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Abstract: An on-line optimization strategy is developed and applied to a semi-industrial
crystallization process. The seeded fed-batch crystallizer is represented by a nonlinear moment
model. An optimal control problem pertinent to maximization of the batch crystal yield is solved
using the sequential optimization approach. As the dynamic optimizer requires knowledge of
the states of the system, an extended Luenberger-type observer is designed to estimate the
unmeasured state variable, i.e. solute concentration. Real-time implementations of the proposed
strategy reveal the effectiveness of closed-loop optimal control of the crystallizer. The superior
performance of the closed-loop implementation to that of the open-loop implementation is
attributed to the distinct role of the observer in the feedback control structure that not only
accounts for plant-model mismatch by state adaptation, but also enables disturbance handling.
Experimental results also demonstrate that the application of the proposed optimal control
strategy leads to a substantial increase in the crystal volume fraction at the end of the batch,
while the reproducibility of batches with respect to the product crystal size distribution is
sustained.

1. INTRODUCTION

A substantial amount of materials in the pharmaceutical,
food, and fine chemical processes is produced in crystalline,
i.e. solid, form. Batch crystallization is a key separation
and purification unit in such industries, with a significant
impact on the efficiency and profitability of the overall
process. Improved control of such processes offers many
possibilities to achieve the stringent requirements of the
final product quality, namely crystal size, purity and
morphology, and also enhance the process efficiency.

In the face of recent advances in the field of dynamic
optimization, the use of optimal operating profiles for the
control of batch crystallization processes has awakened
the attention in many researchers; see Miller & Rawlings
(1994), Lang et al. (1999), Ma et al. (2002), Hu et al.
(2005), and Nowee et al. (2007). These studies mostly
concerned finding the off-line optimized cooling profiles
and their open-loop implementations on batch crystal-
lizers. Nonetheless, the control of batch crystallization
processes is a challenging task due to their highly nonlinear
behavior, plant-model mismatch, irreproducible start-up,
unmeasured process disturbances, and lack of reliable mea-
surements for the system states. It is, therefore, likely that
the effectiveness of the off-line optimized profiles degrades
in real-time applications.

The performance deterioration of the off-line optimized
profiles due to the open-loop implementation motivates
the on-line computation of the optimal operating policy
during a batch crystallization process. Among the few con-

tributions available in the literature concerning the closed-
loop optimal control of batch crystallizers, the work of
Chang & Epstein (1987) can be considered as a pioneering
study in which the feasibility of a feedback control strategy
for batch crystallizers was demonstrated by a number of
open-loop and closed-loop simulations. Eaton & Rawlings
(1990) proposed a method for optimal feedback control of
chemical processes and showed its feasibility on a cooling
batch crystallization process. Later, Xie et al. (2001) and
Zhang & Rohani (2003) employed an extended Kalman
Filter (EKF) in the framework of a feedback optimal con-
trol system to account for the plant-model mismatch, and
predict the unmeasured state variables. In the latter study,
the simulation results revealed that the on-line optimal
control strategy would result in substantial improvement
of the end product quality in a potash alum batch cooling
crystallizer.

Despite the significance of the aforementioned studies,
their results were, however, limited to simulation findings;
none of them demonstrated the viability of real-time dy-
namic optimization of batch crystallization processes ex-
perimentally. This study concerns the design and real-time
implementation of an on-line optimization strategy for
seeded fed-batch evaporative crystallization of an ammo-
nium sulphate-water system. Unlike batch cooling crystal-
lization processes, the optimal control of batch evaporative
crystallization has gained little attention in the literature.
The optimal control problem presented in this paper is
solved using the sequential optimization approach. The
performance of the proposed control strategy is examined
experimentally by a number of open-loop and closed-loop
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implementations on a semi-industrial 75-liter draft tube
crystallizer.

This paper is comprised of five sections. In the following
section, the model of the seeded fed-batch evaporative
crystallizer is presented. Section 3 discusses the formula-
tion of the optimal control problem, as well as the design of
an extended Luenberger-type observer. The experimental
results of batch crystallization optimization are presented
in section 4, while conclusions and future research direc-
tions are given in section 5.

2. CRYSTALLIZATION MODEL

The mathematical models of solution crystallization pro-
cesses are typically obtained through the application of
a population balance equation, mass balance equations
for solvent and solute, energy balance equation, and ex-
pressions describing the variation of the equilibrium con-
centration. The population balance equation accounts for
the evolution of crystal particles along temporal and size
domains. Under the assumptions of mixed suspension, con-
stant crystallizer volume, nucleation of crystals of infinites-
imal size, and negligible breakage and agglomeration, the
dynamic population balance equation for a semi-batch
crystallization process simplifies to (Randolph & Larson,
1988):

V
∂n(L, t)

∂t
+ V

∂(n(L, t)G)

∂L
= V B(L, t) − Qpn(L, t) (1)

where n is the number density (# · m−3 · m−1), G is the
growth rate (m · s−1), B is the nucleation rate (# · m−3 ·
m−1 · s−1), L is the characteristic crystal size (m), V is
the crystallizer volume (m3), and Qp is the sample stream
flow rate (m3 · s−1).

Numerical solution of the population balance equation of-
ten requires considerable computational effort that might
render the real-time implementation of model based con-
trol strategies infeasible. The method of moments is, there-
fore, applied to equation (1) in order to convert the pop-
ulation balance equation into a set of computationally
affordable Ordinary Differential Equations (ODEs). With
defining the ith moment of n(L, t) as:

mi =

∫ ∞

0

Lin(L, t) dL i = 0, . . . , 4 (2)

multiplying equation (1) by LidL and, subsequently, in-
tegrating over the entire crystal size domain result in
the following set of ODEs that describes the evolution of
moments of the Crystal Size Distribution (CSD) in time:

dm0

dt
= B0 −

m0Qp

V
dmi

dt
= iGmi−1 −

miQp

V
i = 1, . . . , 4.

(3)

Here B0 represents the total rate of nucleation (# · m−3 ·
s−1).

Among various types of nucleation mechanism, this work
only considers the particle formation from crystal surfaces,
i.e. secondary nucleation, since it is the dominant nucle-
ation mechanism occurring in seeded batch crystallizers.
The empirical expressions realized for the total nucleation

Table 1. Model parameters

Symbol Value Unit

C∗ 0.46 kgsolute/kgsolution

g 1.0 -

Hc 60.75 kJ/kg
HL 69.86 kJ/kg
Hv 2.59× 103 kJ/kg
Kv 0.43 -

kb 1.02× 1014 #/m4

kg 7.50× 10−5 m/s
Qp 1.73× 10−6 m3/s
V 7.50× 10−2 m3

ρc 1767.35 kg/m3

ρL 1248.93 kg/m3

rate, and the size independent crystal growth rate are as
follows:

B0 = kbm3G (4)

G = kg(C − C∗)g (5)

The nucleation rate constant kb, the growth rate constant
kg, and the growth rate exponent g are the kinetic pa-
rameters corresponding to the ammonium sulphate-water
system. Furthermore C and C∗ are the solute concentra-
tion and the equilibrium concentration, respectively; their
difference determines the driving force of the crystalliza-
tion process, known as the supersaturation.

In the face of isothermal operation of the evaporative
crystallizer, a single expression is derived for the solute
concentration using the mass and energy balance equa-
tions:

dC

dt
=

Qp(C∗−C)
V

+ 3KvGm2(k1 + C)

1 − Kvm3
+

k2Hin

1 − Kvm3
(6)

with constant coefficients given by:

k1 =
HvC

∗

Hv − HL

(
ρc

ρL

− 1 +
ρLHL − ρcHc

ρLHv

)
−

ρc

ρL

(7)

k2 =
C∗

V ρL(Hv − HL)
(8)

where Kv is the crystal volumetric shape factor, Hin is
the heat input to the crystallizer (kW ), ρL is the saturated
solution density (kg ·m−3), and ρc is the density of crystals
(kg · m−3). HL, Hc and Hv are the solution, crystals
and vapor specific enthalpies (kJ · kg−1), respectively.
The physical properties of the ammonium sulphate-water
system, as well as the nucleation and growth rate kinetic
parameters are listed in Table 1.

From the aforementioned analysis, it follows that the
dynamic behavior of the system under investigation is
governed by a set of Differential Algebraic Equations
(DAEs), equations (3-8). Hence, the five leading moments
of the CSD, and the solute concentration are the state
variables determining the dynamics of the system. Actual
measurements are only available for the moments of the
CSD.

In the batch experiments, large seed loads are used that
result in relatively low supersaturation levels (Doki et
al., 2002). Under these conditions, the effect of secondary
nucleation is minimized and, consequently, the crystal
growth mainly dictates the dynamics of the crystal size
distribution throughout the batch. Hence, the CSD in
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Fig. 1. Block diagram of the control system

such process is unimodal and, therefore, can be reasonably
represented by the mean crystal size and the CSD width
using the moment model. The nonlinear moment model
was experimentally verified to be an adequate description
of the process at hand (Mesbah et al., 2007).

3. ON-LINE OPTIMAL CONTROL STRATEGY

3.1 Dynamic Optimization

The effective strategy to be realized for optimal control of
crystallization processes mainly depends on the product
specifications, as well as the properties of the crystalliza-
tion system under investigation. Achievement of the de-
sired final product characteristics is often of higher impor-
tance than maximization of process yield or energy saving
considerations. A preceding study on the controllability
analysis of the 75-liter draft tube crystallizer conducted
by Kalbasenka et al. (2007) revealed that the initial con-
ditions have a profound impact on the fed-batch process.
It has been shown that a good reproducibility of batches
with respect to the crystal size can only be obtained by
means of a proper seeding strategy.

In this study, the primary goal is to maximize the batch
crystal yield while the reproducibility of batch runs, as
well as the fulfilment of the desired product specifications
is sustained. This objective is achieved by manipulation of
the supersaturation profile. In an evaporative crystallizer,
the supersaturation trajectory is dependent on the heat
input to the crystallizer. Hence, the heat input can be
utilized as a manipulated variable to control the non-
equilibrium driving force of the process and, consequently,
optimize the batch crystal yield. As most of the crystalliza-
tion phenomena are supersaturation-dependent, variations
in the heat input should be constrained in such a way as
to avoid degradation of the product quality caused by e.g.
irregular crystal growth, impurity uptake, solvent inclusion
etc.

An optimal control problem is thereby formulated to de-
termine the heat input profile that maximizes an objective
function pertinent to the batch crystal yield while certain
constraints are imposed on the heat input and crystal

growth rate to avoid degradation of the product quality.
The optimal control problem is expressed as follows:

min
Hin(t)

∫ tf

0
(100G(t)−Gmax

Gmax
)2 dt

∫ tf

0 dt

s.t. equations (3)-(8)

G(t) 6 Gmax = 2.5 × 10−8 m/s

9 6 Hin(t) 6 13 kW

(9)

where Hin is the vector of the piecewise constant heat
input profile, and Gmax is the maximum crystal growth
rate. The lower bound of heat input is kept at a relatively
high value to ensure survival of ground seeds in the
crystallizer during the initial phase of the process, whereas
an approximation of the upper actuator constraint is taken
as the upper heat input bound. An inequality constraint
is also imposed on the crystal growth rate to avoid the
formation of irregularly shaped crystals. The optimal
control problem described in (9) is, therefore, equivalent
to maximization of the batch crystal yield while sustaining
the product quality.

Among several methods for computing solution to the mul-
tivariable optimization problem, the sequential approach
proposed by Biegler & Cuthrell (1985) is employed to
solve the optimization problem (9). In this approach, the
optimal control problem is transformed into a Nonlinear
Programming Problem (NLP) by parameterization of the
control input variable. An ODE solver is, thereby, used
in combination with an optimization algorithm to solve
the NLP problem sequentially. The major advantage of
the sequential approach is the reduced dimensionality of
the nonlinear program since the number of parameters in
the control parametrization problem remains small. In this
study, the set of differential-algebraic equations (3-8) is
integrated using the Euler method, while the MATLAB
optimization function, i.e. fmincon, is utilized to solve the
NLP problem in which the heat input is parameterized.

3.2 Observer Design

Real-time implementation of the dynamic optimizer re-
quires knowledge of the current states of the system. As
actual measurements are not available for the solute con-
centration, an observer based on nonlinear extension of the
Luenberger state estimation technique (Ciccarella et al.,
1993) is used to estimate the evolution of supersaturation
during the fed-batch crystallization process. For the sys-
tem under investigation, the performance of the extended
Luenberger-type observer appeared to be superior to that
of an extended Kalman filter (Kalbasenka et al., 2006).

In order to design the observer, the moment model de-
scribed by equations (3-8) is reformulated in the following
form:

dx(t)

dt
= f(x(t)) + g(x(t))u(t) x(0) = x0 (10)

y(t) = h(x(t)) (11)

where the state vector x(t) ∈ ℜnx , the output vector
y(t) ∈ ℜny , and the input vector u(t) ∈ ℜnu are defined
as:

x(t) = [m0 m1 m2 m3 m4 C]T (12)
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Table 2. Scaling factors and optimization pa-
rameters in equation (19)

Index 1 2 3 4 5

ai 1× 10−10 1× 10−6 1× 10−2 1× 102 1× 105

Ki 2.72× 10−3 84.5 0.117 0.441 0.464

y(t) = [m0 m1 m2 m3 m4]
T (13)

u(t) = Hin. (14)

The observer equation is expressed as:

dx̂(t)

dt
= f(x̂(t)) + g(x̂(t))u(t) + [Q(x̂(t))]−1KE(t) (15)

where x̂(t) is the estimated state vector, Q(x̂(t)) is the
observability matrix, K is the finite gain vector of the
observer to be determined by tuning, and E(t) denotes the
difference between the measured and estimated outputs,
i.e. error signal:

E(t) = y(t) − h(x̂(t)). (16)

As tuning is a rather tedious task to determine the gain
vector K, a slightly different formulation of equation (15)
is used:

dx̂(t)

dt
= f(x̂(t)) + g(x̂(t))u(t) + K̂E(t) x̂(0) = x (17)

in which K̂ ∈ ℜnx×ny is a constant matrix:

K̂ =





0 0 0 K1 0
0 0 0 0 K2

0 0 K3 0 0
0 0 0 K4 0
0 0 0 0 K5

0 0 0 0 0




. (18)

It is self-evident that entries of the last row in matrix (18)
are zero since the error signal for the sixth state, i.e.
solute concentration, is not available. Due to the absence
of accurate measurements for m0 and m1, these two state
variables are estimated using error signals defined on the
basis of m3 and m4 measurements, respectively.

The matrix K̂ is then determined as a solution to the
following optimization problem formulated in gPROMS
(PSE Ltd., UK):

min
Ki

5∑

i=1

ai

∫ tf

0 |xi(t) − x̂i(t)| dt
∫ tf

0 dt

s.t. equation (17).

(19)

Numerical values of the scaling constants ai, and the

entries of matrix K̂ are given in Table 2. The scaling con-
stants account for the greatly differing order of magnitude
of the states.

4. RESULTS AND DISCUSSION

The effectiveness of the proposed control strategy is evalu-
ated experimentally for fed-batch evaporative crystalliza-
tion of an ammonium sulphate-water system. The optimal
control strategy is implemented on a 75-liter draft tube
crystallizer in both open-loop, i.e. without observer and
state feedback, and closed-loop modes. The crystallizer
is equipped with an on-line laser diffraction instrument
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Fig. 2. Heat input profiles

(HELOS-Vario, Sympatec, Germany) to measure evolu-
tion of the product CSD during the batch. The predeter-
mined supersaturation level at which the ground seeds are
inserted into the crystallizer is measured using an in-line
concentration measuring probe (LiquiSonic 20, SensoTech,
Germany).

The feedback control scheme used to compute and im-
plement the optimal heat input profile on the crystal-
lizer is depicted in Fig. 1. A Distributed Control System
(DCS, CENTUM CS3000, Yokogawa, Japan) forms the
basic control layer consisting of Proportional Integral (PI)
loops, as well as extensions to control process variables
such as levels, temperatures, pressures, heat input etc.
The heat input to the crystallizer is optimized using the
nonlinear moment model in the Dynamic Optimizer where
input constraints are incorporated into the optimal control
problem that is solved on-line. In order to determine the
current states of the system, an observer is designed to
estimate the unmeasured state variable, i.e. solute con-
centration. The observer also accounts for the process-
model mismatch. Therefore, the feedback control structure
effectively handles the uncertainties that are associated
with the model’s parameters.

The core component of this multi-layer control architec-
ture is an OPC (OLE (Object Linking and Embedding)
for Process Control) server (IPCOS, the Netherlands) that
facilitates the communication among various modules in
the control system. The process measurements y collected
by the DCS are passed to the observer via the OPC server.
The OPC also sends the optimal heat input profile uopt

computed on the basis of the estimated states x̂ to the
lower level PI controller that keeps the heat input as close
to the optimal set points as possible by manipulating the
available actuators of the process within certain bounds.

As product quality is strongly dependent on the growth
rate profile throughout the batch, the variation of crys-
tal growth rate in relation to three different heat input
profiles is examined. The heat input and crystal growth
rate profiles are depicted in Fig. 2 and Fig. 3, respectively.
The undesirable effects of secondary nucleation, as well
as excessive growth rates can be minimized by imposing
a maximum growth rate constraint in the course of the
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Fig. 3. Crystal growth rate profiles

batch process. As can be seen, when the heat input is kept
constant at 9kW during experiment DTc31, the growth
rate steadily drops without following the maximum growth
rate shown by the dashed-dotted line in Fig. 3. This behav-
ior suggests that an effective control strategy is required
to meet the growth rate constraint. An off-line dynamic
optimization is, therefore, performed and implemented in
open-loop mode during experiment DTc55, where the heat
input is manipulated manually. Fig. 3 shows that the
growth rate yet again fails to follow the constraint at the
optimal heat-input profile implemented in the open-loop
mode.

In order to force the process to follow the constraint
more closely, the optimal control strategy is implemented
in closed-loop mode throughout experiment DTc63. As
demonstrated in Fig. 3, once the growth rate crosses the
constraint at t = 4200s, it is forced to follow the maximum
growth rate by raising the heat input to the crystallizer.
However, the constraint can no longer be tracked when
the heat input reaches its upper bound of 13kW at t =
6900s as shown in Fig. 2. Consequently, the growth rate
gradually decreases while the heat input remains at its
maximum admissible value. It is evident that in spite of
the fact that the constraint is not met in the initial phase
of the batch until the growth rate hits the maximum
growth rate, no control action is taken since the heat
input is constrained by a lower bound, i.e. 9kW . The lower
heat input bound ensures the survival of ground seeds by
keeping the supersaturation at somewhat high levels. It
is worth noting that the differences in the initial growth
rate profiles of various batches are due to uncertain initial
conditions at the seeding point.

Fig. 3 in fact exhibits the effectiveness of closed-loop
optimal control of the crystallizer, where better constraint
tracking is achieved till actuation limitations render the
optimal control of the batch process impossible. The
improvement in the performance of the optimal controller
can be attributed to the feedback structure, as well as the
receding horizon implementation of the control system. In
such control framework, the observer not only accounts
for the plant-model mismatch but also enables effective
disturbance handling.
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The volume fractions of crystals measured in the course
of various batches are depicted in Fig. 4. The crystal
fractions at the batch end of experiments DTc55 and
DTc63, during which optimal control is implemented, are
26vol.% and 27vol.% respectively, whereas in the exper-
iment of constant heat input profile the crystal fraction
is 23vol.%. Therefore, the implementation of the optimal
control strategy in either mode leads to a substantial
increase of almost 15% in the crystal volume fraction at
the end of the batch.

As can be inferred from Fig. 5, the heat input does not have
a significant impact on the median crystal size. This shows
that the supersaturation level is manipulated by the heat
input in such a way that the secondary nucleation does not
increase considerably throughout the batch and, therefore,
does not have a pronounced effect on the product crystal
size distribution. This is due to the effective control of
the secondary nucleation achieved by means of the proper
seeding strategy.

5. CONCLUSIONS AND FUTURE WORK

This study concerns the optimal operation of a semi-
industrial batch crystallization process. It shows that dy-
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namic optimization in combination with a nonlinear pro-
cess model provides an effective and efficient approach to
solve real-time optimal control problems in batch crystal-
lization processes.

An on-line strategy is proposed for optimal control of
a seeded fed-batch evaporative crystallizer. An extended
Luenberger-type observer is employed to provide estima-
tions for the unmeasured state variable, which makes the
real-time implementation of the feedback control structure
possible. The closed-loop implementation of the optimal
control strategy displays a superior performance in com-
parison with the open-loop implementation. This demon-
strates the role of the observer in the feedback control
structure that accounts for the deviation of model from the
process, and also enables a better disturbance handling.

In future, real-time solution to the optimal control problem
discussed in this study will be investigated using the simul-
taneous dynamic optimization approach. This approach,
which is expected to be computationally more efficient,
enables the direct application of population balance equa-
tion as the underlying process model.
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