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Abstract: In this paper a new algorithm for discrete-time overlapping decentralized state
estimation of large scale systems is proposed in the form of a multi-agent network based on
a combination of local Kalman filters and a dynamic consensus strategy, assuming intermittent
observations and communication faults. Conditions are derived for the algorithm to provide,
under general conditions concerning the agent resources and the network topology, asymptotic
stability in the sense of bounded mean-square estimation error. It is also demonstrated how
the consensus gains can be chosen by minimizing the total steady-state mean-square estimation
error. Numerical examples illustrate some properties of the proposed algorithm.

1. INTRODUCTION

A great deal of attention has been paid to the problem of
decentralized state estimation of complex systems. Under
this term one can consider different structures that are ei-
ther totally decentralized, partially decentralized, or hier-
archical. The key requirement is that the large scale system
is modelled as an interconnection of subsystems, and that
each subsystem has a decision maker (intelligent agent)
associated with it. Depending on the available resources,
an agent might have access to different information, such
as the sensor characteristics, properties and models of the
system and its environment and communication channels
between the agents. Attempts to provide an insight into
the principles and structures for decentralized estimation
can be found in e.g. Sanders et al. [1974, 1978], Šiljak
[1991], Speranzon et al. [2006], Tacker and Sanders [1980].
It should be noticed, however, that none of the existing
methodologies is able to provide a systematic and general
way of designing communication strategy between the
agents without recurring to a strong fusion center. Also,
the important problems of intermittent observations and
lossy networks have not been treated in this context.

As early as in the 1980s, important results were obtained in
the area of distributed asynchronous iterations in parallel
computation and distributed optimization (e.g. Bertsekas
and Tsitsiklis [1989], Tsitsiklis [1984], Tsitsiklis et al.
[1986]). Also, a very intensive research has been carried
out recently in the fields of multi-agent systems and sensor
networks, including numerous applications (see, e.g. Fax
and Murray [2004], Jadbabaie et al. [2003], Lin et al.
[2005], Moreau [2005], Olfati-Saber and Murray [2004],
Ren and Beard [2005], Ren et al. [2005]). The last refer-
ences have a common methodology: they all use some kind

of agreement or consensus strategy between the agents.
The decentralized state estimation problem itself is deeply
embedded in this line of thought either implicitly, through
the very definition of the consensus algorithms (e.g., see
Ren et al. [2005]), or explicitly, where the dynamic consen-
sus strategy between multiple agents is used for obtaining
estimates (on the basis of averaging) of the quantities used
subsequently for generating optimal parameter or state
estimates (e.g., see Olfati-Saber [2005], Xiao and Boyd
[2004]). However, none of the mentioned schemes is aimed
at establishing any type of real-time collaboration between
the local estimators in the overlapping decentralized esti-
mation problem.

In this paper a novel state estimation algorithm for com-
plex linear discrete-time systems is proposed based on: (1)
overlapping system decomposition and implementation of
local state estimators by intelligent agents according to
their sensing and computing resources; (2) application of
a consensus strategy providing the global state estimates
to all the agents in the network; (3) taking into account
influence of intermittent observations and communication
faults. The organization of the paper is as follows. The
main definition of the problem is given in Section 2. In
Section 3 the proposed estimation algorithm is described.
The algorithm can be considered as a discrete-time version
of the state estimation algorithm proposed in Stanković
et al. [2007a, 2008], or an extension to the state estimation
problem of the algorithm proposed in Stanković et al.
[2007b], structurally resembling to the distributed com-
putation algorithm proposed in Tsitsiklis [1984], Tsitsiklis
et al. [1986]. In Section 4, stability of the proposed scheme
is analyzed. Starting from a specially defined matrix norm,
sufficient conditions for the convergence of the estimates in
the mean and in the sense of preserving boundedness of the
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mean-square estimation error are derived for the general
case of intermittent observations and lossy networks using
the methodology of Sinopoli et al. [2004], Nilsson [1996].
The next section provides a strategy aimed at obtain-
ing the gains of the consensus scheme on the basis of
steady-state mean-square error minimization. Two simple
numerical examples serve to illustrate some characteristic
properties of the proposed estimation algorithm.

2. OVERLAPPING DECENTRALIZED ESTIMATION

Let a discrete-time stochastic system be represented by

S : x(t + 1) = Fx(t) + Ge(t),

y(t) = Hx(t) + v(t) (1)

where t is the discrete-time instant, x = (x1, . . . , xn)T ,
y = (y1, . . . , yp)

T , e = (e1, . . . , em)T and v = (v1, . . . , vp)
T

are its state, output, input and measurement noise vectors,
respectively, while F , G and H are constant n× n, n×m
and p × n matrices, respectively; {e(t)} and {v(t)} are
white zero-mean sequences of independent vector random
variables with covariance matrices Q and R.

We shall consider the problem of decentralized estimation
of the state x of S, in which N autonomous agents
generate the estimates on the basis of: (1) locally available
measurements; (2) specific a priori knowledge they possess
about the system model; and (3) real-time communication
between the agents.

Formally, we shall assume that the i-th agent has a
possibility to observe the pi-dimensional vector y(i) =
(yli

1

, . . . , ylipi

)T , composed of the set of components of y

with indices contained in the agent’s output index set
I

y
i = {li1, . . . , l

i
pi
}, li1, . . . , l

i
pi

∈ {1, . . . p}, li1 < . . . < lipi
,

pi ≤ p. Vector y(i) can be represented by

y(i)(t) = H(i)x(i)(t) + v(i)(t), (2)

where x(i) is an ni-dimensional vector composed of the
components of x selected by the agent’s state index set
Ix
i = {ji

1, . . . , j
i
ni
}, ji

1, . . . , j
i
ni

∈ {1, . . . n}, ji
1 < . . . < ji

ni
,

ni ≤ n, H(i) is a constant pi × ni matrix and v(i) a
measurement noise vector containing the components of v
selected by I

y
i , having covariance matrix R(i) (which can

be readily obtained from R). Notice that we have then
H(i)x(i) = Hix, where Hi is a pi × n matrix composed
of the entire rows of H selected by I

y
i . Definition of the

vector x(i) leads further to the definition of an ni × ni

matrix F (i) which contains the components of F selected
by the pairs of indices defined by Ix

i × Ix
i . In an analogous

way we can obtain matrix G(i), composed of ni rows of
matrix G selected by Ix

i . Consequently, the local models of
S (or of its parts) available to the agents are defined by

Si : x(i)(t + 1) = F (i)x(i)(t) + G(i)e(t),

y(i)(t) = H(i)x(i)(t) + v(i)(t), (3)

i = 1, . . . , N ; dynamic systems Si represent overlapping
subsystems of S (Stanković and Šiljak [2001]).

Starting from the model Si and the accessible measure-
ments y(i), each agent is able to generate autonomously its
own local estimate x̂(i) of the vector x(i) using an estimator

which can be designed on the basis of (3). Having in mind
the nature of S, the following local steady-state Kalman
filters will be assumed to be implemented by each agent:

Ēi : x̂(i)(t + 1|t) = F (i)x̂(i)(t|t − 1) +

γi(t)F
(i)L(i)[y(i)(t) − H(i)x̂(i)(t|t − 1)], (4)

where L(i) is the steady state Kalman gain given by
L(i) = P (i)H(i)T [H(i)P (i)H(i)T +R(i)]−1, P (i) is a solution
of the algebraic Riccati equation

P (i) = F (i)[P (i) − L(i)H(i)P (i)]F (i)T + G(i)QG(i)T , (5)

while γi(t) is a scalar equal to 1 when the i-th agent
receives measurements y(i), and 0 otherwise. We shall
assume that the pairs (F (i), G(i)Q

1

2 ) are stabilizable and
the pairs (F (i),H(i)) detectable, so that the matrices
F (i) − L(i)H(i) are asymptotically stable and P (i) > 0,
i = 1, . . . , N , (Anderson and Moore [1979], Sinopoli et al.
[2004]).

Overlapping decentralized estimators defined by (4) pro-
vide a set of overlapping estimates x̂(i). If the final goal
is to get an estimate x̂ of the whole state vector x of S,
different strategies can be added to the local estimators
(e.g., see Sanders et al. [1974, 1978], Speranzon et al.
[2006], Tacker and Sanders [1980], Šiljak [1991]). However,
all such approaches require a kind of centralized strategy
or special, model dependent communications for obtaining
x̂ by each agent.

3. CONSENSUS-BASED ESTIMATOR

Our task is to formulate a scheme which would provide to
all the agents in the network reliable estimates of the whole
state vector x on the basis of the local estimates x̂(i) and a
decentralized communication strategy uniform for all the
nodes, in spite of missing measurements and communica-
tion faults. We propose the following algorithm based on
the introduction of a first-order consensus scheme:

Ei : ξi(t|t) = ξi(t|t − 1) + γi(t)Li[y
(i) − Hiξi(t|t − 1)],

ξi(t + 1|t) =
N

∑

j=1

Cij(t)Fjξj(t|t) (6)

i = 1, . . . , N , where ξi is an estimate of x generated
by the i-th agent, Fi is an n × n matrix with ni × ni

nonzero elements that are equal to those of F (i), but
are placed at the indices defined by Ix

i × Ix
i , Li is an

n × pi matrix obtained similarly as Fi, in such a way
that its nonzero elements are those of L(i) placed row
by row at row-indices defined by Ix

i . We shall assume
that Cij(t) are n × n time-varying gain matrices defining
communications between the nodes, given in the form
Cij(t) = kij(t)Kij , where kij(t) = 1 when the directed
communication from the node j to the node i exists,
and kij(t) = 0 otherwise; Kij are diagonal matrices with
nonnegative elements, giving appropriate weights to the
communicated estimates. Further, we shall assume that
{kij(t)}, i, j = 1, . . . , N, i 6= j, are mutually independent
scalar sequences of independent binary random variables,
satisfying P{kij(t) = 1} = pij and P{kij(t) = 0} = 1−pij

for i 6= j, and that that kii(t) = 1, i = 1, . . . , N ; the
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N × N matrix K(t) = [kij(t)] determines connections
between the agents at time t. Also, we shall assume
that {γi(t)} is a sequence of independent binary random
variables independent of {kij(t)}, i, j = 1, . . . , N, i 6= j,
such that P{γi(t) = 1} = pii and P{γi(t) = 0} = 1 −
pii. Furthermore, we shall introduce a random vector Ξt

composed of N2 binary components: N(N − 1) elements
kij(t) (i, j = 1, . . . , N, i 6= j) and N elements γi(t).
This vector is, by assumption, generated on the basis
of Bernoulli trials, i.e., {Ξt} represents a sequence of
independent random vectors; let πr be the probabilities of

all possible realizations Ξ[r] of Ξt, r = 1, . . . , ν, ν = 2N2

.
Define an nN × nN ”consensus matrix” C̃(t) = [Cij(t)],
i, j = 1, . . . , N , and assume that it is row-stochastic
for all t. Introduce also Φi(t) = Fi − γi(t)LiHi, F̃E

= diag{F1, . . . , FN} and Φ̃(t) = diag{Φ1(t), . . . ,ΦN (t)},

as well as Ã(t) = C̃(t)Φ̃(t). Denote by Ã[r], C̃[r] and Φ̃[r]

realizations of Ã(t), C̃(t) and Φ̃(t) resulting from different
realizations Ξ[r] of Ξt, r = 1, . . . , ν .

It is possible to observe that the algorithm is based on
a combination of: a) decentralized overlapping estimators
represented by (4), and b) a the consensus scheme tending
to make the local estimates ξi as close as possible (e.g., see
Tsitsiklis et al. [1986], Tsitsiklis [1984], Fax and Murray
[2004], Jadbabaie et al. [2003], Lin et al. [2005], Moreau
[2005], Olfati-Saber and Murray [2004], Ren and Beard
[2005], Ren et al. [2005]). The algorithm reduces to the
local estimators when the ”consensus part” is eliminated
(Kij = 0). The ”consensus part” alone asymptotically
provides ξi = ξ under a proper choice of the matrices
Cij(t), where ξ is a weighted sum of the a priori estimates
ξ(t0), and t0 the initial time instant (Ren and Beard [2005],
Ren et al. [2005]). Notice that the estimator reminds
structurally of the discrete-time distributed optimization
algorithm proposed in Tsitsiklis et al. [1986], Tsitsiklis
[1984], Bertsekas and Tsitsiklis [1989]: it performs ”com-
putation” by evaluating the term Li(y

(i)−Ciξ
i) and forces

the ”agreement” between the agents by forming a linear
combination of the available local predictions Fjξj(t|t)
communicated between the agents. The proposed state es-
timator represents a discrete-time version of the estimator
proposed in Stanković et al. [2007a, 2008] and a gener-
alization of the parameter estimator based on stochastic
approximation proposed in Stanković et al. [2007b].

Introducing X̂(t|t) = vec{ξ1(t|t), . . . , ξN (t|t)} and X̂(t +
1|t) = vec{ξ1(t + 1|t), . . . , ξN (t + 1|))}, we can obtain a
compact formulation of the proposed algorithm

X̂(t|t) = X̂(t|t − 1) + Γ̃(t)L̃[Y (t) − H̃X̂(t|t − 1)]

X̂(t + 1|t) = C̃(t)F̃EX̂(t|t), (7)

where Y (t) = vec{y(1)(t), . . . , y(N)(t)}, L̃ = diag{L1,

. . . , LN}, Γ̃(t) = diag{γ1(t), . . . , γN (t)} and H̃ =
diag{H1, . . . ,HN}. Further, for the prediction error ε(t +

1|t) = X̂(t + 1|t) − X(t + 1), we obtain

ε(t + 1|t) = Ã(t)ε(t|t − 1) + C̃(t)(F̃E − F̃ )X(t) +

+C̃(t)Γ̃(t)L̃H̃V (t) − E(t), (8)

where F̃ = diag{F, . . . , F}, V (t) = vec{v(1)(t), . . . , v(N)(t)}
and E(t) = vec{e(t), . . . , e(t)}. Consequently, we obtain
the following state space system-estimator model:

Z(t + 1) =

[

F̃ 0

C̃(t)(F̃E − F̃ ) Ã(t)

]

Z(t) +

+

[

G̃ 0

−G̃ C̃(t)Γ̃(t)L̃H̃

]

N(t), (9)

where Z(t) = vec{X(t), ε(t|t − 1)} and N(t) = vec{E(t),
V (t)}. Applying the mathematical expectation on both
sides of (9), we obtain for Z̄(t) = E{Z(t)} the recursion

Z̄(t + 1) =
ν

∑

r=1

πiB[r]Z̄(t), (10)

where B̃[r] =

[

F̃ 0

C̃[r](F̃E − F̃ ) Ã[r]

]

and C̃[r] is obtained

from C̃(t) by choosing Ξt = Ξ[r].

Similarly, we obtain the following recursion for the mean-
square error matrix P (t) = E{Z(t)Z(t)T }:

P (t + 1) =

ν
∑

r=1

πr[B̃[r]P (t)B̃T
[r] + D̃[r]WD̃T

[r]], (11)

where D̃[r] =

[

G̃ 0

−G̃ C̃[r]Γ̃[r]]L̃H̃

]

and W = E{N(t)N(t)T }

= diag{Q∗, R}, where Q∗ =







Q · · · Q

...
Q · · · Q






and R̃ =

diag{R(1), . . . , R(N)}. Relation (11) can be rewritten in
the following way:

col{P (t + 1)} =
ν

∑

r=1

πr[(B̃[r] ⊗ B̃[r])col{P (t)}+

+(D̃[r] ⊗ D̃[r])col{W}] (12)

where col{.} denotes a vector obtained by concatenating
columns of an indicated matrix and the sign ⊗ denotes the
Kronecker’s product.

4. STABILITY

In the stability analysis of the proposed estimator, we shall
use the following results from the matrix analysis.

Lemma 1. Let f(.) be a matrix norm having the property
f(A) ≤ f(B) for two n × n matrices A and B satisfying
A ≤ B (A ≥ 0 means that all the elements of A are
nonnegative). Let g(.) be any matrix norm and let A be
partitioned into square blocks Aii. Then, h(A) is a matrix
norm, where

h(A) = f

















g(A11) · · · g(A1k)

...
...

g(Ak1) · · · g(Akk)

















. (13)
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Lemma 2. Let A be an n × n matrix and ε > 0. Then,
there exists a matrix norm ‖A‖ such that

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε, (14)

where ρ(A) is the spectral radius of a matrix A (ρ(A) =
maxi |λi(A)|, where λi(A) are the eigenvalues of A).

A norm satisfying the requirement of Lemma 2 is the
norm ‖A‖t = ‖DtU

T AUD−1
t ‖∞, where U is an orthogonal

matrix in A = U∆UT , where ∆ is an upper triangular
matrix (Schur’s theorem), Dt = diag{t, t2, t3, . . . , tn} and
‖A‖∞ = maxi

∑n

j=1 |aij | for A = [aij ], i, j = 1, . . . , n.

Inequality (14) is satisfied for any given ε > 0 by choosing
t ≥ 0 large enough.

Lemma 1 can be found in Pierce [1974] as Conlisk obser-
vation, while Lemma 2 and the related statement can be
found in Horn and Johnson [1985] (Lemma 5.6.10).

The following two theorems give sufficient conditions for
stability of (10) and boundedness of the mean-square error
(11). The applied methodology is based on Sinopoli et al.
[2004], Nilsson [1996] and the definition of a specially
constructed norm adapted to the partition of the consensus
matrix.

Theorem 1. Let Ã[r] be partitioned into blocks Ã
[r]
jk =

C
[r]
jk Φ

[r]
j , where C

[r]
jk and Φ

[r]
j are realizations of Cjk(t) and

Φj(t) obtained by choosing Ξt = Ξ[r], and let ρ(Φ
[r]
k ) <

R
[r]
k , k = 1, . . . , N , together with

ν
∑

r=1

πr max
j

N
∑

k=1

ρ(C
[r]
jk )R

[r]
k < 1. (15)

Then, the recursion (10) is stable if the system (1) is stable

or if the system (1) is unstable and F̃E = F̃ .

Proof: Consider the matrix Ã[r] and define its norm,
according to Lemma 1, in the following way:

‖Ã[r]‖c =

∥

∥

∥

∥

∥

∥

∥

∥

∥











‖C
[r]
11 Φ

[r]
1 ‖t · · · ‖C

[r]
1NΦ

[r]
N ‖t

...
...

‖C
[r]
N1Φ

[r]
1 ‖t · · · ‖C

[r]
NNΦ

[r]
N ‖t











∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

, (16)

having in mind properties of the norm ‖.‖∞. For particular

terms in (16) we have ‖C
[r]
jk Φ

[r]
k ‖t ≤ ρ(C

[r]
jk )‖Φ

[r]
k ‖t, having

in mind that ‖C
[r]
jk ‖t = ρ(C

[r]
jk ) for C

[r]
jk diagonal. Moreover,

it is always possible to find such a t̄ > 0 that for any

t > t̄ we have ‖Φ
[r]
k ‖t ≤ ρ(Φ

[r]
k ) + ε, for any given ε > 0.

Making ε small enough we always have ρ(Φ
[r]
k ) + ε ≤ R

[r]
k

(having in mind the strict inequality in ρ(Φ
[r]
k ) < R

[r]
k ),

and, therefore, ‖Φ
[r]
k ‖t ≤ R

[r]
k . Consequently,

‖Ã[r]‖c ≤ max
j

N
∑

k=1

ρ(C
[r]
jk )R

[r]
k ,

wherefrom the relation (15) directly follows. The second
conclusion follows trivially form the definition of the
matrix B̃[r]. Thus the result.

Theorem 2. The proposed estimator is stable in the sense
that ‖S(t)‖ < ∞ ∀t ∈ I (I is the set of all integers),

where S(t) = E{ε(t|t − 1)ε(t|t − 1)T }, if ρ(Φ
[r]
k ) < R

[r]
k ,

k = 1, . . . , N ,
ν

∑

r=1

πr(max
j

N
∑

k=1

ρ(C
[r]
jk )R

[r]
k )2 < 1. (17)

and the system (1) is stable. If the system (1) is unstable,

the estimator is stable if, additionally, F̃E = F̃ .

Proof: If Ã[r] is partitioned into n × n blocks A
[r]
ij , i, j =

1, . . . , N , then the matrix Ã[r]⊗Ã[r] is cogredient to ÃP
[r]⊗

ÃP
[r] defined by

ÃP
[r] ⊗ ÃP

[r] = T (Ã[r] ⊗ Ã[r])T
T =























A
[r]
11 ⊗ A

[r]
11 . . . A

[r]
11 ⊗ A

[r]
1N . . . A

[r]
1N ⊗ A

[r]
1N

...

A
[r]
21 ⊗ A

[r]
11 . . . A

[r]
21 ⊗ A

[r]
1N . . . A

[r]
2N ⊗ A

[r]
1N

...

A
[r]
N1 ⊗ A

[r]
N1 . . . A

[r]
N1 ⊗ A

[r]
nN . . . A

[r]
NN ⊗ A

[r]
NN























,

where T is a permutation transformation. Therefore, the
norm ‖ÃP

[r] ⊗ ÃP
[r]‖c is a norm ‖.‖o of Ã[r] ⊗ Ã[r], i.e.

‖Ã[r] ⊗ Ã[r]‖o = ‖ÃP
[r] ⊗ ÃP

[r]‖c =

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











‖A
[r]
11 ⊗ A

[r]
11‖t . . . ‖A

[r]
1N ⊗ A

[r]
1N‖t

...
...

‖A
[r]
N1 ⊗ A

[r]
1N‖t . . . ‖A

[r]
NN ⊗ A

[r]
NN‖t











∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

.

Majorizing the last expression similarly as in Theorem 1,
one obtains that

‖ÃP
[r] ⊗ ÃP

[r]‖c ≤ max
j,l

(

N
∑

k=1

ρ(C
[r]
jk )R

[r]
k )(

N
∑

m=1

ρ(C
[r]
lm)R[r]

m ).

As (17) implies (15), we also have that both
∑ν

r=1 πr(F̃ ⊗

Ã[r]) and
∑ν

r=1 πr(Ã[r] ⊗ F̃ ) are stable if F̃ is stable, and
the result directly follows, similarly as in Theorem 1.

Remark 1. When all the agents have the exact information
about the system model, the off-block-diagonal term in
B̃[r] reduces to zero, and stability of the estimator depends

entirely on
∑ν

r=1 πiÃ[r]. According to (15) and (17), un-
stable elements in the last sum can be compensated by the
remaining terms, and the system remains stable. When the
agents do not have the exact information about the system
model, the state X(t) propagates to the prediction error
part of the model (9).

Remark 2. A comparison with the results obtained in
relation with the continuous-time estimator based on con-
sensus described in Stanković et al. [2007a, 2008] shows
basic similarity of the main ideas, but also some differ-
ences. Namely, the main point of the stability analysis
in Stanković et al. [2007a, 2008] has been to show the
existence of stabilizing consensus gains, while the above
stability conditions give a deeper insight into the influence
of particular terms in the case of intermittent observations
and communication faults. The assumption that the con-
sensus matrix C̃(t) is row-stochastic for all t does not have
its direct counterpart in the continuous-time case (notice
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that eigenvalues at zero in the first case correspond to the
eigenvalues at −∞ in the second).

Example 1. Intercommunications between the agents intro-
duced by the consensus matrix increase, in principle, ro-
bustness of the local estimators in the case of intermittent
measurements. An insight can be obtained by analyzing
a simple example with two estimators. Assume that the
system is of first order and unstable, with F = 1.1; assume
also that F1 = 1.1, L1 = 0.2 and H1 = 1 for the first
estimator, and F2 = 1.1, L2 = 0.3 and H2 = 1 for the
second; both estimators are stable when the measurements
are available (when γi = 1). According to the analysis
given in Sinopoli et al. [2004], Nilsson [1996], the local
steady state estimators alone are mean-square stable (in
the sense of Theorem 2) if the probabilities p11 and p22

for getting measurements are less than p̄11 = 0.475 and
p̄22 = 0.632. Assume now that a multi-agent network is

implemented with the fixed matrix gain C̃ = 0.5

[

1 1
1 1

]

,

according to the proposed algorithm. Then, it is possible,
according to Theorem 2, to construct regions in the plane
p11−p22 which guarantee the mean-square stability of the
whole estimator for different values of the communication
probability p = p12 = p21 (Fig. 1). The obtained bound-
aries are conservative, as expected; however, the beneficial
effect of the consensus scheme is obvious.

p
11

p
2

2
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Fig. 1. Stability boundaries

Remark 3. Remark 3. It could seem somewhat surprising
that the above analysis does not take into account the
network topology more explicitly, like in Stanković et al.
[2007a,b, 2008], for example. This is a consequence of
the adopted focus placed on the conditions for mean-
square stability, rather than on the estimation quality
or the agreement between the agents (notice that the
local estimators alone can perform their job more or less
satisfactorily). The proposed scheme represents a simple
and general tool for increasing both quality and robustness
of distributed estimation, providing reliable estimates of
the whole state vector using estimates based on subsystem
models. In this context, connectedness of the network
contributes, in general, to the overall performance of the

algorithm, but does not represent a necessary condition
for the estimator to exist.

5. OPTIMIZATION

In the previous section general conditions for stability of
the proposed algorithm are given: there has been, however,
no indication of how to choose the parameters of the
consensus scheme in practice. It should be recalled that
our general formulation encompasses diagonal n×n block
matrices Kij with nonnegative elements, which should be
chosen in accordance with the local estimation quality:
in the case of higher uncertainty of the estimates, the
corresponding weights should be taken to be lower. Then,
the general strategy could be such that the elements of Kij

are taken to be proportional to the diagonal elements of the
inverse of the covariance matrices of the local estimators,
including zeros at the places which correspond to the
components of the state vector that are not estimated by
a particular agent (see also Stanković et al. [2007a, 2008]).
However, the problem remains of how to define relative
weights for communication between the agents, taking into
account the constraint that the overall consensus matrix
has to be row-stochastic. Obviously, this problem can be
treated pragmatically, starting from the equal neighbor
rules, etc. (see e.g. Jadbabaie et al. [2003]). However,
the given problem formulation allows the application of
a more general strategy based on optimization. If the
optimization criterion is taken to be the steady-state
mean-square prediction error of the estimator defined as
J = TrS = Tr limi→∞ S(t), then, if we collect all
the unknown parameters in a vector θ, we can pose the
following problem: minimize J with respect to θ, where J
is calculated from the solution of the following Lyapunov-
like algebraic equation

P =

ν
∑

r=1

πr[B̃[r]PB̃T
[r] + D̃[r]WD̃T

[r]], (18)

having in mind that S is a block of P . This equation has a
solution under the conditions formulated within Theorem
2. It is to be noticed that the incorporation of intermittent
measurements and communication losses makes this opti-
mization problem numerically more complex than the op-
timization problem formulated in Stanković et al. [2007a]
for continuous-time estimators with similar properties.

Example 2. The following example gives the results of an
application of the proposed optimization procedure in the
case of an unstable system. The system is supposed to

be given by (1) with F =

[

2 1
−1 1

]

, G =

[

1
0

]

, Q=1;

the eigenvalues of F are at 1.5 ± j0.866. There are two
Kalman filters, the first using H1 = [ 1 0 ] with R =
0.1, and the second H1 = [ 0 1 ] with R = 1, so that

L1 =

[

2.0750
−0.7807

]

and L2 =

[

−1.5448
−2.1632

]

, supposing that

both estimators possess the information about the system
model. Optimization is done by using (18) with respect
to the scalar parameters α1 and α2 in C11(t) = α1I and
C22(t) = α2I. The results have been found to be sensitive
to the initial conditions, having in mind system instability.
Fig. 2 depicts the dependence of the obtained parameters
on the communication probability p = p12 = p21. As it can
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be seen, the quality of the first estimator dominates in the
case of high communication reliability; when the commu-
nication reliability deteriorates, the relative importance of
the second local estimator increases, as expected.
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Fig. 2. Optimal consensus parameters

6. CONCLUSION

In this paper a new algorithm for overlapping decentralized
state estimation is proposed on the basis of a combination
of local Kalman filters with intermittent observations and
a consensus strategy connecting the local estimators with
communication faults. Sufficient conditions for stability
of the algorithm in the sense of preserving boundedness
of the mean-square estimation error are derived using a
specially defined matrix norm. It is also shown that the
algorithm can be optimized with respect to the consensus
parameters.

Immediate continuation of the research can be carried out
in the sense of determining the influence of the consensus
scheme to the measurement noise suppression.
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