
Interception of a Moving Object in a FIFO
Graph

M. M. Hizem ∗ E. Castelain ∗∗ A. Toguyeni ∗∗∗

∗ LAGIS, Lille, France (e-mail: mohamed-mejdi.hizem@ec-lille.fr).
∗∗ LGI-L, Lille, France (e-mail: emmanuel.castelain@ec-lille.fr)
∗∗∗ LAGIS, Lille, France (e-mail: armand.toguyeni@ec-lille.fr)

Abstract: This paper solves the problem of intercepting a moving object in FIFO graphs. In
the graph, a first mobile (the target) is moving with a known fixed itinerary. The second mobile
(the pursuer) aims to reach the first one with the minimum delay. So, our goal is to find the
shortest path for the interception taking into account the dynamic nature of the graph. This
interception problem can be applied to the case of an urban transport company that needs to
send a rescue team to one of their buses that is still in movement. First, we propose a model to
set the basic problem. Then we present an interception algorithm based on Dijkstra algorithm
for shortest path computation in a graph. After, we prove that the result of the algorithm is
optimal. Finally, we compute the complexity of the algorithm and we prove its efficiency.

1. INTRODUCTION

Graphs are used for modelling different types of systems.
Indeed, they can be used to model road networks, com-
puters network, amusement parks, etc. Graphs can give a
static view of the system or a dynamic one. Static graphs
have been studied for a long time and major problems
have been solved. In opposition, dynamic graphs are an
active research field. Indeed, problems solved for static
graphs generally become harder to solve in the dynamic
case. One of those problems is the shortest path compu-
tation between two nodes. Although several algorithms
exist to solve the problem for static graphs, it is NP-
hard for general dynamic graphs (Orda and Rom [1990]).
Nevertheless, the problem can be solved for a subclass
of dynamic graphs called FIFO graphs. One interesting
problem is the computation of the best path to reach a
moving target in a graph. This situation can be faced when
we are trying to intercept a vehicle in a road network.
For example, many urban transport companies using buses
face the following situation : a bus driver announces that
an incident occurred in his bus (mechanical, security, etc.).
So, a rescue team must be sent to help it. If the incident
is minor, the bus does not stop. Consequently, the rescue
team must intercept the bus that is still in movement. The
bus and the rescue team have GPS devices. So their exact
positions are known. In this context, we have to determine
where the bus can be intercepted and how to reach this
point. Moreover, the road network is a dynamic system
where the delay in the different roads changes. So we need
an algorithm to compute the interception path for the
rescue team that takes into account the varying delays
in the different roads.
The aim of this paper is to present an algorithm that
computes the best interception path in a FIFO graph.
Indeed FIFO graphs are a subclass of dynamic graphs that
have useful proprieties and can represent road networks.
We will first propose a model to represent the interception
problem for FIFO graphs. Then, we will propose an algo-

rithm to solve it. After, we will prove the optimality of the
result of the algorithm and we will compute its complexity.
Finally we will present the results of different simulations
conducted to evaluate the execution time.

2. LITERATURE REVIEW

Shortest path problem for static graphs was extensively
studied in the past. Surveys concerning the subject can be
found in Cherkassky et al. [1996] and Gallo and Pallottino
[1988]. Several algorithms were developed and used in dif-
ferent fields. When treating transportation networks, an-
other formulation of the problem rises : the time-dependent
shortest path problem (Palma et al. [1993], Nachtigall
[1995]). This problem treats the computation of a shortest
path between two nodes of a dynamic graph. Dynamic
graphs are graphs where edge weight is function of time.
In the general case, the time-dependent shortest path
problem is NP-hard (Orda and Rom [1990]). However, this
problem can be solved for a subclass of dynamic graphs
called FIFO graphs. It was proved that for FIFO graphs
any static shortest path problem can be extended to solve
the problem with the same complexity as in the static case
(Ahn and Shin [1991], Kaufman and Smith [1993]).
Previous works treating the interception are mainly lim-
ited to the continuous case. Planar interception has been
largely studied and has been frequently used in robotics.
Some papers treat the case where the target trajectory
is predictable. In this case we have to compute a unique
interception point (Park and Lee [1992], Mikesell and
Cipra [1994]) or a point that can vary if the target tra-
jectory is modified (Croft et al. [1998]). Other papers
treat the case where the target trajectory is unpredictable.
This hypothesis, does not allow specifying an interception
point but requesting to pursuit the target until the in-
terception (Lei and Ghosh [1993], Papanikolopoulos et al.
[1991], Belkhouche and Belkhouche [2004], Gans [1997]).
The spatial interception has also been studied. Several
authors investigated the mechanisms allowing humans to
catch things like balls (McBeath et al. [1995], McLeod and

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7124 10.3182/20080706-5-KR-1001.0892

Dienes [1993]). Those works also have been used in robotics
(Thomas et al. [2003], Borgstadt and Ferrier [2000], Suluh
et al. [2001]). In opposition of the great number of works
for the planar interception, according to our knowledge,
there is no study about the interception problem in dy-
namic graphs.

3. THE INTERCEPTION PROBLEM MODEL

3.1 FIFO graphs

FIFO graphs are a subclass of dynamic graphs. A dynamic
graph is a directed weighted graph G = (N,A) with
N the set of nodes and A the set of edges. The edge
weight is time-dependant. So, a weight function d(u, v, t)
is associated to each edge (u, v) ∈ A. When dealing
with transportation networks, an edge weight represents
generally a delay. Consequently, d(u, v, t) is called delay
function. An edge (u, v) ∈ A is said to be a First-In-First-
Out edge if its delay function is defined such as leaving a
node u for a node v at t′ ≥ t implies to arrive to node v
later than t + d(u, v, t). More formally :

∀t, t′ ≥ 0, t ≤ t′ =⇒ t + d(u, v, t) ≤ t′ + d(u, v, t′)

A graph is called FIFO graph if all its edges are FIFO
edges. FIFO condition generally holds in road networks
especially when they are congested. That is why such
graphs can be used to represent road networks.

3.2 The model

In our model, a FIFO graph G = (N,A) is considered.
In the real world, G represents a road network : a node
represents a bus stop or a crossroads and an edge rep-
resents a direct road linking two nodes. An edge weight
represents the delay needed to go from the origin of the
edge to its destination. The model developed in this paper
is a discrete model. In consequence, the time is devised in
equal periods of length T . During each period T , d(u, v, t)
is supposed to have a constant value. After M periods of
time, d(u, v, t) is assumed to take a constant value. In other
words, d(u, v, t) = constant ∀t > M.T and (u, v) ∈ A.
Furthermore, ∀(u, v) ∈ A and ∀t ≥ 0, d(u, v, t) ∈ N ∗. In
the general case, the target and the pursuer can move in
different graphs. For example, buses and cars do not use
necessarily the same roads and have not the same speed.
Indeed, generally, there is bus lanes in road networks pre-
venting buses to be delayed by traffic jams and even one-
way roads dedicated to buses. In consequence, two graphs
Gt and Gp are considered in our work. Gt = (Nt, At) is the
graph where the target moves and Gp = (Np, Ap) is the one
where the pursuer moves. The delay function associated
with each graph is respectively dt(u, v, t) and dp(u, v, t). In
our model Gt and Gp must share some nodes but they do
not share any edges. Even if the target and the pursuer are
using the same road (for example there is no bus lane), this
road is represented by two different edges, one in Gt and
the other in Gp, that have the same delay. In consequence,
Nt ∩Np 6= ∅ and At ∩Ap = ∅.
In the following parts of the paper, TV designates the
Target Vehicle (the bus in our example) and PV designates
the Pursuer Vehicle (the rescue team in our example).
InitTV ∈ Nt and InitPV ∈ Np are special nodes that

represent respectively the initial position of TV in Gt

and PV in Gp. Fig. 1 depicts an example. Gt has nine
nodes Nt = {1, 2, 4, 5, 6, 7, 8, 9, 10} and Gp has nine nodes
Np = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The set of shared nodes is Nt∩
Np = {1, 2, 4, 5, 6, 7, 8, 9}. In the figure, edges belonging to
At are represented by dashed lines and edges belonging to
Ap are represented by continuous lines. The initial position
of TV is the node 1 and the initial position of PV is the
node 7.

1 2 3

4 5 6

7 8 9

Init
TV

Init
PV

10

Dest
TV

Fig. 1. Example of graphs Gt and Gp

Hypothesis 1. The functions dt and dp are supposed to be
known in advance for the whole period of study.
Definition 1. The set of paths between InitTV and w ∈ Nt

is represented by SPathTV (w) = {PathTV (w), w ∈ Nt}
having PathTV (w) = (u0, u1, . . . , ul) with :

• uk ∈ Nt, ∀k ∈ [0, l]
• u0 = InitTV , ul = w
• ∀uk, uk+1 ∈ PathTV (w), (uk, uk+1) ∈ At

In the same way, the set of paths between InitPV and
r ∈ Np is represented by SPathPV (r) = {PathPV (r), r ∈
Np} having PathPV (r) = (v0, v1, . . . , vm) with :

• vk ∈ Np, ∀k ∈ [0,m]
• v0 = InitPV , vm = r
• ∀vk, vk+1 ∈ PathPV (r), (vk, vk+1) ∈ Ap

Hypothesis 2. TV can follow a unique path called It(TV),
connecting its initial position called InitTV to its final
position called DestTV . It(TV) is supposed to be known
and fixed. Moreover, TV cannot pass through a node more
than once.

The previous hypothesis is adapted to the context of bus
interception because a bus has a known and fixed itinerary.
Furthermore, a bus stops only once at every bus stop and,
in general, it does not pass through a crossroad more
than once. Even this special case can be easily modeled
with respect to the previous hypothesis. Indeed, the node
representing the crossroad is duplicated with duplicating
all the edges linking it to the other nodes of Gt and Gp.
Fig. 2 presents an example where the node 1 is duplicated.
Definition 2. Suppose that It(TV) = (u0, . . . , uq, . . . , ul),
the partial itinerary to uq is defined as the path It(TV, uq)
= (u0, . . . , uq).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7125

1 2 3

4 5 6

7 8 9

101'

Fig. 2. Example of a node duplication

In the example of the Fig. 1, InitTV = 1, DestTV = 9,
It(TV) = (1, 10, 2, 6, 9) and It(TV, 2) = (1, 10, 2).
Definition 3. Let at be the arrival time function for Gt.
The parameters of this function are the path in the
graph and the departure time from the origin node. So,
at0

t ((u0, u1, . . . , um)) denotes the arrival time at node
um when leaving u0 at t0 and following the path
(u0, u1, . . . , um). The value of at0

t ((u0, . . . , um)) is defined
as follows : at0

t ((u0, . . . , um−1))+
dt(um−1, um, at0

t ((u0, . . . , um−1))) If m > 0
t0 If m = 0

In the same way, ap denotes the arrival time function Gp

and the value of at0
p ((v0, . . . , vm)) is defined as follows : at0

p ((v0, . . . , vm−1))+
dp(vm−1, vm, at0

p ((v0, . . . , vm−1))) If m > 0
t0 If m = 0

Definition 4. The shortest path from InitPV to r ∈ Np

at t0 is designated by SP t0
PV (r) and it is the path al-

lowing to reach r at the earliest time when leaving
InitPV at t0. More formally, SP t0

PV (r) = PathPV (r) with
at0

p (PathPV (r)) = minP∈SPathP V (r){at0
p (P)}. In case of

several paths with minimal arrival time, one is randomly
chosen.
Definition 5. A node w is called interception node at
departure time t0, if w ∈ Nt ∩ Np, w ∈ It(TV) and
at0

p (SP t0
PV (w)) ≤ at0

t (It(TV, w)). This means that w is a
shared node between Gt and Gp, it belongs to the target
itinerary and PV reaches w before TV when both leave
their initial position at t0.

Having all those definitions, our goal is the following

Goal : Find an interception node OPT at departure time
t0 such as at0

t (It(TV, OPT)) is minimal. Such a node is
called optimal interception node at departure time t0.

4. SOLUTION FOR THE INTERCEPTION PROBLEM

4.1 The algorithm

Our solution for the dynamic interception problem in
FIFO graphs consists on adapting the Dijkstra algorithm.

The Dijkstra algorithm was developed for computing the
shortest path between two nodes in static graphs. It
is proved that any static shortest path algorithm can
be extended to compute the shortest path between two
nodes in FIFO graphs with the same complexity (Ahn
and Shin [1991], Kaufman and Smith [1993]). Our idea
is to compute the shortest path between InitPV and a
destination node Obj. First Obj is initialized to the first
node of It(TV) ∩Gp starting from InitTV . If, during the
computation, at0

p (SP t0
PV (Obj)) ≤ at0

t (It(TV, Obj)) (t0 is
the departure time) then Obj is the optimal interception
node. Otherwise the next node in It(TV) ∩ Gp is chosen
as the new destination node Obj. The algorithm is the
following :

1 //Compute the cost of the TV itinerary nodes
2 Let It(TV) = (u0, u1, u2, . . . , um)
3 ∀uk ∈ It(TV) compute at0

t (It(TV, uk))
4 //Initialise the shortest path of each node of Gp

5 SP t0
PV (InitPV) = (InitPV)

6 ∀r ∈ Np / r 6= InitPV , SP t0
PV (r) = ∅

7 //SP t0
PV (r) = ∅ ⇒ at0

p (SP t0
PV (r)) = ∞

8 //Initialise the set Q of eligible nodes
9 Q = {InitPV }
10 //Initialise the set F of nodes with final cost
11 F = ∅
12 //Initialise the destination node
13 Obj = InitTV

14 If Obj /∈ It(TV) ∩Gp Then
15 Obj = next(It(TV), Obj)
16 //If there is no shared node then FAILURE
17 //FAILURE 1
18 If Obj = ∅ Then return FAILURE
19 End If
20 End If
21 While Q 6= ∅ do
22 Select Si from Q with at0

p (SP t0
PV (Si)) minimal

23 Q = Q\{Si} and F = F ∪ {Si}
24 //CONDITION 1
25 If at0

p (SP t0
PV (Si)) ≤ at0

t (It(TV, Obj)) Then
26 //CONDITION 2
27 If Si = Obj Then return SUCCESS
28 End If
29 Else
30 //NEXT 1
31 Obj = next(It(TV), Obj)
32 //FAILURE 2
33 If Obj = ∅ Then return FAILURE
34 End If
35 //CONDITION 3
36 While Obj 6= ∅ and Obj ∈ F do
37 //CONDITION 4
38 If at0

p (SP t0
PV (Obj)) ≤ at0

t (It(TV, Obj))
39 Then return SUCCESS
40 Else
41 //NEXT 2
42 Obj = next(It(TV), Obj)
43 End If
44 End While

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7126

45 //FAILURE 3
46 If Obj = ∅ Then
47 return FAILURE
48 End If
49 End If
50 Develop successor Sj of Si

51 For each Sj do
52 If at0

p (SP t0
PV (Si)) + dp(Si, Sj , a

t0
p (SP t0

PV (Si)) <

53 at0
p (SP t0

PV (Sj))
54 Then SP t0

PV (Sj) = SP t0
PV (Si) ∪ {Sj}

55 Q = Q ∪ {Sj}
56 End If
57 End For
58 End While

Suppose that It(TV) = (u0, . . . , uq, . . . , um), the function
‘next(It(TV), uq)’ is defined by

next(It(TV), uq) =

uk If q < k ≤ m

and uk ∈ It(TV) ∩Gp

and @ l ∈ [q + 1, k − 1] such as
ul ∈ It(TV) ∩Gp

∅ Otherwise

4.2 Algorithm result optimality

In this section the optimality of the solution given by our
algorithm is proved. In the different proofs, many proper-
ties of the Dijkstra algorithm are used. Those properties
are valid for FIFO graphs according to Ahn and Shin
[1991] and Kaufman and Smith [1993].
Lemma 1. In any iteration of the algorithm, if
at0

p (SP t0
PV (Si)) > at0

t (It(TV, Obj)) then at0
p (SP t0

PV (Obj))
> at0

t (It(TV, Obj)).

Proof. This lemma is a direct consequence of the Dijkstra
algorithm. Indeed, in any iteration of the algorithm the
processed node has a lower cost than the cost of all
the nodes that will be processed in the next iterations.
As Obj has not been selected yet, at0

p (SP t0
PV (Obj)) ≥

at0
p (SP t0

PV (Si)) > at0
t (It(TV, Obj)).

Lemma 2. If the algorithm is treating a node Obj then
it does not exist w ∈ It(TV) ∩ Gp\{Obj} such as
at0

t (It(TV, w)) < at0
t (It(TV, Obj)) and at0

p (SP t0
PV (w)) ≤

at0
t (It(TV, w)). In other words, it does not exist a node

w that is an interception node at departure time t0 and
located before Obj in It(TV).

Proof. If the function ‘next(It(TV), Obj)’ is called then
the current Obj is not an interception node. Indeed, If the
function ‘next(It(TV), Obj)’ is called, then at0

p (SP t0
PV (Si))

> at0
t (It(TV, Obj)) (NEXT 1 or 2). Thus, according to

lemma 1, Obj is not an interception node. In consequence,
when treating a node of It(TV), all node treated previ-
ously are not interception nodes.
Lemma 3. If the algorithm returns SUCCESS then the
node Obj is an interception node at departure time t0.
This means that at0

p (SP t0
PV (Obj)) ≤ at0

t (It(TV, Obj)).

Proof. If the algorithm returns SUCCESS then
at0

p (SP t0
PV (Obj)) ≤ at0

t (It(TV, Obj)) according to CONDI-
TION 1 and 2 or 3 and 4. Conclusion, Obj is an intercep-
tion node.

Proposition 1. If the algorithm returns SUCCESS then
Obj is the optimal interception node at departure time
t0. In other words, it does not exist an interception
node w ∈ It(TV) ∩ Gp\{Obj} such as at0

t (It(TV, w)) <

at0
t (It(TV, Obj)).

Proof. According to lemma 3, if the algorithm returns
SUCCESS then Obj is an interception node. In addition,
according to lemma 2, it does not exist another intercep-
tion node with a lower cost than at0

t (It(TV, Obj)). Conse-
quently, Obj is the optimal interception node at departure
time t0.
Proposition 2. If the algorithm returns FAILURE then
there is no interception node at departure time t0.

Proof. If the algorithm returns FAILURE then either
there is no shared nodes between It(TV) and Gp (FAIL-
URE 1) or there is no shared nodes w such as at0

p (SP t0
PV (w))

≤ at0
t (It(TV, w)) (FAILURE 1 or 2 with lemma 2). In

conclusion, there is no interception node at departure time
t0.

4.3 Algorithm complexity

The algorithm, developed in this section, results from
adding some operations to the original Dijkstra algorithm.
Those operations allow the initialisation of the destination
node and its modification during the computation of the
shortest paths. The added lines are from 1 to 3, from 12 to
20 and from 25 to 49. The added code contains essentially
if statements that have no impact on the complexity.
However, there are two loops. The first in line 3 and the
second in lines 36 to 44. The loop in line 3 computes the
arrival time for nodes in It(TV). So, at most, there are |Nt|
iterations. The loop in lines 36 to 44 has no influence in
the complexity of the main loop located from line 21 to 58.
Indeed, this loop changes the destination node Obj thanks
to the function ‘next(It(TV), uq)’. This function allows
getting the next node in It(TV)∩Gp. Since, It(TV)∩Gp

contains at most |Np| nodes, this function gives ∅ after |Np|
calls at most. In consequence, the loop of lines 36 to 44 can
make at most |Np| iterations for the whole execution of the
algorithm independently of the main loop. The complexity
of the main loop is ©(|Ap| + |Np|.ln(|Np|)) according
to Barbehenn [1998]. In conclusion the complexity is
©(|Nt|+ |Ap|+ |Np|.ln(|Np|)). Supposing that |Nt| ≤ |Np|
the complexity becomes ©(|Ap|+ |Np|.ln(|Np|)).

4.4 Algorithm implementation

The algorithm presented in section 4.1 has been imple-
mented in JAVA and has been tested on different examples
to show its efficiency. Fig. 3 represents a screenshot of this
software. In the different tests, Gt and Gp are equals.
This propriety was considered in the aim to maximize
the number of shared nodes and, in consequence, to make
the computation harder for the algorithm. For the tests,
different FIFO graphs with different nodes number were
generated randomly. The graph structure is generated
using Waxman method (Waxman [1988]) with α = 0.15
and β = 0.2. The delay function for each edge is generated
randomly such as the FIFO condition is respected. For
each graph, several tests are performed with a random

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7127

selection of InitPV and It(TV). The results of those tests
are given in Fig. 4. All the tests were performed on a PC
equipped with an Intel Core Duo processor of which the
frequency is 1.83 GHz. The curve of Fig. 5 depicts the
progression of execution time in function of nodes number.
The results show that the algorithm is very efficient in term
of execution time. For example it needs only 33 ms for
a graph containing 5000 nodes. Moreover, the execution
time increases proportionally with the nodes number of
the graph.

Fig. 3. Software screenshot

Nodes number Average Execution Time (ms)
500 5
1000 7
1500 9
2000 12
2500 14
3000 18
3500 20
4000 23
4500 26
5000 33

Fig. 4. Average execution time in function of nodes number

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

27,5

30

32,5

35

Nodes number

E
xe

cu
tio

n
 ti

m
e

(m
s)

Fig. 5. Average execution time in function of nodes number

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a model for the interception
problem in FIFO graphs and an algorithm to solve it.
Moreover, we have proved the efficiency of the algorithm
and the optimality of its result.
In this work, we suppose that the delay function is known
for the whole period of study. In the future, we will
treat FIFO graphs of which the delay functions are not
known or known with uncertainties. In consequence, many
difficulties rise.
First, as the delay functions are not known, an optimal
interception point cannot be computed off-line. So, we
have to propose an on-line algorithm that takes into
account the changing value of the delay functions.
Secondly, we have to predict the delay variation in time.
The delay in a road depends on the traffic flow and several
other events like accidents, traffic jams, sport events . . . In
consequence, we have to investigate the different models
for those variations.
Finally, we can suppose that different pursuers are presents
in the graph and we have to choose one to intercept the
target. When knowing the delay functions, it is easy. We
compute the optimal interception path for every pursuit
vehicle and then we take the best one. But, without the
delay functions, it is more difficult. Indeed, an optimal
interception path computed at t may differ from the
optimal path computed at t + δt. So, we have to specify
the criterion of choice. In addition, we have to decide if we
authorize the substitution of the selected pursuit vehicle if
there is an unexpected event. For instance, if the pursuit
vehicle were blocked in its way by an accident, we would
choose another one to intercept the target.

REFERENCES

B. H. Ahn and J. Y. Shin. Vehicle-routing with time
windows and time-varying congestion. The Journal of
the Operational Research Society, 1991.

M. Barbehenn. A note on the complexity of dijkstra
algorithm for graphs with weighted vertices. IEEE
Transactions on Computers, 1998.

F. Belkhouche and B. Belkhouche. A control strategy for
tracking-interception of moving objects using wheeled
mobile robots. In 43rd IEEE Conference on Decision
and Control, pages 2129 – 2130, Atlantis, Bahamas, dec
2004.

J. A. Borgstadt and N. J. Ferrier. Interception of a
projectile using a human vision-based strategy. In IEEE
International Conference on Robotics and Automation,
volume 4, pages 3189 – 3196, California, USA, 2000.

B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest
paths algorithms : Theory and experimental evaluation.
Mathematical Programming, 1996.

E. A. Croft, R. G. Fenton, and B. Benhabib. Optimal
rendezvous-point selection for robotic interception of
moving objects. IEEE Transactions on Systems, Man
and Cybernetics, 28:192 – 204, apr 1998.

G. Gallo and S. Pallottino. Shortest path algorithms.
Annals of Operations Research, 1988.

R. Gans. A control algorithm for automated pursuit. In
IEEE international conference on control applications,
pages 907 – 911, Connecticut, USA, 1997.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7128

D. E. Kaufman and R. L. Smith. Fastest paths in time-
dependent networks for intelligent vehicle-highway sys-
tems application. Journal of Intelligent Transportation
Systems, 1993.

M. Lei and B. K. Ghosh. Visually guided robotic tracking
and grasping of a moving object. In IEEE 32nd Confer-
ence on Decision and Control, pages 1604 – 1609, Texas,
USA, dec 1993.

M. K. McBeath, D. M. Shaiter, and M. K. Kaiser. How
baseball outfielders determine where to run to catch fly
balls. Science, 268(5210):569 – 573, 1995.

P. McLeod and Z. Dienes. Running to catch the ball.
Nature, 362(6415), 1993.

M. D. Mikesell and R. J. Cipra. Development of a real-
time intelligent robotic tracking system. In ASME 23rd
Mechanism Conference, pages 213 – 222, Minnesota,
USA, sep 1994.

K. Nachtigall. Time depending shortest-path problems
with applications to railway networks. European Journal
of Operational Research, 1995.

A. Orda and R. Rom. Shortest path and minimum
delay algorithms in networks with time-dependent edge
length. Journal of the ACM 37, 1990.

A. De Palma, P. Hansen, and M. Labbe. Commuters
paths with penalties for early or late arrival times.
Transportation Science, 1993.

N. Papanikolopoulos, P. K. Khosla, and T. Kanade. Vision
and control techniques for robotic visual tracking. In
IEEE International Conference on Robotics and Au-
tomation, pages 857 – 864, California, USA, apr 1991.

T. H. Park and B. H. Lee. An approach to robot motion
analysis and planning for conveyor tracking. IEEE
Transactions on Systems, Man and Cybernetics, 22:378
– 384, 1992.

A. Suluh, T. Sugar, and M. McBeath. Spatial navigational
principles: Applications to mobile robotics. In IEEE
International Conference on Robotics and Automation,
volume 2, pages 1689 – 1694, 2001.

K. M. Thomas, G. Sugar, and M. K. McBeath. Perceptual
navigation strategy: A unified approach to lnterception
of ground balls and fly balls. In IEEE International
Conference on Robotics and Automation, volume 3,
pages 3461 – 3466, Taipei, Taiwan, sep 2003.

B. M. Waxman. Routing of multipoint connections. IEEE
Journal on Selected Areas in Communications, 1988.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7129

