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Abstract: A higher order sliding mode observer is proposed for asymptotic identification of
the full state vector and the vector of unknown inputs for MIMO nonlinear causal systems with
unstable internal dynamics. The problem is addressed via consistent application of exact higher
order sliding mode (HOSM) differentiators in conjunction with the method of stable system
center (SSC). A numerical example illustrates the performance of the proposed algorithm.

1. INTRODUCTION

Observation of the full state and unknown inputs in causal
nonminimum-phase nonlinear systems is a challenging,
real-life control problem. Classical observation algorithms
such as Kalman filtering cannot always be used success-
fully in the case of complex nonlinear systems in which
the dynamics are forced by unknown inputs. A method of
identification for linear, time-variant, nonminimum phase
systems is proposed in [9]. The use of hierarchical super-
twisting observation and identification algorithms for a
class of linear systems with unknown inputs is presented
in [8]. A higher order sliding mode observer for exact
estimation of observable states and asymptotic estimation
of the unobservable ones in MIMO nonlinear systems with
unknown inputs and stable internal dynamics is proposed
in [7]. Implicit observation of the unstable internal states
via the method of stable system center is addressed in
works [2, 3, 13]. In spite of the fact that the internal dy-
namics are assumed to be measured, the estimation of the
unique bounded profile for the internal states is generated
for the purpose of output tracking control for a class of
causal nonlinear nonminimum-phase MIMO systems.

The higher order sliding mode observation algorithm in-
troduced in this paper, relaxes the requirements of the
existing published methods: the linear plant model as in [8]
and the stable internal dynamics as in [7]. The internal
states are assumed to be forced by an unknown dynamical
process of given order. The characteristic polynomial of
that process is identified online via a higher order sliding
mode parameter observer. The coefficients of the identified
characteristic polynomial are then used in the method of
stable system center [13] to find the bounded profile which
asymptotically converges to the solution of the unstable
internal dynamics differential equation. The identification
of the unknown input is achieved by employing the exact
higher order sliding mode differentiator from [12] and the
estimate of the internal state.

The contribution of this work is in the consistent appli-
cation of a HOSM approach to the observation problem
in a class of nonminimum-phase causal nonlinear dynamic
systems and can be summarized as follows:

(1) a novel approach of implicitly numerically solving the
unstable differential equation is used for asymptotic
estimation of the full state in nonminimum phase
causal nonlinear systems;

(2) Asymptotic identification of the unknown input driv-
ing the system motion is achieved by using HOSM
observation algorithms.

2. PRELIMINARIES

Consider the (locally) stable MIMO nonlinear system:
{

ẋ = f(x) + G(x)φ(t)
y = h(x)

(1)

where f(x) ∈ ℜn, h(x) = [h1(x), h2(x), . . . , hm(x)]T ∈
ℜm, G(x) = [g1(x), g2(x), . . . , gm(x)]T ∈ ℜn×m, gi(x) ∈
ℜn for i = 1,m, x ∈ ℜn, y, φ ∈ ℜm, n≥m.

Remark 1. The vector functions f(x), gi(x),h(x) are as-
sumed to be smooth and bounded. The stability of system
(1) is local in vicinity of some equilibrium point.

The following set of conditions are assumed to hold [7]:

A1. The system (1) has a vector relative degree r =
[r1, r2, . . . , rm] with r < n, i.e.

Lgj
Lk

fhi(x) = 0, j = 1,m, 0≤k<ri − 1, i = 1,m

Lgj
L

ri−1
f

hi(x) 6=0, for at least one j from 1,m
(2)

A2. The m×m matrix

D(x) =
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(3)

is nonsingular
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A3. The distribution Γ = span{g1, g2, . . . , gm} is involu-
tive.

The system in (1) together with assumptions A1-A3 will
be referred to as (1+) in the rest of the paper.

3. PROBLEM FORMULATION

The problem considered in the paper is one of designing
a HOSM observer for system (1+) with only the measure-
ment y available. The observer is supposed to generate

estimates x̂ and φ̂ which asymptotically converge to the
true state vector x and input vector φ respectively, i.e.

lim
t→∞

‖x̂ − x‖ = 0, lim
t→∞

‖φ̂− φ‖ = 0, (4)

4. COORDINATE TRANSFORMATION

The system given by (1+) can be transformed to the new
basis {ξ, η} which is defined as follows:

ξi :=







yi

ẏi

.

..

y
(ri−1)
i







=







hi(x)
Lfhi(x)

.

.

.

L
ri−1
f

hi(x)







∈ ℜri , i = 1,m (5)

ξ :=







ξ1
ξ2
...
ξm







∈ ℜr, η :=







η1
η2
...

ηn−r







=∈ ℜn−r (6)

The new state {ξ, η} consists of the I/O component ξ and
the internal dynamics component η. According to [10], it
is always possible to find n− r functions

ψi : ℜn → ℜ, ηi = ψi(x) i = 1, n− r

such that the mapping

T(x) = [ h1(x), Lfh1(x), . . . , Lr1−1
f

h1(x)

h2(x), Lfh2(x), . . . , Lr2−1
f

h2(x),

. . .

hm(x), Lfhm(x), . . . , Lrm−1
f

hm(x),

ψ1(x), ψ2(x), . . . , ψn−r(x)]

(7)

is a local diffeomorphism in a neighborhood of any point
x which belongs to the system trajectory, i.e.

x = T
−1(ξ, η) (8)

Finally, the system given by (1+) can be rewritten in I/O
form together with the internal dynamics [10]:

ξ̇i = Λi ξi + ∆i(ξ, η) + Ψi(ξ, η, φ(t)), i = 1,m (9)

η̇ = Q η + θ(ξ, η) (10)

where Q ∈ ℜ(n−r)×(n−r) is nonsingular and

Λi =








0 1 0 . . . 0
0 0 1 . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . 1
0 0 0 . . . 0
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0
...
0

L
ri

f
hi(T

−1(ξ, η))








Ψi(ξ, η, φ(t)) =












0
0
.
.
.
0

m∑

j=1

Lgj
L

ri−1
f

hi(T
−1(ξ, η))φj(t)












(11)

The internal dynamics η are assumed to be unstable.

Remark 2. Such a presentation of the internal dynamics
equation in (9) is dictated by the identification algorithm
that will be employed. There are no constraints on selec-
tion of the matrix Q except one of nonsingularity.

5. THE HOSM OBSERVER DESIGN

The proposed observer consists of two components: the
state observer and the unknown input observer. Both of
them are presented in the two following sections.

5.1 The State Observer

The new state {ξ, η} consists of two components (the
I/O form and the internal states) which will be identified

separately. The first component estimate ξ̂ is identified in
an exact way by using the HOSM differentiator [11, 12].
The second component estimate η̂ is identified asymptot-
ically using the extended method of stable system center
(ESSC) 1

The Output State Estimation. The ith output state
vector along with its derivatives can be estimated in a
finite time by using the exact HOSM differentiator of rth

i -
order:







żi,0 = νi,0

νi,0 = −λ0 |zi,0 − yi|
ri/(ri+1) sign(zi,0 − yi) + zi,1

.

.

.

żi,j = νi,j , j = 1, ri − 1

νi,j = −λj |zi,j − νi,j−1|
(ri−j)/(ri−j+1)×

×sign(zi,j − νi,j−1) + zi,j+1,

...
żi,ri

= −λri
sign(zi,ri

− νi,ri−1)

(12)

with ξ̂i,j = zi,j−1 and
ˆ̇
ξi,j = zi,j for j = 1, ri

Combine all the components together:

ξ̂i = {ξ̂i,1, ξ̂i,2, . . . , ξ̂i,ri
}T ,

ˆ̇
ξi = {

ˆ̇
ξi,1,

ˆ̇
ξi,2, . . . ,

ˆ̇
ξi,ri

}T . (13)

The Internal State Estimation. Since the internal dy-
namics are assumed to be unstable (unlike the case consid-
ered in [7]) it is not possible to estimate them through nu-
merical integration of (10). Instead, the extended method
of stable system center (ESSC) is employed. The original
SSC method [13] (which is used as a basis for ESSC)
assumes that the internal dynamics differential equation
(10) is forced by the causal term θ(ξ, η) which appears
to be a solution of a differential equation with known
characteristic polynomial.

5.1.2.1. The SSC Method. The method of stable system
center numerically solves the differential equation

η̇ = Q η + θ(·) (14)

without explicit integration, where η ∈ ℜm, Q ∈ ℜm×m is
non-Hurwitz, and θ ∈ ℜm is a causal forcing term available
for measurement.

1 The ESSC method is introduced in [2, 3, 13] without explicit
entitling the latter.
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There is an assumption that the forcing term θ(·) is
a causal signal which coincides with the solution of a
known linear differential equation with know characteristic
polynomial:

Pk(λ) =
∣
∣λ I − Ã

∣
∣ = λk + pk−1 λ

k−1 + . . .+ p1 λ+ p0 (15)

The SSC method gives a procedure to design a linear filter
which generates an estimate η̂ of the solution ηc in (14).
The estimate asymptotically converges to ηc. The forcing
term θ(·) is supposed to be the input of the filter. The
following theorem presents the procedure:

Theorem 1. Given the unstable differential equation (14)
driven by a causal signal θ(·), which is available for
measurement, and the following set of conditions [13]:

• the matrix Q in (14) is nonsingular;
• the internal dynamics forcing term θ(·) can be piece-

wise modeled as the output of a dynamical process
with known characteristic polynomial (15),

then the internal state estimate η̂∈ℜm can be generated
by a matrix differential equation:

η̂(k) + ck−1 η̂
(k−1) + . . .+ c1 ˙̂η + c0 η̂ =

−
(
Pk−1 θ

(k−1) + . . .+ P1θ̇ + P0 θ
) (16)

where the numbers ck−1, . . . , c1, c0 are chosen to provide a
desirable eigenvalue placement of convergence η̂→ηc and
the matrices Pk−1, . . . , P1, P0∈ℜ

m×m are given by:

Pk−1 =
(
I + ck−1 Q−1 + . . .+ c0 Q−k

)
×

×
(
I + pk−1 Q−1 + . . .+ p0 Q−k

)
−1

− I

Pk−2 = ck−2 Q−1 + . . .+ c0 Q−(k−1) − (Pk−1 + I) ×

×
(
pk−2 Q−1 + . . .+ p0 Q−(k−1)

)

.

.

.

P1 = c1 Q−1 + c0 Q−2 − (Pk−1 + I) (p1 Q−1 + p0 Q−2)

P0 = c0 Q−1 − (Pk−1 + I) p0 Q−1

(17)

where pk−1, . . . , p1, p0 are the coefficients of the character-
istic polynomial (15);

Proof. The proof is given in [13]

5.1.2.2. The ESSC Method. The ESSC method [2, 3]
relaxes the requirement of knowing the characteristic poly-
nomial coefficients. In this case the differential equation
which describes the dynamics of the forcing term θ(·) is
assumed to be unknown but with given order. Now the
corresponding characteristic polynomial is identified online
using the HOSM parameter observer from [1, 2]. Details
of the algorithm for the identification of the characteristic
polynomial is given in the Appendix section A.

The ESSC method generates a bounded estimate η̂ of the
ideal internal dynamics (IID) ηc – the existing bounded
solution of (10). The estimate η̂ converges to ηc asymptot-
ically as time increases, i.e.

lim
t→∞

‖η̂ − ηc‖ = 0.

Remark 3. The ESSC method assumes the matrix Q to
be non-Hurwitz, but it works for any nonsingular matrix
Q which satisfies (10).

The ESSC method consists of two successive procedures:

• the identification of the characteristic polynomial
coefficients;

• the use of the SSC method to design the linear

filter which generates η̂ on the basis of θ(ξ̂, η̂). (The

estimate ξ̂ is assumed to be available: see 5.1.1)

The Recovery of the Original State x. Having the esti-

mates ξ̂ and η̂ available, the original state estimate can be
found from the inverse coordinate transformation:

x̂ = T
−1(ξ̂, η̂) (18)

In spite of the fact of finite time convergence of ξ̂ to ξ,
the full state vector estimate x̂ will converges to x only
asymptotically because of asymptotic convergence of the
internal state estimate η̂, i.e.

lim
t→∞

‖x̂ − x‖ = 0.

5.2 The Unknown Input Observer

Having estimated the following quantities:

• the internal states ηi ∈ ℜ for i = 1, n− r ;
• the I/O states ξj ∈ ℜrj for j = 1,m;

• the derivatives of output states ξ̇k ∈ ℜrk for k = 1,m

the estimate φ̂ of the unknown input φ in (1+) can be
calculated as follows:

φ̂ = D−1(x̂)















ˆ̇
ξ1,r1

ˆ̇
ξ2,r2

...
ˆ̇
ξm,rm








−







L
r1

f
h1(x̂)

L
r2

f
h2(x̂))

.

.

.
L

rm

f
hm(x̂))














(19)

The estimate φ̂ converges to φ asymptotically since the
full state vector estimate has also asymptotic convergence
(see 5.1 for details).

6. EXAMPLE

The performance of the proposed observer is illustrated in
this section on a numerical example. The example does not
emphasize the property of the method to handle complex
nonlinear systems, instead, it shows the ability of the
method to cope with online changes in the input signals
properties.

Consider a 4th order linear system already in the form
(9),(10):




ẏ1
ẏ2
η̇1
η̇2



 =






1.9109 −3.39 −0.4793 −0.0339
1.23 −5.324 −2.97 0.17

−7.92 4.79 0 1
0.57 −9.11 −0.15 0.8










y1
y2
η1
η2



 +





φ1(t)
φ2(t)

0
0





(20)

The plant has two measurable outputs y1 and y2, two
unknown inputs φ1 and φ2 and two internal states η1
and η2. The measurement system outputs are the only
signals available for use in the scheme. The only knowledge
about the system inputs is that each of them has a
harmonic characteristic with some particular magnitude
and frequency which are assumed to be unknown inside
the algorithm. 2

2 Since the system is linear and there are 2 harmonic inputs that
force its motion, it is assumed that a 4th order exogenous system
describes the motion of the forcing term θ(·) in (10)
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The 4×4 linear system state matrix in (20) is Hurwitz
and results in a stable system motion. The eigenvalues are
placed according to a 4th order Butterworth distribution
with ω = 1. However, the sub-matrix which is responsible
for the internal dynamics (i.e.

[
0 1

−0.15 0.8

]
) is picked to have

unstable eigenvalues {0.3, 0.5} which gives a nonminimum-
phase property to the system.

Immediately after the simulation begins, the algorithm im-
plicitly identifies all the necessary parameters of the input
signals (i.e. the corresponding characteristic polynomial)
and starts the estimation process. In order to illustrate
the power of algorithm, the parameters of the input sig-
nals have been changed in the middle of the simulation.
The new frequencies and the new magnitudes destroy the
estimation process, but the algorithm reacts to the break
in the sliding mode in the differentiator which occurs, and
re-starts the adaptation process (identification of the new
characteristic polynomial). As soon as the new properties
of the system are taken into account – the algorithm starts
generating the correct estimates for the internal states and
the unknown inputs.

In the simulation the ‘unknown’ inputs are generated
according to the following description:

φ1(t) =

{
1.5 sin(6.93 t), t<25

2.17 sin(4.19 t), t≥25

φ2(t) =

{
0.34 sin(2.57 t), t<25

0.95 sin(6.35 t), t≥25

The simulation results are shown in Figs. 1-4 .
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Fig. 1. The estimation of the 1st internal state
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Fig. 2. The estimation of the 2nd internal state

The ability of the proposed algorithm to adapt to the
changes in the unknown input properties is effectively
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Fig. 3. The estimation of the 1st input
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Fig. 4. The estimation of the 2nd input

illustrated in the above plots. The internal state estimates
along with the unknown input estimates asymptotically
converge to the true profiles. The estimation process is
temporally destroyed in the middle of the simulation
because of the changes in the properties of the input
signals. However the algorithm adapts to the different
conditions and starts generating the correct estimates
again.

7. CONCLUSIONS

A full state and unknown input identification problem for
a class of non-minimum phase causal nonlinear MIMO
systems has been studied:

• first a reversible system transformation to a canonical
form involving the I/O and internal dynamics has
been undertaken;

• the I/0 states ξ are exactly estimated in finite time
using an exact HOSM differentiator;

• The internal state (internal dynamics) η are asymp-
totically estimated by using the extended method of
stable system center and so the full state vector is
asymptotically recovered by using the inverse coordi-
nate transformation;

• The unknown input is asymptotically recovered us-
ing the inverse coordinate transformation and state
vector estimate.
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Appendix A. IDENTIFICATION OF
CHARACTERISTIC POLYNOMIAL

Consider an unknown linear dynamical process of given
order k. {

τ̇ = Aτ

θ = C τ
(A.1)

where τ ∈ ℜk is the state and θ ∈ ℜm is the output which
is available for measurement. The matrices A ∈ ℜk×k and

C ∈ ℜm×k are unknown but they are assumed to satisfy
the observability condition:

rank(M) = k, M = {MT
1 , . . . ,M

T
k }T ∈ ℜk m×k,

Mi = C Ai−1 ∈ ℜm×k, i = 1, k
(A.2)

Consider the characteristic polynomial which corresponds
to the process dynamics:

Pk(λ) = |A− λ I| = λk + pk−1 λ
k−1 + . . .+ p1 λ+ p0 (A.3)

with unknown coefficients pi which are to be identified.

The identification procedure consists of two steps:

(1) Reducing the problem to a regressive form by using
the exact HOSM differentiator [12];

(2) Applying the least-squares parameter estimation
(LSPE) method [1] to identify the polynomial coeffi-
cients.

A.1 Reducing the Problem to Regressive Form

Apply the kth-order exact HOSM differentiator to the jth

component of the output vector θ ∈ ℜm:






ż0,j = ν0,j

ν0,j = −λ0 |z0,j − θj |
n/(n+1) sign(z0,j − θj) + z1,j

.

.

.
żi,j = νi,j

νi,j = −λi |zi,j − νi−1,j |
(k−i)/(k−i+1)×

×sign(zi,j − νi−1,j) + zi+1,j ,

.

.

.
żk,j = −λk sign(zk,j − νk−1,j)

(A.4)

where the term zi,j stands for ith derivative of the jth

component of the vector θ, and the coefficients λi have
been selected to guarantee the finite time convergence of
a differentiator [12]. Combining the zi,j by the ith index
yields the following:






Z0 := {z0,1, z0,2, . . . , z0,m}T = θ = C τ

Z1 := {z1,1, z1,2, . . . , z1,m}T = θ̇ = C Aτ

.

.

.

Zk−1 := {zk−1,1, zk−1,2, . . . , zk−1,m}T = θ(k−1) = C Ak−1 τ

Zk := {zk,1, zk,2, . . . , zk,m}T = θ(k) = C Ak τ

(A.5)

where Zi ∈ ℜm corresponds to the ith derivative of θ.

Introduce two auxiliary vectors:

Z := {ZT
0 , Z

T
1 , . . . , Z

T
k−1}

T and Z̄ := {ZT
1 , Z

T
2 , . . . , Z

T
k }T

(A.6)

which are related through the time derivative Z̄≡Ż.

Using (A.2),(A.5) and (A.6) introduce a linear transfor-
mation of the state vector τ :

Z = M τ, (A.7)

Further introduce an arbitrary, but known matrix D ∈
ℜk×k m of rank k such that rank(DM) = k . Pre-
multiplying both sides of (A.7) by D, and define

Z̃ := (DZ) ∈ ℜk, M̃ := (DM) ∈ ℜk×k

then since M̃ is assumed to be nonsingular

Z̃ = M̃ τ ∴ τ = M̃−1 Z̃

Taking the derivative of both sides, the dynamics of the
system which is similar to the (A.1) system can be derived
as follows:
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˙̃
Z = M̃ τ̇ = M̃ A τ = M̃ A M̃−1

︸ ︷︷ ︸

Ã

Z̃ = Ã Z̃ (A.8)

Recalling that Z̃ = DZ and Ż = Z̄ gives

˙̃
Z = D Z̄

System (A.8) can be treated as a set of k linear equations
in the regressive form:

H = K S − equation in the regressive form;

H := ˙̃
Z = D Z̄ − known left-hand side vector;

S := Z̃ = DZ − known right-hand side vector;

K := Ã − unknown matrix to be identified;

(A.9)

or in the scalar notation:

Hi =

k∑

j=1

Ki,j Sj (A.10)

The unknown coefficients Ki,j for i, j = 1, k in scalar
equations (A.10) can be identified via the least squares
parameter estimation (LSPE) method presented in the

sequel. As soon as the matrix Ã≡K is estimated, its char-
acteristic polynomial can easily be computed. Since from
(A.8) the matrices Ã and A are similar, the characteristic
polynomials are the same.

A.2 LSPE Method

Single parameter identification. Consider a scalar linear
equation:

h(t) = k s(t) (A.11)

where k is the constant coefficient to be identified; s(t) and
h(t) are known signals. The unknown parameter k can not
be determined uniquely, since values of functions s(t) and
h(t) do not necessarily satisfy condition (A.11) for all time
moments.

Multiplying (A.11) by s(t) and integrating both sides from
some initial time moment t0 to the current time gives the
following:

k

t∫

t0

s(τ)2 dτ =

t∫

t0

s(τ)h(τ) dτ

which yields a way to determine the unknown scalar
coefficient k in real time starting from some initial time
moment t0:

k =

t∫

t0

s(τ)h(τ) dτ

t∫

t0

s(τ)2 dτ

(A.12)

Multiple parameters identification. Consider a linear
equation that fits a regressive form of order k:

h(t) = k1 s1(t) + k2 s2(t) + . . .+ kk sk(t)

where si(t) and h(t) are known functions (with values
which are measured or computed) and {k1, k2, ..., kk} is
a vector of unknown constants to be identified.

In fact, there are k unknowns and only one equation, thus,
this problem can not be solved uniquely. Since si(t) and h(t)

are time functions, therefore, the following equations can
be obtained:







h(t0) = s1(t0) k1 + . . .+ sk(t0) kk

h(t1) = s1(t1) k1 + . . .+ sk(t1) kk

.

.

.
h(tk−1) = s1(tk−1) k1 + . . .+ sk(tk−1) kk

where tj = t + j · ∆, and ∆ is some reasonable constant
time interval.

All of these equations can be grouped into a k-order linear
algebraic system:







s1,1 s1,2 . . . s1,k

s2,1 s2,2 . . . s2,k

...
...

. . .
...

sk,1 sk,2 . . . sk,k













k1
k2
...
kk







=







h1

h2

...
hk







(A.13)

where the following notation has been used:

si,j ≡ sj(ti−1), hi ≡ h(ti−1)

Each unknown ki can be found, for instance, by means of
Kramer’s rule:

kj =

∣
∣
∣
∣
∣
∣
∣
∣

s1,1 s1,2 . . . (s1,j → h1) . . . s1,k

s2,1 s2,2 . . . (s2,j → h2) . . . s2,k

...
...

. . .
...

. . .
...

sk,1 sk,2 . . . (sk,j → hk) . . . sk,k

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

s1,1 s1,2 . . . s1,j . . . s1,k

s2,1 s2,2 . . . s2,j . . . s2,k

...
...

. . .
...

. . .
...

sk,1 sk,2 . . . sk,j . . . sk,k

∣
∣
∣
∣
∣
∣
∣
∣

(A.14)

Since si,j and hi are time functions, they form time
dependent functions in the numerator and denominator
of (A.14). Therefore, this equation can be rewritten as
follows:

kj =
Sj(t)

S(t)
, j = 1, k

Assuming S(t)6=0, the following equality S(t) kj = Sj(t)
holds and thus can be solved by the scalar parameter
identification problem considered earlier:

kj =

t∫

t0+k·∆

S(τ)Sj(τ) dτ

t∫

t0+k·∆

S(τ)2 dτ

, j = 1, k (A.15)

In order to avoid division by 0, the initial condition for the
second integral (denominator) should not be equal to zero.

A.3 Identification of Polynomial Coefficients (solving the
regressive form problem)

Recalling the original problem of characteristic polynomial
identification, the multi-parameter case must be applied k
times (once for each scalar equation (A.10) with i = 1, k)

to estimate the matrix Ã = K = {Ki,j} for i, j = 1, k.

Once the matrix Ã estimated, it is a straightforward
problem to identify its characteristic polynomial P (λ)
which coincides with the one for (A.1) because of their
similarity.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4802


