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Abstract: This paper considers two aspects of the nonlinear H∞ control problem: the use of
weighting functions for performance and robustness improvement, as in the linear case, and the
development of a Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs
Equation (HJIE) that arises in the output feedback case. Design of nonlinear H∞ controllers
obtained by Taylor approximation and by the proposed Galerkin approximation method applied
to a magnetic levitation system are presented.
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1. INTRODUCTION

The development of a systematic analysis of the nonlinear
equivalent of the H∞ control problem was initiated by
the important contributions of Ball and Helton (1989),
Başar and Bernhard (1990), and van der Schaft (1991).
Although the H∞ norm is defined as a norm on transfer
matrices, when translated into the time domain, it is
nothing else than the L2-induced norm (from the input
time-functions to the output time-functions for initial state
zero). van der Schaft (1992) showed that the solutions
of the problem in question in the case of state feedback
can be determined from the solution of a Hamilton-Jacobi
equation, the Hamilton-Jacobi-Isaacs Equation (HJIE) or
Inequality, which is the nonlinear version of the Riccati
equation considered in the H∞ control problem for linear
systems. The nonlinear H∞ control problem via output
feedback was considered, for example, by Isidori and
Astolfi (1992), Ball et al. (1993), and Isidori and Kang
(1995). The nonlinear output feedback H∞ controllers
have separation structures and necessary and sufficient
conditions for the H∞ control problem to have solutions
involving two HJIE’s, associated with the design of a state-
feedback and an output-injection gain, respectively.

Although the formulation of the nonlinear theory of H∞
control has been well developed, solving the HJIE re-
mains a challenge and is the major bottleneck for the
practical application of the theory (Beard and McLain,
1998; Aliyu, 2003; Abu-Khalaf et al., 2004). The HJIE
is a first-order, nonlinear partial differential equation not
solved analytically in the general case and usually very
difficult to be solved for specific nonlinear systems. Thus,
several numerical methods have been proposed for its
solution. Starting with the work of Lukes (1969), who
proposed a polynomial approximation approach based on

Taylor series, many others authors have proposed similar
approaches to the solution of the problem. Huang and
Lin (1995), for example, find a smooth solution to the
HJIE by solving for the Taylor series expansion coefficients
in a efficient and organized manner. Beard and McLain
(1998) combine successive approximation and Galerkin
approximation methods to derive a novel algorithm that
produces stabilizing state feedback control laws with well-
defined stability regions.

This paper has two purposes. Firstly, it is shown that dy-
namic weighting functions can be used to improve the per-
formance and robustness of the nonlinear H∞ controller
such as in the design of H∞ controllers for linear plants.
In the literature only static weighting functions have been
explored. Secondly, the Galerkin successive approximation
method is used to find approximate solutions for the non-
linear H∞ control problem in the output feedback case.
The results are applied to a magnetic levitation system.

2. NONLINEAR H∞ OUTPUT FEEDBACK
CONTROLLER

Consider the following affine nonlinear state-space system
ẋ = f(x) + g1(x)w + g2(x)u,
z = h1(x) + k11w + k12u,
y = h2(x) + k21(x)w,

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the control
input, w ∈ Rr is the exogenous input which includes
disturbance (to be rejected) and/or references (to be
tracked), z ∈ Rs is the penalty variable and y ∈ Rp is
the measured variables.

The mapping f(x), g1(x), g2(x), h1(x), h2(x), k11(x),
k12(x) and k21(x) are smooth mappings (i.e., mappings
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of class Ck for some sufficiently large k) defined in a
neighborhood of the origin in Rn. It is also assumed that
f(0) = 0, h1(0) = 0, and h2(0) = 0.

The control action to (1) is provided by a controller,
which processes the measured variable y and generates the
appropriate control input u by

ξ̇ = η(ξ, y),
u = θ(ξ), (2)

where ξ is defined on a neighborhood Ξ of the origin in Rν

and η : Ξ × Rp → Rν , θ : Ξ → Rm are Ck functions (for
some k ≥ 1), satisfying η(0, 0) = 0 and θ(0) = 0.

The purposes of the controller are: to achieve closed-loop
stability and to attenuate the influence of the exogenous
input w on the penalty variable z. A controller which
locally asymptotically stabilizes the equilibrium (x, ξ) =
(0, 0) of the closed-loop system is said to be an admissible
controller. The requirement of disturbance attenuation is
characterized in the following manner: given a real number
γ > 0, it is said that the exogenous signals are locally
attenuated by γ if there exists a neighborhood U of the
point (x, ξ) = (0, 0) so that for every T > 0 and for every
piecewise continuous function w : [0, T ] → Rr for which
the state trajectory of the closed-loop system (1), (2)
starting from the initial state (x(0), ξ(0)) = (0, 0) remains
in U for all t ∈ [0, T ], the response z : [0, T ] → Rs of (1),
(2) satisfies

T∫
0

zT (s)z(s)ds ≤ γ2

T∫
0

wT (s)w(s)ds.

The nonlinear H∞ control problem using output feedback
consists in finding an admissible controller yielding local
attenuation of the exogenous input. In order to describe
the solution of the nonlinear H∞ control problem using
output feedback, a notion of detectability is necessary.
Definition 1. Suppose f(0) = 0 and h(0) = 0. The pair
{f, h} is said to be locally detectable if there exists a
neighborhood U of the point x = 0 so that, if x(t) is any
integral curve of ẋ = f(x) satisfying x(0) ∈ U , then h(x(t))
is defined for all t ≥ 0 and h(x(t)) = 0 for all t ≥ 0 implies
limt→∞ x(t) = 0.
Theorem 2. (Isidori and Astolfi (1992)). Consider system
(1) and suppose the following

H1) The pair (f, h1) is locally detectable.
H2) There exists a smooth positive definite function V (x),

locally defined in a neighborhood of the origin in Rn,
which satisfies the HJIE

Vxf + hT
1 h1 + γ2αT

1 α1 − αT
2 α2 = 0, (3)

where

α1 =
1

2γ2
gT
1 V T

x , α2 = −1
2
gT
2 V T

x . (4)

H3) There exists an n×p matrix G, so that the equilibrium
ξ = 0 of the system

ξ̇ = f(ξ) + g1(ξ)α1(ξ) − Gh2(ξ) (5)
is locally asymptotically stable.

H4) There exists a smooth positive semidefinite function
W (x, ξ), locally defined in a neighborhood of the

origin Rn × Rn and such that W (0, ξ) > 0 for each
ξ �= 0, which solves the HJIE

( Wx Wξ )fe + hT
e he + γ2ΦT Φ = 0, (6)

where

fe =

⎛
⎝ f(x) + g1(x)α1(x) + g2(x)α2(x)

f(ξ) + g1(ξ)α1(ξ) + g2(ξ)α2(ξ)
+G(h2(x) − h2(ξ))

⎞
⎠ ,

he = α2(ξ) − α2(x),

Φ =
1

2γ2
(Wxg1(x) + WξGk21(x))T .

(7)

Then, the problem of nonlinear H∞ control is solved by
the output feedback

ξ̇ = f(ξ) + g1(ξ)α1(ξ) + g2(ξ)α2(ξ) + G(y − h2(ξ)),
u = α2(ξ).

(8)

Remark 3. In order to simplify the analysis and to provide
a reasonable expression of the controller, it is assumed that
the coefficient matrices which characterize the plant (1)
satisfy the following assumptions, which are the nonlin-
ear versions of the standing assumptions considered, for
example, by Doyle et al. (1989)
k11(x) = 0, hT

1 (x)k12(x) = 0, kT
12(x)k12(x) = I,

k21(x)gT
1 (x) = 0, kT

21(x)k21(x) = I.
(9)

Existence of a solution to (3) and (6) is shown to exist in
the conditions of the following proposition.
Proposition 4. (Isidori and Astolfi (1992)). Let system (1)
linearized around the origin, given by

ẋ = Ax + B1w + B2u,
z = C1x + D11w + D12u,
y = C2x + D21w.

(10)

Assume that the linear system (10) satisfies

L1) The pair (A, B1) is stabilizable.
L2) The pair (A, C1) is detectable.
L3) There exists a positive definite symmetric solution X

of the Riccati equation

AT X + XA + CT
1 C1 − XB2B

T
2 X +

1
γ2

XB1B
T
1 X = 0.(11)

L4) There exists a positive definite symmetric solution Y
of the Riccati equation

Y AT + AY + B1B
T
1 − Y CT

2 C2Y +
1
γ2

Y CT
1 C1Y = 0. (12)

L5) ρ(XY ) < γ2.

(that is, there exists a solution for the linear H∞ control
problem via output feedback). Then hypotheses H1)–H4)
of theorem 2 hold and the nonlinear H∞ control problem
via output feedback is solvable with

G = ZCT
2 , V (x) = xT Xx,

W (x, ξ) = γ2(x − ξ)T Z−1(x − ξ),

Z = Y

(
I − 1

γ2
XY

)−1

.

3. THE WEIGHTED NONLINEAR H∞ CONTROL
PROBLEM

The penalty variable z comprises any output whose L2

norm is desired to be minimized. In the linear H∞ con-
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Fig. 1. Closed loop system including weighting functions

troller design, the penalty variable can be weighted as re-
quired, either through static weighting, frequency (linear)
weighting, nonlinear weighting function or any combina-
tion of these. The penalty variable can include tracking
error, actuator effort, sensitivity specifications via norm
bounds, robustness specifications via norm bounds and
frequency response criteria. The selection of weighting
functions for linear design problem is detailed in (Zhou
and Doyle, 1998). On the other hand, in the nonlinear H∞
controller design, only static weighting functions have been
explored (e.g., Sinha and Pechev, 2004). In the present
paper it is shown that dynamic weighting functions can
also be used in the nonlinear H∞ controller design, with
similar effects to the linear case.

Consider a nonlinear system modeled by equations of the
form

ẋp = fp(xp) + gp1(xp)w + gp2(xp)u,
y = hp2(xp) + kp21(xp)w.

(13)

Consider that linear dynamic weighting functions W1(s)
and W3(s) with state space description

ẋw1 = Aw1xw1 + Bw1(hp2(xp) + kp21(xp)w),
z1 = Cw1xw1,

ẋw3 = Aw3xw3 + Bw3hp2(xp),
z3 = Cw3xw3 + Dw3hp2(xp),

(14)

are included in the design as in Fig. 1. In addition, consider
that

z2 = W2u (15)

weights the control effort through the constant gain W2,
for simplicity. Combining (13), (14) and (15), the system
can be expressed as (1) with

x =

[
xp

xw1

xw3

]
, f(x) =

[
fp(xp)

Aw1xw1 + Bw1hp21(xp)
Aw3xw3 + Dw3hp2(xp)

]
,

g1(x) =

[
gp1(xp)

Bw1kp21(xp)
0

]
, g2(x) =

[
gp2(xp)

0
0

]
,

h1(x) =

[
Cw1xw1

0
Cw3xw3 + Dw3hp2(xp)

]
, k11(x) =

[ 0
0
0

]
,

k12(x) =

[ 0
W2

0

]
, h2(x) = hp2(xp), k21(x) = kp21(xp).

Suppose that there is a linear H∞ controller to the linear
system obtained from the linearization of system (13).

Then, under the conditions of proposition 4, there will be
a nonlinear H∞ controller for the system (13). In other
words, if the Riccati equations (11) and (12) are solvable
for the linearized system, then the HJIEs (3) and (6) are
solvable in a neighborhood of the origin in Rn.

4. GALERKIN SUCCESSIVE APPROXIMATION FOR
NONLINEAR H∞ CONTROL PROBLEM VIA

OUTPUT FEEDBACK

4.1 Successive approximation

The HJIE (6) can be rewritten as

K(x, WT
x , w∗∗, y∗) − H(x, V T

x , w∗, u∗) = 0, (16)

where
K(x, WT

x , w∗∗, y∗) = Wxf + Wxg1w∗∗ − yT
∗ h2 − yT

∗ k21w
+hT

1 h1 − γ2wT
∗∗w∗∗

w∗∗ =
1

2γ2
gT
1 Wx − kT

21h2

and H(x, V T
x , w∗, u∗) is the left-hand side of (3). The basic

idea of successive approximation is to compute W∗ and w∗∗
iteratively, as shown below.
Algorithm 1. Let w be an exogenous input with stability
region Ω.

For i = 0 to ∞
Solve for w(i) from

Wxf + Wxg1w
(i) − yT h2 − yT k21w

(i) + hT
1 h1

−γ2‖w(i)‖2 − H∗
Update the exogenous input
w(i+1) = 1

2γ2 gT
1 Wx − kT

21h2

End.

The essence of algorithm 1 is to reduce the HJIE to an
infinite sequence of linear partial differential equations.
Since these equations are difficult to be solved analytically,
in the next section a Galerkin approximation method will
be used to construct an approximate solution to the HJIE.

4.2 Galerkin approximation method

Let a partial differential equation A(V ) = 0 with boundary
conditions V (0) = 0. Galerkin method assumes a complete
set of basis functions {φj}∞j=1, so that φj(0) = 0, ∀j

and V (x) =
∑∞

j=1 cjφj(x), where the sum is assumed
to converge pointwise in some set Ω. An approximation
to V is formed by truncating the series to VN (x) =∑N

j=1 cjφj(x). The coefficients cj are obtained by solving
the algebraic equations∫

Ω

A(VN (x))φl(x)dx = 0, l = 1, . . . , N. (17)

For a more rigorous and complete treatment see, for
example, (Fletcher, 1984).

4.3 Output feedback

In this section an algorithm for output feedback control
design is proposed. In fact, the proposed algorithm is a
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dual version of the state feedback algorithm originally
proposed in (Beard and McLain, 1998). Assume that
w : Ω → Rs is the exogenous input for the system (1)
on a compact set Ω. Also assume that the set {φ(j)

w }∞j=1

is a complete basis set for the domain of the HJIE (16).
Then, according to (17), an approximate solution to (16) is
given by WN (x) =

∑N
j=1 c

(j)
w φ

(j)
w (x), where the coefficients

satisfy the equation∫
Ω

[K(x, WT
x , w∗∗, y∗) − H(x, V T

x , w∗, u∗)]φldx = 0. (18)

Substituting W (x) by WN (x) in (18) and defining cw =
[ c(1)

w . . . c(N)
w ]T , φw(x) = [ φ(1)

w . . . φ(N)
w ] and ∇φw(x) =

[ ∂φ(1)
w /∂x . . . ∂φ(N)

w /∂x ], (18), after some algebraic ma-
nipulations, can be rewritten as(

A1 +
A2(c

(n)
w )

2γ2

)
c(n+1)
w = γ2b1 + b2 +

A2(c
(n)
w )c(n)

w

4γ2

+
b3

4γ2
+

b4

4
,

where

A1 =
∫
Ω

φwfT∇φT
wdx, A2(cw) =

N∑
j=1

c(j)
w X(j),

X(j) =
∫
Ω

φw
∂φ

(j)
w

∂x

T

g1g
T
1 ∇φT

wdx,

b1 =
∫
Ω

φwhT
2 h2dx, b2 =

∫
Ω

φwfT∇φT
v cvdx,

b3 =
∫
Ω

φwcT
v ∇φvg1g

T
1 ∇φT

v cvdx,

b4 =
∫
Ω

φwcT
v ∇φvg2g

T
2 ∇φT

v cvdx.

The coefficients cw pull outside the integrals, and A2(w),
b2(w) and b3(u) can be computed iteratively once the
matrices {X(j)}N

j=1 have been calculated.

Algorithm 2. Let W (0) be an initial stabilizing solution to
(1). Let cv be the coefficients obtained by algorithm 1 to
approximate (3). Pre compute the integrals A1, A2(w), b1,
b2, b3, b4 and {X(j)}N

j=1.

For i = 0 to ∞
If i = 0

A(i) = A1 + 1
2γ2 A2(W

(0)
x )

b(i) = γ2b1 + 1
4γ2 A2(W

(0)
x )c(0)

w + b2 + 1
4γ2 b3 − 1

4b4

Else
A(i) = A1 + 1

2γ2

∑N
j=1 c

(i−1)
w (j)X(j)

b(i) = γ2b1 + 1
4γ2

∑N
j=1 c

(i−1)
w (j)X(j)c

(i−1)
w + b2

+ 1
4γ2 b3 − 1

4b4

End
c
(i)
w =

[
A(i)

]−1
b(i)

End
Extract R1(x) from xT R1(x) = cT

w∇φw − cT
v ∇φv

Extract L(x) from xT L(x) = 2γ2h2

Compute the output feedback with G(x) = R−1
1 (x)L(x).

mg

F(t)

x (t)

i(t)

x1

1

Fig. 2. Magnetic levitation system

5. NONLINEAR H∞ CONTROL DESIGN FOR A
MAGNETIC LEVITATION SYSTEM

In this section, nonlinear H∞ controllers are designed and
applied to a magnetic levitation system. In section 5.2 a
nonlinear controller based on the Taylor approximation
method, as proposed in (van der Schaft, 1992), is designed
to illustrate the benefits produced by dynamic weighting
functions. A similar design using static weighting functions
is presented in (Sinha and Pechev, 2004). In section 5.3 a
controller based on the proposed Galerkin approximation
method is designed and compared to the Taylor approx-
imation controller. In order to focus on the controllers,
weighting functions are not employed here.

5.1 Nonlinear model for the magnetic levitation system

The magnetic levitation system considered is schemati-
cally represented in Fig. 2, where i(t) indicates the current
through the magnetic bearing, that produces the attrac-
tion force F (t), m is the mass to be levitated and x1(t)
represents the deviation from the desired levitation gap x̄1.
Defining u(t) = i2(t) as the control action and considering
w1 and w2 as disturbances and g the gravity force, the
system is described by the following equations

ẋ1 = x2,

ẋ2 = g − g
x̄2

1

(x̄1 + x1)2
− k

m

u

(x̄1 + x1)2
+

1
m

w1,

y = x1 + w2,

(19)

which may be put in the affine form (13), where

fp(x) =

⎡
⎣ x2

g − g
x̄2

1

(x̄1 + x1)2

⎤
⎦ , gp1(x) =

[
0 0
1
m

0

]
,

gp2(x) =

⎡
⎣ 0

− k

m

1
(x̄1 + x1)2

⎤
⎦ , hp1(x) =

[
x1

x2

0

]
,

kp11(x) = 0, kp12(x) = [ 0 0 1 ]T ,

hp2(x) = x1, kp21 = [ 0 1 ].

The adopted parameter values for the system are

1.6 · 10−4N/m, m = 0.240kg,
x̄1 = 5mm, g = 9.8m/s2.
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Fig. 3. Performance and robustness simulation results

5.2 Taylor approximation design including dynamic
weighting functions

The weighting function W1 is specified to produce an
integral effect at low frequencies and W3 aims at noise
attenuation.

W1(s) =
100

s + 0.001
, W2(s) = 0.01, W3(s) =

s + 0.001
s + 1000

.

These weighting functions are included as shown in Fig.
1, and the global system is written in the affine form as
in section 3. Thus, the first order Taylor approximation to
the corresponding HJIE (3) produces the following state
feedback law

u = 5201.47x1 + 127.44x2 + 10099.51x3 − 6.85x4. (20)

In order to get a simpler observer, W1 and W3 were imple-
mented and the corresponding states, x3 and x4, directly
measured. Thus, the first order Taylor approximation to
the corresponding HJIE (6) produces the following output
injection

G =
[

206.29
12916.01

]
.

The lowest value of γ for which positive definite solutions
were found to (11) and (12), which correspond to the first
order Taylor approximations to (3) and (6), is γ = 200.
Fig. 3(a) shows the integral effect produced by W1; a unit
step disturbance, applied at t = 0.1s, produces a steady
state error when W1 = 1 and zero steady state error for W1

as specified. Fig. 3(b) shows the noise attenuation effect
produced by W3; for a white noise with standard deviation
0.1 N, added to w1, the output variance for W3 = 1 is
4.67 · 10−5 mm and 4.10 · 10−5 mm for W3 as specified.

5.3 Galerkin Successive Approximation design

In this section nonlinear output feedback controller de-
signs based on Taylor approximation and on the pro-
posed Gallerkin approximation are presented. Weighting
functions are not included here. In this case, the Taylor
approximation design is given by

u = 4706.12x1 + 125.09x2,

G =
[

206.29
12916.01

]
.

(21)

In the Galerkin approximation design the basis functions

φv =

[
(x̄1 + x1)2x1x2
1
2
(x̄1 + x1)2x2

2

]
, φw =

[
x3

1 + 103x2
2

x2
1 + 103x3

2

]
,

are proposed to the state feedback HJIE (3) and to the
output feedback HJIE (6), respectively. The state feedback
basis is chosen so that the control law given by (4) is
linear. Using Galekin successive approximation algorithm
for state feedback proposed by Beard and McLain (1998),
the following control law is obtained

u = 6197.37x1 + 162.70x2.

The basis for the output feedback design is chosen so that
G(x) is different from zero when the observer error is zero.
Thus, algorithm 2, initialized with the control law obtained
by Taylor approximation (21), produces

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8, 00 · 104(−1, 00 · 105 − 3, 95 · 102x2 + 7, 81x1

+7, 80 · 102x2
1)/(−1, 50 · 107x1 − 5, 76 · 104x1x2

+4, 87 · 106x2
1 + 4, 44 · 107x3

1 − 2, 64 · 107

−1, 04 · 105x2 + 3, 48 · 105x2
1x2 + 2, 65 · 109x4

1

+2, 32 · 107x3
1x2)

−8, 00 · 104(1, 49 · 102 + 5, 95 · 102x1

+8, 92 · 104x2
1 + 3, 90x2 + 7, 81 · 102x1x2)/

(−1, 50 · 107x1 − 5, 76 · 104x1x2 + 4, 87 · 106x2
1

+4, 44 · 107x3
1 − 2, 64 · 107 − 1, 04 · 105x2

+3, 48 · 105x2
1x2 + 2, 65 · 109x4

1 + 2, 32 · 107x3
1x2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The lowest value for γ, for which algorithm 2 converges
is γ = 20, indicating the possibility of a higher noise
attenuation. Notwithstanding, for comparison purposes
with the Taylor approximation design, γ = 200 was used.

The adopted stability domain Ω is x1 < |1.0 · 10−3|
and x2 < |0.3|. In this domain the control law used for
initializing algorithm 2 stabilizes the closed loop system.
It is worth observing that, while the Galerkin method
does not decrease the stability domain, in the Taylor
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Fig. 4. Position and velocity for output feedback for Taylor and Galerkin approximation controllers
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Fig. 5. Noise attenuation
approximation method the stability domain is not known
a priori, either.

Fig. 4 shows the position x1 and the velocity x2 in the levi-
tation transient for the Taylor and Galerkin controllers. As
observed, Galerkin controller produces a smoother tran-
sient. Fig. 5 shows the higher noise attenuation produced
by Galerkin controller.

6. CONCLUSION

In this paper, benefits of dynamic weighting functions
are explored in nonlinear H∞ control design, similarly
to the linear case. An output feedback method based
on Galerkin approximation is also proposed and shown
to be more efficient than the already established Taylor
approximation method in the case of a magnetic levitation
system.
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