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Abstract: The main objective of this paper is to estimate the whole set of feasible parameters
of a fractional differentiation model, based on gain and phase frequency data. All parameters,
including differentiation orders, are expressed as intervals and then estimated using a bounded
error approach. A contraction method named forward-backward propagation is first applied to
reduce the initial searching space. Then, a set inversion algorithm named SIVIA is applied on
the reduced searching space to obtain the whole set of feasible parameters. One of the interesting
points of this study is to show the separate contribution of gain and phase data on the final
estimation.
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1. INTRODUCTION AND MATHEMATICAL
BACKGROUND

Although fractional (non integer) integration and differ-
entiation remained for a long time purely a mathematical
concept, the last two decades have witnessed considerable
development in the use of fractional operators in various
fields. Fractional differentiation is now an important tool
for the international scientific and industrial communi-
ties especially in modeling viscoelastic materials (Pritz
(2003)) and some diffusive phenomena (thermal diffusion,
electrochemical diffusion) or in financial systems (Chen
(2008)). For example, in thermal diffusion in a semi-infinite
homogeneous medium, Battaglia et al. (2001) have shown
that the exact solution for the heat equation links the
thermal flux to a half order derivative of the surface tem-
perature on which the flux is applied. Diffusion phenomena
were investigated in semi-infinite planar, spherical and
cylindrical media by Oldham and Spanier (1972, 1973)
who showed that the involved transfer functions use the
Laplace variable s with exponents multiples of 0.5. In elec-
trochemical diffusion of charges in the electrode and the
electrolyte, the most common physical model used in the
litterature is the Randles model (Rodrigues et al. (2000);
Sabatier et al. (2006)) which uses Warburg impedance
with an integrator of order 0.5. Frequency domain response
of fractional models is characterized by the presence of any
slope in Bode’s gain diagram and any phase lock in Bode’s
phase diagram.

Frequency-domain system identification methods using
fractional models was initiated by Mathieu et al. (1995);
Le Lay (1998); as detailed in the tutorial paper Malti et al.
(2006). Recently Valério and da Costa (2007) extended
Levy’s identification technics (Levy (1959)), and its im-
provements by Sanathanan and Koerner (1963) and by
Lawrence and Rogers (1979), to deal with fractional mod-
els. Most of the proposed identification methods are based

on the minimization of the (weighted or not) ℓ2-norm of
the fitting error. All these methods use prior knowledge to
fix differentiation orders. Optimizing differentiation orders
is more complex as the model is non linear with respect
to these parameters. The quadratic criterion could be non
convex and gradient-based algorithm could fail in finding
the global minimum, if the algorithm is initialized in the
vicinity of a local one.

The objective of this paper is to estimate the whole set of
feasible parameters of a fractional differentiation model,
based on frequency domain uncertain but bounded data.

1.1 Fractional models

A fractional mathematical model is based on a fractional
differential equation:

y (t) + a1D
α1y (t) + · · · + amA

DαmA y (t) =

b0D
β0u (t) + b1D

β1u (t) + · · · + bmB
DβmB u (t) , (1)

where (ai, bj) ∈ R2, differentiation orders α1 < α2 <
. . . < αmA

, β0 < β1 < . . . < βmB
are allowed to be non-

integer positive numbers. The concept of differentiation to
an arbitrary order,

Dν ∆
=

(

d

dt

)ν

, ∀ν ∈ R
∗
+, (2)

was defined in the 19th century by Riemann and Liouville.
The ν fractional derivative of x(t) is defined as being an
integer derivative of order ⌊ν⌋+ 1 (⌊.⌋ stands for the floor
operator) of a non-integer integral of order ⌊ν⌋ + 1 − ν
(Samko et al. (1993)):

Dνx(t)= D⌊ν⌋+1
(

I⌊ν⌋+1−νx(t)
)

∆
=

(

d

dt

)⌊ν⌋+1
(

1

Γ (⌊ν⌋ + 1 − ν)

∫ t

0

x (τ) dτ

(t − τ )
ν−⌊ν⌋

)

, (3)
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where t > 0, ∀ν ∈ R∗
+, and the Euler’s Γ function is defined

for a complex number z with positive real part by:

Γ(z) =

∫ ∞

0

tz−1e−tdt, (4)

which can be extended, by analytical continuity, to the
rest of the complex plane.

The Laplace transform is a more concise algebraic tool
generally used to represent fractional systems, (see Old-
ham and Spanier (1974)):

L {Dνx (t)} = sν
L {x (t)} , if x(t) = 0 ∀t ≤ 0. (5)

This property allows to write the fractional differential
equation (1), provided u(t) and y(t) are relaxed at t = 0,
in a transfer function form:

F (s) =

mB
∑

j=0

bjs
βj

1 +
mA
∑

i=1

aisαi

. (6)

The function sν , where s belongs to the set of complex
numbers C, is multivalued as soon as ν is not integer. A
branch cut line is defined along the negative real axis R−

and the function sν becomes holomorphic in the comple-
ment of the branch cut line, i.e. in C \ R−. All arguments
of s are then restricted to ] − π, π[.
A modal form transfer function can then be obtained, by
carrying out a partial fraction expansion of (6) on the sν

variable, provided (6) is strictly proper and commensu-
rable 1 of order ν:

F (s) =

N
∑

k=1

vk
∑

q=1

Ak,q

(sν + Bk)
q , (7)

where (−Bk), k = 1, . . . , N are known as the sν -poles of
integer multiplicity vk.

Stability of any fractional commensurable transfer func-
tion such as (6) is proved by Matignon (1998) and is
presented for any ν ∈]0, 2[ in the following theorem.

Theorem 1. A commensurable ν-order transfer function
F (s) = S(sν) = T (sν)

R(sν) , where T and R are two coprime

polynomials, is stable iff 0 < ν < 2 and ∀p ∈ C such as
R(p) = 0, |arg (p)| > ν π

2 .

The stability region suggested by this theorem tends to
the whole s-plane when ν tends to 0, corresponds to the
Rooth-Hurwitz stability when ν = 1, and tends to the
negative real axis when ν tends to 2.

1.2 Problem formulation

The fractional model considered in this paper is the
building block of the modal form (7):

G(s) =
K

sν + b
, (8)

where the non integer differentiation order, ν, is restricted
to the interval ]0, 2[ and the pole in sν , −b, is restricted
to the negative real axis in order to guarantee model’s
stability, as specified by theorem 1, and the realness of the
time-domain response of G(s). A complex b would generate
a complex impulse response.
1 All differentiation orders are exactly divisible by the same number
(ν) an integral number of times (The American Heritage R© (2000)).
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Fig. 1. Admissible phase values of G(s) in (8) for different
signs of K and three possible determinations of arctan
function.

Frequency domain uncertain data are considered as gain
in dB and phase in degrees. Data are supposed to be
altered by a bounded noise with an unknown distribution.
Such data may be acquired from: (i) frequency analysis
of input/output signals, or (ii) bounded non parametric
frequency identification methods (Ljung (1999)) using one
or multiple experiments. One of the difficulties, not ad-
dressed here, is how to convert time-domain uncertainties
into frequency domain uncertainties. Some elements allow-
ing to answer this question can be found in (Antoni and
Schoukens (2007)).

Frequency gain and phase characteristics of (8) are ob-
tained by replacing s by jω :

G(jω) =
K

(jω)
ν

+ b
. (9)

Since the argument of s is restricted to ] − π, π[, j is
replaced by ej π

2 :

G(jω) =
K

(

ej π
2 ω
)ν

+ b
=

K
(

cos(ν π
2 ) + j sin(ν π

2 )
)

ων + b
.

(10)
Then, the gain and the phase are obtained by taking the
modulus and the argument of (10):

GdB(ω) = 10 log

(

K2

(b + cos(ν π
2 )ων)2 + (sin(ν π

2 )ων)2

)

,

= 10 log

(

K2

b2 + 2b cos(ν π
2 )ων + ω2ν

)

, (11)

ϕ(ω) =



















−Arctan

(

sin(ν π
2 )ων

Den(ω)

)

, if Den(ω) > 0,

−π − Arctan

(

sin
(

ν π
2

)

ων

Den(ω)

)

, if Den(ω) < 0,

(12)

where Den(ω) = b + cos
(

ν π
2

)

ων . Eq. (12) is given for
K > 0 (in case K < 0, π is substracted from each equation
in (12)). As shown in Fig. 1, when 0 < ν < 2, phase
admissible values of (8) range from −180◦ to 0 if K > 0
and from −360◦ to −180◦ if K < 0. Each interval ranges
over three determinations of the arctan function.
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Hence, the problem at stake is the following. Having
a set of N bounded uncertain frequency-domain gain and
phase data, respectively

[GdB(ωi)] =
[

GdB(ωi), GdB(ωi)
]

, (13)

[ϕ(ωi)] =
[

ϕ(ωi), ϕ(ωi)
]

, (14)

where i = 1, . . . , N , find the set of all feasible param-
eters of the fractional model (8).

A parameter vector θ = (K, b, ν)T is called feasible if the
model evaluated with θ is consistent with the measure-
ments and with the error bounds. The parameter esti-
mation problem is considered as a constraint satisfaction
problem (CSP) which is solved using interval analysis, ini-
tially introduced by Moore (1966). An interval [x] = [x, x]
is a closed, bounded, and connected set of real numbers.
The set of all intervals is denoted by IR. Real operations
are extended to intervals as follows. Given [x] ∈ IR and
[y] ∈ IR:

[x] + [y] = [x + y, x + y], (15)

[x] − [y] = [x − y, x − y], (16)

[x] × [y] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)] (17)

[x]/[y] =







[x] ×

[

1

y
,
1

y

]

, if 0 /∈ [y]

] −∞,∞[, if 0 ∈ [y].

(18)

2. FORWARD-BACKWARD CONTRACTOR

The CSP to be solved is given by:

CSP :







GdB(ωi) ≤ GdB(ωi, θ) ≤ GdB(ωi),

ϕ(ωi) ≤ ϕ(ωi, θ) ≤ ϕ(ωi), i ∈ {1, . . . , N},

−∞ < K < ∞, 0 < b < ∞, 0 < ν < 2,

(19)

where G(ωi), G(ωi), ϕ(ωi), and ϕ(ωi) are defined in (13)
and (14). Notations GdB(ωi, θ) and ϕ(ωi, θ) are used
instead of GdB(ωi) and ϕ(ωi) to show that (11) and (12)
depend on the parameter vector θ = (K, b, ν)T . The lower
bound of b and the interval of ν are chosen so as to satisfy
the stability conditions of theorem 1.

The solution set S of the CSP (19) can be rewritten as:

S =
{

θ ∈ Θ | f(ωi, θ) ∈ [y(ωi)], i ∈ {1, . . . , N}
}

, (20)

where f = GdB or f = ϕ and [y(ωi)] = [GdB(ωi)] or
[y(ωi)] = [ϕ(ωi)]. The characterization of the whole set S

can be formulated as a set inversion problem:

S = f−1([y]) ∩ Θ, (21)

and can be solved by guaranteed methods.

The CSP (19) is solved by a contractor C, which is an op-
erator which permits to reduce the domain [θ] without any
bisection. Hence, contracting the box [θ] means replacing
it by a smaller box [θ]∗ such that the solution set S remains
unchanged, i.e. S ⊂ [θ]∗ ⊂ [θ] (Jaulin et al. (2001)). There
exists different types of contractors depending on whether
the system to be solved is linear or not.
In our study, a non linear type contractor named forward-
backward contractor C↓↑ is used to reduce the ini-
tial searching space. The basic idea when implement-
ing this contractor is to decompose a principale con-
straint into primitive constraints. Each primitive con-
straint involves elementary operators and functions such
as {+,−,×, /, exp, log . . .}. The next example illustrates
how a given constraint is used to contract a domain.

Example Consider the constraint:
{

f(x) = x3 − x2x1 = 0,

x1 ∈ [2, 10], x2 ∈ [1, 10], x3 ∈ [1, 5],
(22)

The constraint (22) can be rewritten as:

x3 = x2x1.

The forward interval constraint propagation will remove
all inconsistent values from [x3] as follows:

[x3] = ([x1] × [x2]) ∩ [x3] = [2, 5].

Then, the backward interval constraint propagation will
remove all inconsistent values from x1 and x2 as follows:

[x1] = ([x3]/[x2]) ∩ [x1] = [2, 5],

[x2] = ([x3]/[x1]) ∩ [x2] = [1, 5/2].

After a forward and a backward propagation, the con-

tracted box is [x] =
(

[2, 5], [1, 5/2], [2, 5]
)T

which contains
the solution of the CSP .

As described in this example, in some cases the contractor
cannot reduce enough the domain of the parameters.
In such a case, the bisection of the variables vector x
is necessary. The algorithm SIVIA (Jaulin and Walter
(1993)) which is described in the following section is
based on the association of contractors and splitting.
It is applied, in this paper, to the gain and the phase
constraints (19) following the same stages as described in
the previous example.

3. SET INVERSION VIA INTERVAL ANALYSIS
(SIVIA)

This algorithm, proposed by Jaulin and Walter (1993),
allows to obtain an inner S and an outer S enclosures of
the solution set S (if it exists), such that:

S ⊆ S ⊆ S. (23)

SIVIA is a recursive algorithm based on partitioning the
parameter set into three regions: feasible, undeterminate
and unfeasible. SIVIA uses an inclusion test [t] which is
a function allowing to prove if an interval [θ] is feasible
in which case it is added to the set S. Any undetermined
region is bisected and tested again, unless its size w([θ])
is less than a precision parameter η tuned by the user
and which ensures that the algorithm terminates after a
finite number of iterations. The outer approximation is
then computed as S = S ∪ ∆S where ∆S is the union
of all remaining undetermined boxes. Hence, the SIVIA
algorithm is presented as follow:

Algorithm SIVIA (in: [t], [θ], η ; out: S, S )

(1) If [t]([θ]) = [0], return;
(2) If [t]([θ]) = [1], then S := S ∪ [θ]; S := S ∪ [θ], return;
(3) If w([θ]) ≤ η, S := S ∪ [θ];

Else bisecte [θ] into [θ1] and [θ2];
(4) SIVIA (in: [t], [θ1], η ; out: S, S);
(5) SIVIA (in: [t], [θ2], η ; out: S, S).

4. EXAMPLE

The following transfer function is chosen to generate data:

G(s) =
3

2 + s0.5
. (24)
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The frequency response of G(s) is obtained by replacing s
by jω:

G(jω) =
3

2 + (jω)0.5
. (25)

Thus, the gain in dB is:

GdB(ω) = 20 log

∣

∣

∣

∣

3

2 + (jω)0.5

∣

∣

∣

∣

, (26)

and the phase in degrees is:

ϕ(ω) = arg

(

3

2 + (jω)0.5

)

. (27)

Frequency-domain data are generated by taking 50 log-
equidistant frequencies in the range [10−4, 104] and com-
puting GdB(ω) and ϕ(ω) according to (26) and (27), which
are then corrupted by a frequency domain additive noise:

G⋆
dB(ω) = GdB(ω) + bdB(ω), (28)

ϕ⋆(ω) = ϕ(ω) + bϕ(ω). (29)

where the noises bdB(ω) and bϕ(ω) are generated in the
same way:

b{dB,ϕ}(ω) =

{

1.5ρ{dB,ϕ}, in low freq.,

1.5ρ{dB,ϕ} × log(ω), in high freq.,
(30)

with ρ{dB,ϕ} a random variable uniformly distributed
between −1 and 1. A higher amplitude noise is added
in high frequencies, because time-domain additive noise
is generally higher in high frequencies.

For each gain and phase datum, uncertainties are added
as intervals of amplitude a bit higher than the worst case
noise generated by (30), so that these data can lead to
feasible parameters sets with a non-empty inner enclosure
S:

[G⋆

dB
(ω)] = G⋆

dB
(ω) +

{

2 × [−1, 1], in low freq.,

2 × [− log(ω), log(ω)], in high freq.
(31)

[ϕ⋆(ω)] = ϕ⋆(ω) +

{

2 × [−1, 1], in low freq.,

2 × [− log(ω), log(ω)], in high freq.
(32)

Fig. 2 shows the frequency uncertain but bounded re-
sponse obtained according to the previous hypotheses.
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Fig. 2. Uncertain gain and phase data

4.1 Gain and phase contractors

The CSP to be solved here is given by (19). The initial
searching box is set to:

(

[K], [b], [ν]
)

=
(

[−20, 20], [0.1, 10], [0.2, 1.9]
)

. (33)

Let’s start by checking how gain and phase data contract
separately the initial searching box. The forward-backward
contractor C↓↑, explained in §2, is first applied on gain
data for every frequency ωi by decomposing (11) into
elementary operations. The main drawback of this oper-
ation is the multiple occurrences of the parameters to be
estimated, which induce pessimism due to the dependence
effect. The following contracted box is obtained:
(

[K], [b], [ν]
)

=
(

[−12.67, 12.67], [0.1, 10], [0.2, 1]
)

. (34)

Since the gain (13) does not depend on the sign of K in
(8), positive and negative K’s are contracted in the same
way. Parameter b was not contracted (Fig. 3).
In the same way, the contractor C↓↑ is applied on phase
data (12) taken separately. The following contracted box
is obtained:

(

[K], [b], [ν]
)

=
(

[0, 20], [0.1, 5.81], [0.2, 1.6]
)

. (35)

Since the phase (14) depends only on the sign of K in
(8), the initial searching domain of [K], i.e [−20, 20], is
contracted to [0, 20] (Fig. 3).
Following the same method, C↓↑ contractor is applied on
phase and gain data simultaneously which yields a smaller
contracted box (Fig. 3).

(

[K], [b], [ν]
)

=
(

[0, 12.67], [0.1, 4.48], [0.2, 1]
)

. (36)

Fig. 3. Initial and contracted boxes by gain and phase
contractors.

4.2 Applying SIVIA on gain data

To check the separate contributions of phase and gain
data in the final model, SIVIA algorithm is first of all
applied on gain data separately and is hence initialized by
using the gain contracted box (34). The obtained inner and
outer approximations of [θ] = ([K], [b], [ν])T are plotted in
Fig. 4. Two disconnected solution sets are obtained. They
are symmetrical with respect to K = 0, because the gain
(11) does not depend on the sign of K in (8). The inner
solution sets of [θ] are enclosed in:
{
(

[2.07, 4, 43], [1.26, 3.17], [0.34, 0.64]
)

for K > 0,
(

[−4, 43,−2.07], [1.26, 3.17], [0.34, 0.64]
)

for K < 0.
(37)
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Fig. 4. Inner (dark) and outer (light) solutions obtained
for η = 0.01. Number of bisections 343,503.

Fig. 5. Gain and phase diagrams of inner (dark) and outer
(light) solution sets obtained by applying SIVIA on
gain data.

The gain and the phase diagrams of all feasible models
obtained here are plotted in Fig. 5. One can notice that
guaranteed-models’ gain diagrams are all included in the
gain uncertainty intervals. However, some models phase
diagrams, and especially those generated by negative K’s,
are outside phase uncertainty intervals. This is a normal
fact since only gain data are used as constraints of the set
inversion problem.

4.3 Applying SIVIA on phase data

SIVIA algorithm is now applied on phase data separately
and is hence initialized by using the phase contracted
box (35). Remember that only the sign of K acts on the
phase. Hence, phase information can help finding the sign
of K and the feasible parameters [b] and [ν]. On the other
side, the phase contracted box (35) has already showed
that the gain is positive. The obtained inner and outer
approximations of [b] and [ν] are hence plotted in 2D in
Fig. 6. The inner solution sets of [θ] are enclosed in:
(

[K], [b], [ν]
)

=
(

[0, 12.34], [1.75, 2.15], [0.47, 0.52]
)

. (38)

The gain and the phase diagrams of all feasible models
obtained here are plotted in Fig. 7. One can notice that

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

[ν]

[b
]

Fig. 6. Inner (dark) and outer (light) solutions obtained
for η = 0.01. Number of bisections 2,549.

Fig. 7. Gain and phase diagrams of inner (dark) and outer
(light) solution sets obtained by applying SIVIA on
phase data.

guaranteed-models phase diagrams are all included in the
phase uncertainty intervals. However, some models gain
diagrams are outside gain uncertainty intervals. This is a
normal fact since only phase data are used as constraints
of the set inversion problem and any positive gain could
fit in.

4.4 Applying SIVIA on gain and phase data simultaneously

SIVIA algorithm is now applied on gain and phase data
simultaneously and is hence initialized by using the gain
and phase contracted box (36). The obtained inner and
outer approximations of [θ] are plotted in Fig. 8. The inner
solution sets are enclosed in:
(

[K], [b], [ν]
)

=
(

[2.57, 3.51], [1.76, 2.21], [0.47, 0.52]
)

.
(39)

The gain and the phase diagrams of feasible models are
plotted in Fig. 9. Now, feasible gain and phase diagrams
are all included in the gain and phase uncertainty intervals.
This is a normal fact since both gain and phase data are
used in the set inversion problem.
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Fig. 8. Inner (dark) and outer (light) solutions obtained
for η = 0.01. Number of bisections 83,245.
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Fig. 9. Gain and phase diagrams of inner (dark) and outer
(light) solution sets obtained by applying SIVIA on
gain and phase data.

5. CONCLUSION

In this paper, set membership estimation methods have
been applied to compute all feasible parameter sets of a
fractional differentiation model. First of all, a contractor
named forward-backward propagation is applied to reduce
initial searching space. Then, a set inversion algorithm,
SIVIA, is applied on gain and phase data. As a result, all
parameters, including differentiation order, are expressed
as intervals. Furthermore, one of the interesting points of
this study is to show the separate contribution of gain and
phase data on the final models.
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Talence, France, Octobre 1998.

E. C. Levy. Complex curve fitting. IRE Trans. Autom.
Control, 4:37–43, 1959.

L. Ljung. System identification – Theory for the user.
Prentice-Hall, 2 edition, 1999.

R. Malti, M. Aoun, J. Sabatier, and A. Oustaloup. Tutorial
on system identification using fractional differentiation
models. In SYSID, pages 606–611, Newcastle, Australia,
29-31 March 2006.

B. Mathieu, A. Oustaloup, and F. Levron. Transfer
function parameter estimation by interpolation in the
frequency domain. In EEC’95, Rome, Italie, 1995.

D. Matignon. Stability properties for generalized fractional
differential systems. ESAIM proceedings - Systèmes
Différentiels Fractionnaires - Modèles, Méthodes et Ap-
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