represents the discrete-time variable which is
on a different time-scale than the control algorithm (4).
Under normal operations, µ(k̄) must be greater than zero
because it enters (4) inverted. Thus, similarly to Liu et al.
(2003), we drop [·]+ in the ensuing analysis to obtain

µ(k̄ + 1) = µ(k̄) + ν(
∑

j=1

uj(K) − P0) (6)

Notice that
∑

j=1 uj(K) is the received total power for all
channels in the link. This is easily measured in practice
as a real-time value. Moreover, under the assumption
of stationary channel powers, which can be made given
that the link algorithm updates very slowly, the link
algorithm corresponds to a gradient descent technique.
The combined channel-link algorithm converges to the
optimal NE channel power and price (u∗, µ∗) Pavel (2007).

Figure 1 depicts the control algorithm (4) and the link
algorithm (6) acting on the OSNR system (2). Despite
having a convergent control algorithm for the OSNR
optimization problem, the practical implementation of
such a control law has to take time-delay into account.

3. CONTINUOUS-TIME CLOSED LOOP SYSTEM

We first generalize the control algorithm (4) by introducing
a control gain, ρi, 0 < ρi ≤ 1, for each channel i. We con-
vert the control algorithm (4) and the link algorithm (6)
into the continuous-time domain. Then we formulate the
closed loop system by applying the primal-dual controller
Pavel (2007) to the new model.

We introduce a tuning parameter at each source, ρi, into
(4) to act as a weighting between the RHS of (4) and ui(k)

ui(k + 1) − ui(k) =

ρi

{

βi

µ(k̄)
− 1

ai

(

1

OSNRi(k)
− Γi,i + ai

)

ui(k)

}

(7)

Note that ρi = 1 gives (4). Approximating the LHS of (7)

by dui(t)
dtf

, where tf denotes the “fast” time variable, we can

write a continuous-time version of the control algorithm
(7) as

dui(t)

dtf
= ρi

{

βi

µ(k̄)
− 1

ai

(

1

OSNRi(t)
− Γi,i + ai

)

ui(t)

}

(8)
Substituting (2) into (8), yields the closed loop system

dui(t)

dtf
= ρi

{

βi

µ(k̄)
− n0,i + ΣjΓi,juj

ai

+

(

Γi,i

ai

− 1

)

ui

}

(9)

Similarly, the dual control law at the link (6) can be
rewritten in the continuous-time domain as

˙µ(t) = ν(
∑

j=1

uj(t) − P0) (10)

We can relate the link algorithm time variable, t, to tf
according to the relation tf = tK. Let ǫ = 1

K
. Then from

(9) and (10), along with the relation

dui

dtf
=

dui

dt

dt

dtf
= ǫ

dui

dt
(11)

the closed loop, time-scale decoupled system in the stan-
dard singular perturbation form is given as

˙µ(t) = ν(
∑

j=1

uj(t) − P0) (12)

ǫu̇i = ρi

{

βi

µ(t)
− n0,i + ΣjΓi,juj

ai

+

(

Γi,i

ai

− 1

)

ui

}

(13)

The equilibrium point, (u∗, µ∗), of the closed loop system
(13) and (12) is obtained by setting the dynamics equal to
0. The equation (13) gives the unique Nash equilibrium u∗

with components u∗
i as in (3) and µ(k) = µ∗. We have the

added expression from (12) that gives
∑

j

u∗
j = P0 (14)

Shifting the system around the equilibrium point (3) and
(14), using the change of variables ũi = ui − u∗

i and
µ̃ = µ − µ∗, we obtain the closed loop system

µ̇(t) = ν
∑

j

uj

ǫu̇i(t) = −ρi

ai





∑

j

Γ̃i,juj(t)



 + ρiβi

(

1

µ + µ∗
− 1

µ∗

)

(15)

where for simplicity we denote by (ui, µ) the shifted

variable (ũi, µ̃). The variable Γ̃i,j is defined as

Γ̃i,j =

{

ai, i = j
Γi,j , i 6= j

(16)

4. TIME-DELAY SYSTEM

The closed loop system (15) does not take time-delay
into account. Forward time-delay occurs from the channel
sources uj to the OSNR outputs OSNRi at the end of
the link. We adopt the notation that τf ≥ 0 represents
the forward time-delay. Similarly, the backward time-
delay occurs from the OSNR outputs OSNRi back to its
associated source ui. We denote this time-delay as τb. We
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denote τ = τf +τb as the total round trip delay. We modify
(2), (8) and (10) to include time-delay.

We explicitly introduce forward time-delay into (2) as

OSNRi(t) =
ui(t − τf )

n0,i + Σj∈MΓi,juj(t − τf )
(17)

so that OSNRi(t) depends on delayed input signals.

The algorithm (8) applied at the sources (Tx) will use a
delayed version of (17), OSNR′

i(t), due to the backward
time-delay, OSNR′

i(t) = OSNRi(t − τb), i.e.,

OSNR′
i(t) =

ui(t − τ)

n0,i + Σj∈MΓi,juj(t − τ)
(18)

Substituting (18) into (8), and using (11), gives

ǫ
dui(t)

dt
= ρi

{

βi

µ(t)

− 1

ai

(

n0,i +
∑

j Γi,juj(t − τ)

ui(t − τ)
− Γi,i + ai

)

ui(t)

}

(19)

Since (19) derives from our control algorithm, we can
modify (19) by noticing that if we keep a record of past
power inputs, ui(t), we can eliminate ui(t − τ) in the
denominator by design. Then appropriately, we obtain the
modified algorithm

ǫ
dui(t)

dt
= ρi







βi

µ(t)
− 1

ai



n0,i +
∑

j

Γi,juj(t − τ)





+

(

Γi,i

ai

− 1

)

ui(t)

}

(20)

We must still add the link dynamics (10) along with any
associated time-delays. We can directly represent the time-
delay in (10) as a forward time-delay on the input powers

˙µ(t) = ν(
∑

j=1

uj(t − τf ) − P0) (21)

Finally, since the value µ from (21) must propagate from
the links to the sources, a backward time-delayed value is
considered in (20) as

ǫu̇i(t) = ρi







βi

µ(t − τb)
− 1

ai



n0,i +
∑

j

Γi,juj(t − τ)





+

(

Γi,i

ai

− 1

)

ui(t)

}

(22)

Thus, (21) and (22) represent the closed loop, time-delayed
interconnected model that is used to study the stability of
the network system.

Shifting (21) and (22) about the equilibrium point (u∗, µ∗)
as defined in (14) and (3) results in

˙x(t) = ν(
∑

j=1

zj(t − τf )) (23)

ǫ
dzi(t)

dt
= ρi







βi

x(t − τb) + µ∗
− βi

µ∗
−

∑

j

Γi,j

ai

zj(t − τ)

+

(

Γi,i

ai

− 1

)

zi(t)

}

(24)

Fig. 2. Continuous-time Control Algorithm (8) and Link
Algorithm (10) at the sources

where the shifted variables are denoted z and x.

Notice that if the time-delays τ , τf and τb in (24) and (23)
were all equal to zero, we would get the no delay system
(15). Recall that the system condition for stability in the
no delay case is (5), where ai are design parameters.

An interesting observation is made by examining the equi-
librium point of (24). We obtain the non-causal functional
equation, in matrix form

z(t) = Γ̃−1
a β

(

1

x(t + τf ) + µ∗
− 1

µ∗

)

(25)

where Γ̃a is a matrix with elements
Γi,j

ai
, Γi,j defined as

(16), β is a column matrix with elements βi and z is

the column matrix with zi elements. Notice that Γ̃a is
invertible because of the diagonal dominance condition (5).

To avoid the non-causality of (25) as well as to simplify
the time-delay analysis of the system, we rewrite (24) and
(23) in an equivalent form. This involves shifting the link
control algorithm to the sources, rather than at the links,
as shown in Figure 2. This is equivalent to assuming that
all propagation delay is concentrated on the feedback path
of the closed loop system.

The resultant closed loop, time-delayed system is

˙x(t) = ν(
∑

j=1

zj(t)) (26)

ǫ
dzi(t)

dt
= ρi

{

βi

x(t − τ) + µ∗
− βi

µ∗

− 1

ai

∑

j

Γ̃i,jzj(t − τ)







(27)

By moving the channel price algorithm to the sources, we
considerably simplify the problem since (27) has one time-
delay now and (26) has no delay whatsoever. Equations
(26) and (27) are in a form suitable to apply singular
perturbation theory. Figure 2 shows the block diagram
with the link dynamics at the sources.
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5. MAIN RESULT

We use Lyapunov-Razumikhin theory and singular per-
turbation approach to study the stability of the delayed
closed loop system (26) and (27). The main result gives
sufficient conditions for stability.

We first review the notions of reduced and boundary-layer
systems. Re-write (26) and (27) as

ẋ = f(z) (28)

ǫż = g(x(t − τ), z(t − τ)) (29)

Definition 1. Consider the system (28) and (29). Let the
reduced system be defined as

ẋ = f(h(x))

and the boundary system be defined as

dy

dtf
= g(x(t − τ), y(t − τ) + h(x(t − τ)))

where h(x) is the isolated root from the RHS of (29), tf is
defined as in (11), and y = z −h(x) is a co-ordinate shift.

Using Definition 1, the reduced and boundary-layer sys-
tems of (26) and (27) are

ẋ = ν1rowΓ̃−1
a β

(

1

x + µ∗
− 1

µ∗

)

(30)

dy

dtf
= −ρΓ̃ay(t − τ) (31)

where 1row is a row vector of 1 elements, and

h(x) = Γ̃−1
a β

(

1

x(t) + µ∗
− 1

µ∗

)

(32)

Notice that the reduced system (30) is a nonlinear, sin-
gle input, scalar system with no time-delay. Also, the
boundary-layer system (31) is a linear, time-delayed sys-
tem. This will greatly reduce the ensuing analysis.

The following lemmas are used to prove the main theorem.

Lemma 2. The boundary-layer system (31) is exponen-
tially stable given that we satisfy

τ <
σ

(

ρΓ̃a + Γ̃T
a ρ

)

2

√

σ̄
(

(ρΓ̃a)2((ρΓ̃a)2)T

)

(33)

where Γ̃a is defined as in (25), ρ = diag(ρi) and σ̄(·),σ(·)
denote the largest and smallest singular value Zhou and
Doyle (1998).

Lemma 3. The reduced system (30) is exponentially sta-
ble.

Theorem 1. For the singularly perturbed system (26)
and (27), there exists ǫ∗ > 0 such that for 0 < ǫ < ǫ∗, the
origin is exponentially stable given that (33) is satisfied.

Proof We present here a short version of the proof due to
space limitations. The full proof can be found in Stefanovic
and Pavel. We use the singular perturbation approach in
Theorem 11.4 Khalil (2002), but modified to handle time-
delays. It is easy to show that f(0) = 0, g(0, 0) = 0, and
h(0) = 0. Also, f , g and h are sufficiently smooth.

The basic approach to prove that the origin of (26) and
(27) is exponentially stable, is to simplify the problem by
considering only the reduced (30) and boundary-layer (31)
systems. By lemmas 3 and 2 we know that the reduced (30)
and boundary-layer (31) systems are exponentially stable.
We attempt to find a composite Lyapunov function for
(26) and (27) based on the Lyapunov functions for the
reduced and boundary-layer systems.

Since (30) is exponentially stable, by the converse Lya-
punov theorem Khalil (2002), the Lyapunov function
V (x) = 1

2x2 applies to the reduced system. For the
boundary-layer system, we pick the Lyapunov function
W (y) = yT y. Notice from Lemma 2, this choice of Lya-
punov function is used to prove time-delay stability for
the boundary-layer system, given that (33) is satisfied.
We can then define the composite Lyapunov function as
η(x, y) = V (x) + W (y) = 1

2x2 + yT y.

Since f and g are not functions of ǫ, they are immediately
Lipschitz in ǫ linearly. Also, we satisfy

||f(y + h(x)) − f(h(x))|| = ||ν1rowy|| ≤ ν
√

m||y||2(34)

||f(h(x))|| ≤ ν|1rowΓ̃−1
a β|

µ∗(r + µ∗)
||x||2 (35)

||∂h(x)

∂x
|| = || − Γ̃−1

a β
1

(x + µ∗)2
||

≤ ||Γ̃−1
a β||2

1

(µ∗ − r)2
≤ k2 (36)

for x ∈ [−r, r], where r ∈ (−µ∗, µ∗), m is the size of y, and
k2 > 0 a constant.

By applying the composite Lyapunov function, η(x, y), to
(27) and (26), with co-ordinate shift y = z − h(x), and
exploiting Lyapunov inequalities, Lipschitz properties, and
(34)-(36), we can prove exponential stability.

End of Proof

6. SIMULATIONS

In the following we validate the results of Theorem 1
through simulations. For the upcoming simulations, we
will use the following design. For the ai parameters, we
choose ai = Γi,i if Γi,i >

∑

j 6=i Γi,j , otherwise, we pick

ai = 1.2 ∗
∑

j 6=i Γi,j , where 1.2 is an arbitrary multiplying
factor. We choose a parabolic gain shape for the optical
amplifiers according to the formula G = −4e16 × (λ −
1555 × 10−9)2 + 15 decibels, where λ denotes a channel
wavelength. Normally, a game-theoretic controller would
achieve the best possible OSNR values for the channels
without any guarantees. Here, the βi values are chosen by a
centralized algorithm to achieve a minimum OSNR target
of 23dB. This allows easier verification for the simulations.

Finally, we simulate time-delay as realistically as follows.
Since light in the fiber optic cable propagates at approxi-
mately v = 200, 000km/s, we can compute the round-trip
propagation time across one optical span of 100km to be
1ms. In addition, we can assume for the purpose of these
simulations that the channel algorithms are updated every
10ms, to be specified. We assume ten optical spans for a
total of 10ms delay.
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Fig. 3. µ = 0.25 × µ∗ with ρi = 0.1

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

Time (Iterations

O
S

N
R

 (
d
B

)

OSNR vs Time

Fig. 4. µ = 0.25 × µ∗ with ρi = 0.54

We pick µ = 0.25 × µ∗ = 66.25 as an initial condition for
simulation. Figures 3-4 depict the cases for ρi = 0.1 and
ρi = 0.54 for all i. The case ρi = 0.55 generates an unstable
system response and is omitted. For the cases ρi = 0.1,
ρi = 0.54 and ρi = 0.55, the calculated time bounds are
τ < 25ms, τ < 4.6ms and τ < 4.5ms, respectively. Notice
that ρi = 0.54 calculates a time bound of 4.6ms, yet the
system is still stable for 10ms. This implies the time bound
is conservative.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the effects of time-delay on a
primal-dual control algorithm for optical communications.
We derived sufficient conditions for stability under any
time-delays. We reconfigured the control algorithm and
the link update law from Stefanovic and Pavel (2007)
and Pavel (2007) to update at the sources. We also found
an upper bound for the time-delay that closely predicted
when instability would occur. A set of simulations vali-
dated the resultant time-delayed model and its stability
predictions.

Future work would involve extending the multi-source
single link network above to include any general network
configuration with multiple time-delays. We can also im-
prove the time-delay theory to utilize the more general
Lyapunov-Krasovskii functionals rather than the simpli-
fied Lyapunov-Razumikhin theory.
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