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Abstract: This paper concerns the robust H∞ filtering problem for discrete-time singular
systems with norm-bounded uncertainties in all system matrices of state equations. On the
basis of the admissibility assumption of the uncertain singular systems, a set of necessary and
sufficient conditions for the existence of the desired filters is established, and a normal filter
design method under the linear matrix inequality framework is proposed. A numerical example
is given to illustrate the application of the proposed method.

1. INTRODUCTION

In the past decades, the H∞ filtering problem for singular
systems has been an important research topic. This is
due not only to the theoretical interests but also to the
relevance of the topic in various engineering applications.
Many works, such as Xu et al. [2003], Yue and Han [2004],
Sun and Packard [2005], Zhang et al. [2006], Xu and Lam
[2007], consider the filters for continuous-time singular
systems, in which the filter design criteria are mainly based
on the generalized Lyapunov theorem for singular sys-
tems Takaba et al. [1995], and the formulations are under
the linear matrix inequality (LMI) framework for easier
applications. Unlike in the discrete-time singular system
stabilization problem Xu and Yang [2000], Xu and Lam
[2004], in the filtering problem for discrete-time singular
systems, applications of the approaches parallel to those
for the continuous-time systems are not often adopted.
One possible reason is the difficulty to manage the re-
sultant constraints related to the singular matrix in the
difference term of the state-space model, especially when
the constraints need to be represented as LMIs. In Xu and
Lam [2007], a necessary and sufficient condition for the
solvability of filtering problem for nominal discrete-time
singular systems is contributed, which is difficult to apply
to the problem for singular systems with uncertainties.

In this paper, the robust H∞ filtering problem is discussed
for discrete-time singular systems with norm-bounded un-
certainties. The goal of the filter is to satisfy the H∞
performance level requirement on the filtering error dy-
namics. The proposed filter design method is formulated
under the LMI framework. Different from Xu et al. [2003],
Yue and Han [2004], Xu and Lam [2007], which directly
handle singular systems by using the generalized Lyapunov
theorem, here a “normal transformation” to get normal
system models (i.e., those with the system matrix for the
difference term being the identity matrix) Dai [1989] from
singular system models is applied first, and normal filters
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are found directly. Then, instead of using criteria such
those in Xu and Yang [2000], Xu and Lam [2004], the
easier-to-use criterion which is based on the direct Lya-
punov theorem for normal systems is applied. It is believed
that the consideration of normal filters is beneficial, since
sometimes the physical realizations of singular filters are
not easy Dai [1988, 1989].

In practical applications, the structure and behavior of
a singular system are also directly related to the system
matrix for the difference term. More flexibility will be
gained if all system matrices in state equations of dynami-
cal models are allowed to contain uncertainties. To handle
systems with uncertainties in the system matrix for the
difference term, it is assumed that the uncertain systems
are admissible, and the concept of the restricted system
equivalence (r.s.e.) Dai [1989] is applied. In addition, some
preliminary results in Lin et al. [2000], which considers
the stabilization problem for singular systems using the
algebraic Riccati equation method, provide the further
assumptions for the theoretical development of this paper.

Some notations to be used subsequently are introduced
here. The inequality X≥0 means that the matrix X is
symmetric and positive semi-definite, and X ≥ Y means
X−Y ≥ 0. Similar definitions apply to symmetric posi-
tive/negative definite matrices. λ(X) represents the eigen-
values of a square matrix X. For a matrix M, ‖M‖ denotes
its spectral norm, and for a stable discrete-time transfer
function matrix G(z), ‖G‖∞ = supω∈[0,2π) ‖G(ejω)‖ is
its H∞ norm. Ir is the identity matrix with dimension
r, the superscript T represents the transpose of a matrix,
and diag(X, Y, . . . ,Z) is the block diagonal matrix with
diagonal elements X, Y, . . ., Z. Finally, ∗ is used to
simplify the presentation of symmetric matrices.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

Consider the following nominal singular system,
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Σ0 :
{

E0x(k + 1) = A0x(k) + B0u(k)
z(k) = L0x(k), (1)

where x(k) ∈ Rn and rankE0 = r < n. The unforced
singular system pair (E0,A0) of (1) with u(k) ≡ 0
is regular, if det(zE0 − A0) is not identically zero. If
deg(det(zE0 − A0)) = rankE0, then (E0,A0) is said to
be causal. The pair (E0,A0) is stable if all the roots of
det(zE0−A0) = 0 have magnitudes less than unity. Finally
(E0,A0) is admissible if it is regular, causal and stable.
For Σ0, its transfer function matrix from u(k) to z(k) is
G(z) = L0(zE0 − A0)−1B0.
Definition 1. Dai [1989] Suppose Σ0 in (1) is regular. Let
P0 and Q0 be two n× n nonsingular matrices, and E0r =
P0E0Q0, A0r = P0A0Q0, B0r = P0B0, L0r = L0Q0.
The system

Σ0r :
{

E0rxr(k + 1) = A0rxr(k) + B0ru(k)
z(k) = L0rxr(k), (2)

with xr(k) = Q−1
0 x(k) is restricted system equivalent

(r.s.e.) to Σ0.

For any given regular Σ0, there exist nonsingular matrices
P0 and Q0 such that

E0r =
[
Ir 0
0 0

]
, A0r =

[
A1 A2

A3 A4

]
. (3)

Lemma 2. Suppose Σ0r in (2) is regular and has the system
matrices in (3). Then the pair (E0r,A0r) is causal and
stable if and only if A4 ∈ R(n−r)×(n−r) is invertible, and
all the roots of det(zE0r −A0r) = 0 have magnitudes less
than unity.

Lemma 2 is the discrete-time version of the corresponding
Lemma in Xu and Yang [1999], and can be proved simi-
larly.
Lemma 3. Lee and Fong [2006] Suppose Σ0r in (2) is r.s.e.
to Σ0 in (1). The pair (E0,A0) in (1) is admissible if and
only if the pair (E0r,A0r) in (2) is admissible.

The next three lemmas are useful for formulating the
filtering problem stated in the next Section within the LMI
framework.
Lemma 4. Xie [1996] Let I−ΘTΘ > 0, and define the set

Υ = {Δ(I − ΘΔ)−1, ΔTΔ ≤ I}.
Then, Υ = {ΘT(I−ΘΘT)−1+ΠT(I−ΘΘT)−1/2, ΠTΠ ≤
(I − ΘTΘ)−1}.
Lemma 5. Suppose I−ΘTΘ > 0. Let I− (I−ΘTΘ)−1 +
I − Θ̄TΘ̄ > 0, and define the set

Ῡ =
{

(I − ΠTΘ̄)−1ΠT, ΠTΠ ≤ (I − ΘTΘ)−1
}

.

Then,

Ῡ =

⎧⎨
⎩

(I − ΘTΘ)−1Θ̄T(I − Θ̄(I − ΘTΘ)−1Θ̄T)−1

+Π̄T(I − Θ̄(I − ΘTΘ)−1Θ̄T)−1/2,
Π̄TΠ̄ ≤ (I − ΘTΘ − Θ̄TΘ̄)−1

⎫⎬
⎭ .

In Lemma 5, I− (I−ΘTΘ)−1 + I− Θ̄TΘ̄ > 0 not only
implies I−ΘTΘ−Θ̄TΘ̄ > 0, but also guarantees that the
term (I−ΠTΘ̄)−1 in Ῡ is well defined Xie [1996] with

ΠTΠ ≤ (I − ΘTΘ)−1. It is not difficult to verify that
Lemma 5 is an extension to Lemma 4.
Lemma 6. Luo et al. [2004] Let Ω, H0, F0, and R0 > 0 be
real matrices with appropriate dimensions, and the matrix
Π̄ satisfy Π̄TΠ̄ ≤ R0. Then for all Π̄TΠ̄ ≤ R0 the matrix
inequality

Ω + H0Π̄F0 + FT
0 Π̄THT

0 < 0
holds if and only if there exists a scalar ε > 0 such that[

Ω H0

HT
0 0

]
+ ε

[
FT

0 R0F0 0
0 −I

]
< 0.

2.2 System Transformation

The uncertain singular system to be discussed is

Σ :

{(E + δE)x(k +1) = (A + δA)x(k) + (B + δB)u(k)
y(k) = Cx(k) + Du(k)
z(k) = Fx(k) + Hu(k),

(4)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rp is the
measured output vector, z(k) ∈ Rq is the vector to be
estimated, and u(k)∈Rm is the disturbance input vector.
The matrices E, A, B,C,D,F, and H are known real con-
stant matrices with appropriate dimensions. The constant
uncertainty matrices satisfy

[ δE δA δB ] = MxΔ [ N Nx Nu ] (5)

where ΔTΔ ≤ I and Δ ∈ Rd1×d2 . We shall restrict our
attention to all Δ in (5) for which the pair (E+ΔE,A+
ΔA) is admissible and rank(E + ΔE) = rank(E). Let P
and Q be two n×n nonsingular matrices and be such that

PEQ=
[
Ir 0
0 0

]
, PMx =

[
M1

M2

]
, NQ=

[
N1 N2

]
. (6)

By Lin et al. [2000], it can be assumed without loss of gen-
erality that N2 = 0 in (6), which is not difficult to prove
similarly. Here, it is further assumed that ‖N1M1‖ < 1.

Under the assumption that the pair (E+ δE,A+ δA) is
admissible, there exist nonsingular matrices P, Q, PΔ, and
QΔ Lin et al. [2000] such that the system Σ in (4) is r.s.e.
to the system

Σ̃ :

⎧⎨
⎩

Ẽx̃(k + 1) = Ãx̃(k) + B̃u(k)
y(k) = C̃x̃(k) + Du(k)
z(k) = F̃x̃(k) + Hu(k),

(7)

where x̃(k) = Q−1
Δ Q−1x(k) =

[
x̃T

1 (k) x̃T
2 (k)

]T, x̃1(k) ∈
Rr, x̃2(k) ∈ Rn−r,

Ẽ = PΔ(Er + MxrΔNr)QΔ,

Ã = PΔ(Ar + MxrΔNxr)QΔ, C̃ = CrQΔ,

B̃ = PΔ(Br + MxrΔNu), F̃ = FrQΔ,

(8)

and

Er = PEQ, Ar = PAQ, Br = PB, Cr = CQ,
Fr = FQ, Mxr = PMx, Nr = NQ, Nxr = NxQ.

(9)

For N2 =0 in (6), PΔ =In−MxrΔ̃Nr and QΔ =In, where
Δ̃ = Δ(I − JΔ)−1 and J = −N1M1, result in
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Ẽ = Er,

Ã = Ar + MxrΔ̃Ñx, C̃ = Cr,

B̃ = Br + MxrΔ̃Ñu, F̃ = Fr

(10)

in (8) with Ñx = Nxr − NrAr and Ñu = Nu − NrBr.

By Lemma 4, Ã and B̃ in (10) may be more explicitly
written as

Ã = Ã0 + MxrΠTÑxp,

B̃ = B̃0 + MxrΠTÑup
(11)

with ΠTΠ ≤ (I − JTJ)−1, and

Ã0 = Ar + MxrJT(I − JJT)−1Ñx,

B̃0 = Br + MxrJT(I − JJT)−1Ñu,

Ñxp = (I − JJT)−1/2Ñx,

Ñup = (I − JJT)−1/2Ñu.

(12)

Note that Cr, Fr in (9) and Ã0, B̃0, and Ñxp in (12) can
be partitioned as

Cr = [C1 C2], Fr = [F1 F2],

Ã0 =
[
Ã11 Ã12

Ã21 Ã22

]
, B̃0 =

[
B̃1

B̃2

]
, Ñxp = [Ñp1 Ñp2],

(13)

respectively, in accordance with the partition of the state
vector x̃(k). The system Σ̃ in (7) may be more explicitly
written as

x̃1(k+1)=(Ã11 + M1ΠTÑp1)x̃1(k)
+(Ã12+M1ΠTÑp2)x̃2(k)+(B̃1+M1ΠTÑup)u(k)

(14)

0 = (Ã21 + M2ΠTÑp1)x̃1(k)
+(Ã22+M2ΠTÑp2)x̃2(k)+(B̃2+M2ΠTÑup)u(k)

(15)

y(k) = C1x̃1(k) + C2x̃2(k) + Du(k) (16)

z(k) = F1x̃1(k) + F2x̃2(k) + Hu(k). (17)

By Lemma 3, the pair (Er, Ã) of Σr with parameter matri-
ces in (11) and (12) is admissible. In addition, by Lemma
2 the term (Ã22 + M2ΠTÑp2) in (15) is nonsingular for
all ΠTΠ ≤ (I − JTJ)−1, including Π = 0, which implies
that Ã22 is nonsingular. Let the nonsingular matrices
P̄ = diag(Ir, Ã−1

22 ) and Q̄ = In. Then Σ̃ in (14)–(17) is,
via P̄ and Q̄, r.s.e. to

Σ̃r :

⎧⎨
⎩

Erx̃(k + 1) = P̄Ãx̃(k) + P̄B̃u(k)
y(k) = Crx̃(k) + Du(k)
z(k) = Frx̃(k) + Hu(k),

(18)

which can be represented more explicitly by (14), (16),
(17), and

0 = (Ā21+M̄2ΠTÑp1)x̃1(k)
+(In−r+M̄2ΠTÑp2)x̃2(k) + (B̄2+M̄2ΠTÑup)u(k)

(19)

with Ā21 = Ã−1
22 Ã21, B̄2 = Ã−1

22 B̃2, and M̄2 = Ã−1
22 M2.

By Lemma 2, the term (In−r+M̄2ΠTÑp2) in (19) is also
nonsingular, because of the admissibility of Σ̃r maintained
by Lemma 3. Using the identity

(I + MoNo)−1 = I − Mo(I + NoMo)−1No (20)
for any real matrices Mo and No with appropriate dimen-
sions, one has

(In−r + M̄2ΠTÑp 2)−1 = In−r − M̄2Π̂Ñp 2, (21)

where Π̂ = (Id1 −ΠTJ̄)−1ΠT is well defined, and J̄ =
−Ñp2M̄2. Therefore, (19) may be re-arranged as

x̃2(k)=−(Ā21+M̄2Π̂N̄p1)x̃1(k)−(B̄2+M̄2Π̂N̄up)u(k),(22)

where N̄p1 = Ñp1 − Ñp2Ā21 and N̄up = Ñup − Ñp2B̄2.

By substituting (22) into (14), (16), and (17), the system
Σ̃r is reduced to

Σ̃r :

⎧⎨
⎩

x̃1(k + 1) = Âx̃1(k) + B̂u(k)
y(k) = Ĉx̃1(k) + D̂u(k)
z(k) = F̂x̃1(k) + Ĥu(k),

(23)

where⎡
⎣ Â B̂

Ĉ D̂
F̂ Ĥ

⎤
⎦ =

⎡
⎣ Â1 B̂1

Ĉ1 D̂1

F̂1 Ĥ1

⎤
⎦ +

⎡
⎣ M̂1

M̂y

M̂z

⎤
⎦ Π̂

[
N̄p1 N̄up

]
(24)

and

Â1 = Ã11 − Ã12Ā21, B̂1 = B̃1 − Ã12B̄2,

Ĉ1 = C1 − C2Ā21, D̂1 = D − C2B̄2,

F̂1 = F1 − F2Ā21, Ĥ1 = H − F2B̄2,

M̂1 = M1 − Ã12M̄2, M̂y = −C2M̄2,

M̂z = −F2M̄2.

(25)

Note that Σ̃r in (23) is a normal system, and its stability
is guaranteed by Lemma 3 with the r.s.e. relationship.

The transformation from singular to normal system mod-
els enables one to handle the robust filtering problem for
uncertain singular systems more easily, since many existing
filter design methods for normal systems can be applied.
Besides, filters designed this way have less number of states
than singular filters designed directly from the singular
system models.

2.3 Problem Statement

Consider the normal stable system Σ̃r in (23) subject to
Π̂ = (Id1 − ΠTJ̄)−1ΠT and ΠTΠ ≤ (I − JTJ)−1. To
estimate z(k), the following filter

Σf :
{

xf (k + 1) = Afxf (k) + Bfy(k)
zf (k) = Cfxf (k) + Dfy(k) (26)

is adopted, where xf (k)∈Rr and zf (k)∈Rq. The matrices
Af ,Bf , Cf , and Df are to be determined. From Σ̃r in (23)
and Σf in (26), the filtering error dynamics may be written
as

Σe :
{

xe(k + 1) = Aexe(k) + Beu(k)
e(k) = Cexe(k) + Deu(k), (27)

where e(k) = z(k) − zf (k), xT
e (k) = [ x̃T

1 (k) xT
f (k) ],

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2689



Ae =
[

Â 0
Bf Ĉ Af

]
, Be =

[
B̂

BfD̂

]
,

Ce =
[
F̂−Df Ĉ −Cf

]
, De =Ĥ−DfD̂.

(28)

The purpose here is to design a stable filter Σf such that

sup
Π

‖Ce(zI2r−Ae)−1Be + De‖∞ < μe (29)

for a prescribed H∞-norm bound μe > 0.

At this point an extra assumption I−(I−JTJ)−1+I−J̄T̄J>0
is added, which is solely for enabling the LMI formulation
in Theorem 9 to be developed in the next Section.

The following is a well-known lemma extended from the
Bounded Real Lemma in Gahinet and Apkarian [1994] for
characterizing the H∞-norm constraint. See Grigoriadis
and Waston [1997] and Yang and Hung [2002].
Lemma 7. The error dynamic system Σe in (27) is
quadratically stable Amato et al. [1998] and satisfies (29)
for a given μe > 0, if and only if there exists a Pe > 0
such that

⎡
⎢⎣

−Pe 0 AT
e Pe CT

e

0 −μ2
eI BT

e Pe DT
e

PeAe PeBe −Pe 0
Ce De 0 −I

⎤
⎥⎦ < 0. (30)

In Amato et al. [1998], it is known that the quadratic
stability of a system implies its asymptotic stability. Since
Σ̃r in (23) is stable, the quadratic stability of Σe in (27)
implies that the filter Σf in (26) is asymptotically stable.

3. ROBUST FILTER DESIGN

In the literatures, many authors have discussed the nor-
mal robust filtering problems with various specifications,
mainly based on the Lemma 7. See Geromel et al. [2000],
Palhares and Peres [2001], and Yang and Hung [2002] etc..
Here the method for proving Theorem 1 of Palhares and
Peres [2001] is modified to treat a different kind of uncer-
tainty, and to derive the following preliminary theorem,
which is the first step toward developing an LMI solution
to problem stated in the previous Section.
Theorem 8. The filtering error dynamics Σe in (27) is
quadratically stable and satisfies (29) for all admissible
uncertainties, if and only if there exist Φ ∈ Rr×r, X ∈
Rr×r, Y ∈ Rq×r, Z ∈ Rr×q, W ∈ Rr×r, and Df ∈ Rq×p

such that

⎡
⎢⎢⎢⎢⎢⎣

−Φ ∗ ∗ ∗ ∗ ∗
−Φ −X ∗ ∗ ∗ ∗
0 0 −μ2

eI ∗ ∗ ∗
ΦÂ ΦÂ ΦB̂ −Φ ∗ ∗
Ψ51 Ψ52 Ψ53 −Φ −X ∗
Ψ61 Ψ62 Ψ63 0 0 −I

⎤
⎥⎥⎥⎥⎥⎦ < 0, (31)

[
Φ Φ
Φ X

]
> 0, (32)

where

Ψ51 = XÂ + ZĈ + W, Ψ52 = XÂ + ZĈ,

Ψ53 = XB̂ + ZD̂, Ψ61 = F̂ − Df Ĉ − Y,

Ψ62 = F̂ − Df Ĉ, Ψ63 = Ĥ − DfD̂,

(33)

Â, B̂, Ĉ, D̂, F̂, and Ĥ are defined in (24). When the above
inequalities hold, the filter Σf in (26) with filter gains

Af = −U−1WU−T, Bf = U−1Z,
Cf = −YU−T, Df

(34)

is a solution to the considered robust filtering problem,
where U is nonsingular and satisfies UUT = X − Φ.

Proof. The proof is similar to the one in Palhares and
Peres [2001] and is omitted for brevity.

Note that in addition to the filter gain matrices shown in
(34), the following filter gains

Af = (Φ − X)−1W, Bf = (X − Φ)−1Z,
Cf = −Y, Df

(35)

are also usable, because the transfer function matrix Gf (z)
of the filter from y(k) to zf (k) satisfies

Gf (z) =−YU−T(zI + U−1WU−T)−1U−1Z + Df

=−Y[zI + (UUT)W]−1(UUT)−1Z + Df

=−Y[zI−(Φ−X)−1W]−1(X−Φ)−1Z+Df .(36)

Next, in order to put the results of Theorem 8 under
the LMI framework, by Lemma 5 the uncertainty Π̂ is
reformulated by the equivalent description

Π̂ = Ĵ1 + Π̄TĴ2, (37)

where

Ĵ1 = (Id1 − JTJ)−1J̄T(Id2 − J̄(Id1 − JTJ)−1J̄T)−1,

Ĵ2 = (Id2 − J̄(Id1 − JTJ)−1J̄T)−1/2,
(38)

and Π̄TΠ̄ ≤ (Id1 − JTJ− J̄TJ̄)−1. Correspondingly, the
matrices in (24) may be represented as

⎡
⎣ Â B̂

Ĉ D̂
F̂ Ĥ

⎤
⎦ =

[ At Bt

Ct Dt

Ft Ht

]
+

⎡
⎣ M̂1

M̂y

M̂z

⎤
⎦Π̄T

[
N̂x1 N̂up

]
, (39)

where

[ At Bt

Ct Dt

Ft Ht

]
=

⎡
⎣ Â1 B̂1

Ĉ1 D̂1

F̂1 Ĥ1

⎤
⎦+

⎡
⎣ M̂1

M̂y

M̂z

⎤
⎦Ĵ1

[
N̄p1 N̄up

]
,

[
N̂x1 N̂up

]
= Ĵ2

[
N̄p1 N̄up

]
.

(40)

Then Theorem 9 below is an LMI version of Theorem 8.
Theorem 9. Under the assumption of I− (I− JTJ)−1 +
I− J̄TJ̄ > 0, the filtering error dynamics Σe in (27) is
quadratically stable and satisfies (29) for a given μe > 0
with all considered uncertainties, if and only if there exist
Φ∈Rr×r, X∈Rr×r, Y ∈ Rq×r, Z ∈ Rr×q, W ∈ Rr×r,
Df ∈ Rq×p, and ε−1 > 0 such that the LMIs in (32) and
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M11 ∗ ∗ ∗ ∗ ∗ ∗
M11 M22 ∗ ∗ ∗ ∗ ∗
M31 M31 M33 ∗ ∗ ∗ ∗
ΦAt ΦAt ΦBt −Φ ∗ ∗ ∗
M51 M52 M53 −Φ −X ∗ ∗
M61 M62 M63 0 0 −Iq ∗
0 0 0 M̂T

1 Φ M75 M76 M77

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (41)

are satisfied, where

M11 =−Φ + ε−1N̂T
x1N̂x1 M22 =−X + ε−1N̂T

x1N̂x1

M31 =ε−1N̂T
upN̂x1 M33 =−μ2

eIm+ε−1N̂T
upN̂up

M51 =XAt + ZCt + W M52 =XAt + ZCt,
M53 =XBt + ZDt, M61 =Ft−DfCt−Y,
M62 =Ft − DfCt, M63 =Ht − DfDt,

M75 =M̂T
1 X + M̂T

y ZT, M76 =M̂T
z − M̂T

y DT
f ,

M77 =−ε−1(Id1−JTJ−J̄T̄J).

(42)

When the above inequalities hold, the filter Σf in (26) with
filter gains (34) or (35) is a solution to the considered
robust filtering problem.

Proof. It is enough to establish the equivalence of (31)
and (41) with an ε−1 >0. By (37), (31) may be re-written
as

Ω̃ + H̃0Π̄F̃0 + F̃T
0 Π̄TH̃T

0 < 0, (43)

with Π̄TΠ̄≤(Id1−JTJ−J̄T̄J)−1, where

Ω̃ =

⎡
⎢⎢⎢⎢⎢⎣

−Φ ∗ ∗ ∗ ∗ ∗
−Φ −X ∗ ∗ ∗ ∗
0 0 −μ2

eIm ∗ ∗ ∗
ΦAt ΦAt ΦBt −Φ ∗ ∗
M51 M52 M53 −Φ −X ∗
M61 M62 M63 0 0 −Iq

⎤
⎥⎥⎥⎥⎥⎦ ,

F̃0 =
[
0 0 0 MT

1Φ M75 M76

]
,

H̃T
0 =

[
N̂x1 N̂x1 N̂up 0 0 0

]
.

(44)

By Lemma 6 and the Schur complement, it is seen that
(43) is equivalent to (41) with an ε−1 > 0.
Remark 10. Based on Theorem 9, the following convex
optimization problem may be formulated with respect to a
chosen pair {P,Q} in (9) to find the H∞ optimal filter of
the form (26) such that (29) is satisfied with the minimal
μe:

min
μ2

e, ε−1,Φ, W, X, Y, Z, Df

μ2
e, (45)

subject to the LMIs (32), (41), ε−1 > 0 and μ2
e > 0.

4. A NUMERICAL EXAMPLE

In this section, an example is worked out to illustrate the
proposed filter design method. Suppose that the system
matrices of the system Σ in (4) are as follows:

E =

[ 1 2 1
0 2 1
1 0 0

]
, A =

[−0.102 −0.030 −0.046
−0.104 −0.168 −0.104
−0.090 0.114 0.424

]
,

BT = [ 1 1 0.2 ] , C = [ 0.1 0 0.5 ] ,

D = −0.5, F = [−1 0.3 −0.5 ] , H = 0.

(46)

The uncertainty matrices in (5) are assumed to be

Mx =

[ 2
4
2

]
,

N = [ 0.03 0 0 ] ,
Nx =[ 0.1 0.2 0.1 ] ,
Nu =1,

(47)

and |Δ| ≤ 1. The prescribed H∞-norm bound μe in (29) is
3. It is easy to verify that (E+δE,A+δA) is an admissible
pair, and rank(E+δE) = rankE=2. By applying singular
value decomposition to E, one may choose

P=

[ 0.2283 0.2045 0.0238
0.2850 −0.3977 0.6827

−0.5774 0.5774 0.5774

]
,

Q=

[ 0.2521 0.9677 0
0.8655 −0.2255 0.4472
0.4328 −0.1128 −0.8944

]
.

(48)

Since ‖J‖ = 0.02 < 1 and λ(I1−(I1−JTJ)−1+I1−J̄TJ̄)=
0.9938>0, the assumption of Theorem 9 is satisfied. The
filter Σf in (26) is designed by solving the LMIs of Theorem
9, and the filter gains (35) are found to be

Af =
[−0.0116 0.0195

0.1430 −0.1175

]
, Bf =

[
0.2667

−0.4196

]
,

Cf = [−0.1832 1.3640 ] , Df = 1.2646,

(49)

which is a second-order normal stable filter as desired.
With respect to the chosen {P,Q} in (48), the corre-
sponding H∞ optimal filter is also designed by solving
the convex optimization problem mentioned in Remark
10, which is implemented by the MATLAB LMI Control
Toolbox Gahinet et al. [1995]. The resulting optimal μe is
2.6116, and the filter gains (35) are found to be

Af =
[−0.0272 0.0190

0.1319 −0.1191

]
, Bf =

[
0.2640

−0.4236

]
,

Cf = [−0.0612 1.4202 ] , Df = 1.2788.

(50)

5. CONCLUSION

The H∞ filter design problem has been considered for
uncertain discrete-time singular systems, in which norm-
bounded uncertainties appear in all system matrices of the
state equations. The algebraic equations in the singular
system model are eliminated, and a normal dynamic sys-
tem model is constructed with uncertainties in the linear
fractional transformation form. For the H∞ filter design
problem, the normal system model allows one to utilize
many existing methods to design normal filters directly,
but how to utilize the degrees of freedom in the choices of
normal system models is worthy of further investigations.
In this paper a set of necessary and sufficient conditions is
provided in terms of LMIs for the normal filter design.
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