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Abstract: We evaluate the performance of two control architectures applied to atomic force
microscopes (AFM). Feedback-only control is a natural solution and has been applied widely.
Expanding on that, combining feedback controllers with plant-injection feedforward filters has
been shown to greatly improve tracking performance in AFMs. Alternatively, performance
can also be improved by the use of a closed-loop-injection feedforward filter applied to the
reference input before it enters the feedback loop. In this paper, we compare the plant-injection
architecture with the closed-loop-injection architecture when used in controlling AFMs. In
particular, we find that even in the presence of plant uncertainty, the closed-loop-injection
architecture yields better tracking performance of a raster scan.
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1. INTRODUCTION

An atomic force microscope (AFM) can provide images
with resolution at the atomic scale (10−10 m). In terms
of resolution, cost, imaging environments allowable, and
ease of sample preparation, AFMs have advantages over
other micro- and nanoscale imaging instruments such as
tunneling electron microscopes (TEMs), scanning electron
microscopes (SEMs), and optical imaging devices. How-
ever, the quality and speed of AFM images depend upon
the overall dynamics of the AFM system. The behavior
of AFMs varies considerably across AFM tips as well as
changes in samples and environmental changes. Currently,
the variability causes commercial AFMs to not behave like
reliable instruments, and this slows down and frustrates
AFM users. Since the time required to attain a quality
AFM image is typically on the order of several minutes or
more, substantial motivation exists to reduce the imaging
time in AFMs. Faster imaging is required to capture and
explore the dynamics of biological samples (El Feninat
et al. [2001], Shao et al. [1996]) and improved speed is also
necessary for nanofabrication to be economically viable.

In this paper, we discuss two combined feedforward/feedback
control architectures for AFMs, the plant-injection archi-
tecture and the closed-loop-injection architecture. This is
an expansion of our previous tutorial paper (Pao et al.
[2007]) which limited its feedforward discussion to only
the plant-injection architecture. Further background on
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AFMs can be found in Abramovitch et al. [2007] and the
references therein.

A schematic diagram of a scanning-sample-design AFM is
shown in Fig. 1. The AFM operation process is initiated
by gradually reducing the distance between the AFM
probe and the sample (by using a piezo actuator) until
a prespecified probe-sample interaction is achieved, i.e.,
the AFM cantilever deflection error reaches a specified
setpoint value. The AFM cantilever deflection error (which
depends on the tip-sample interaction) can be measured
using an optical sensor as shown in Fig. 1. The x-direction
motion is the fast scan direction, while motion in the y
direction is much slower. The z-direction motion control
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Fig. 1. Schematic diagram of a scanning-sample-design
AFM. Here, the piezoscanner enables positioning of
the sample both parallel (along the x and y axes)
and perpendicular (along the z axis) to the AFM
cantilever tip.
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Fig. 2. A complete multi-input multi-output (MIMO) AFM block diagram consisting of a feedback compensator C, a
plant-injection feedforward controller FP , and a closed-loop-injection feedforward controller FCL. When using the
closed-loop-injection architecture, FP is set to zero. In contrast, when using the plant-injection architecture, FCL

is set to the identity (or a delay in the case of model-inverse control when the relative degree of the plant is greater
than zero).

is carried out depending upon the amount of cantilever
deflection, which depends upon the topology of the sample.

In Fig. 2, the dynamics of the AFM piezo actuator and
tip and cantilever are represented in the AFM block. The
piezo actuators in the x, y, and z directions move the piezo
scanner in these directions. d is the surface of the sample
being imaged, and since it is yet unknown, d acts as a
disturbance to the AFM. The sample surface causes the
cantilever to deflect, the deflection error z̃c is measured
by an optical sensor, and the result is fed back to the
controller C.

There are several variations in AFM designs in terms
of whether the tip and cantilever assembly are actu-
ated and/or the sample stage is actuated. In one typi-
cal scanning-sample-design AFM (Fig. 1), the sample is
moved below a stationary tip, and the x, y, and z actuation
are done by a single piezo tube actuator (Binning and
Smith [1986]). In a scanning-tip-design AFM, the sample
is stationary while the tip is moved in x, y, and z. In
these two designs, the x and y directions are not always
measured and as a result are often only controlled in a
feedforward manner. The optical sensor provides a mea-
surement for the z direction such that feedback control
can be applied. In a third AFM design, the x-y motion is
driven by a stage that moves the sample while the z motion
is driven by a separate actuator moving the cantilever
up and down. Often this design uses capacitive sensors
or a linearly variable differential transformer (LVDT) to
measure the x-y motion allowing feedback control for all
three directions (Salapaka et al. [2002], Sebastian and
Salapaka [2005]). While this third design will be the focus
of this paper, all the control techniques discussed here can
be applied to each AFM design and all directions of each.

Several AFM imaging modes exist. In constant-force mode,
the control goal is to regulate the AFM cantilever de-
flection error z̃c at a constant value (the setpoint value
z̃cd

, which is often zero). Large variations in the AFM
cantilever deflection error z̃c can cause sample or AFM-
probe damage. Variations in the setpoint value of the
cantilever deflection error z̃cd

may be required, however,
to manipulate or modify a sample, e.g., to indent a sam-

ple during nanofabrication. This paper generally assumes
constant-force mode, as opposed to dynamic or AC mode
operation of AFMs (Abramovitch et al. [2007], Kodera
et al. [2005, 2006], Sebastian et al. [2007]). Regardless,
the control methods discussed here are applicable to both
constant-force and AC modes.

In this paper, we compare two combined feedforward-
feedback control architectures. Naturally, feedback-only
control has been an obvious control solution to the task of
improving AFM performance, and for years proportional-
integral-derivative control has been the industry standard
for AFM feedback control. Referencing Fig. 2, we note that
when using feedback-only control, FP is set to zero and
FCL is set to the identity. Additionally, several research
groups have investigated improving upon the performance
of feedback-only control by combining it with a feedfor-
ward filter FP . For the sake of discussion, we have named
this technique the plant-injection architecture and we will
also often refer to it as the FFPI (feedforward plant-
injection) architecture. When using the plant-injection
architecture, FCL is set depending on the type of controller
used for FP . Most often FCL is the identity in the FFPI
architecture, but occasionally it is a delay function when
FP is a model-inverse controller. The details of this delay
will be discussed further in Section 4. Some examples of
applying the plant-injection architecture to AFMs in the
literature include Croft and Devasia [1999], Croft et al.
[2001], Schitter et al. [2004a,b], and Tien et al. [2005].

In addition to discussing the plant-injection architecture,
this paper also employs the closed-loop-injection architec-
ture (also referred to as FFCLI in this paper) for AFM
control. While this control architecture has been used in
other mechatronic systems (Gross et al. [1994], Haack and
Tomizuka [1991], Potsaid and Wen [2004], Potsaid et al.
[2007], Rigney et al. [2006a,b], Tomizuka [1987], Torfs et al.
[1992, 1998]), to the best of the authors’ knowledge, it
has only very recently been applied specifically to AFMs.
Previous versions of an FFCLI-like architecture in AFM
control have included Bhikkaji et al. [2007], Leang and
Devasia [2007], Li and Bechhoefer [2007], and Schitter
et al. [2006]. Both Bhikkaji et al. [2007] and Schitter et al.
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[2006] use FFCLI in an input-shaping manner. Leang and
Devasia [2007] discusses FFCLI in an abstract way with
limited details, while Li and Bechhoefer [2007] discusses
this architecture in a manner more consistent with our
discussion, but is limited in the discussion of the design
of feedforward controllers. Here we extend the use of FCL

beyond the above to more general control techniques and
compare it to using FP exclusively. When using FFCLI,
FP in Fig. 2 is set to zero and the feedforward filter FCL

acts on the reference signal (the desired scan trajectory
in the case of x and y motions) ahead of the closed-loop
system.

This paper is organized as follows. In Section 2, we re-
view some basic ideas on AFM control. We then discuss
some feedback-only controller design methods in Section 3.
Some control methods for the plant-injection architecture
(that have been previously applied to AFMs) are pre-
sented in Section 4, and methods for the closed-loop-
injection architecture are investigated in Section 5. We
compare the methods for the various control architectures
in Section 6. In Subsection 6.5, we present results of these
comparisons as applied to the x-axis control loop, and
show that in simulation the closed-loop-injection outper-
forms the plant-injection architecture. A model of a nPoint
(www.npoint.com) NPXY100A stage is used, where the
model is extracted based on measurements of an actual
stage. We then draw conclusions and discuss future work
for further improving the control of AFMs in Section 7.

2. A GENERAL DISCUSSION ON AFM CONTROL

Fig. 2 shows a multi-input multi-output (MIMO) arrange-
ment of the AFM. Assuming a linear, time-invariant (LTI)
plant model, as has often been done in the literature, the
AFM plant is MIMO of the form

P (z) =

[

Pxx(z) Pxy(z) Pxz(z)
Pyx(z) Pyy(z) Pyz(z)
Pzx(z) Pzy(z) Pzz(z)

]

(1)

where Pxx(z) represents the transfer function from the
x-axis control input to the x position, Pxy(z) is the
transfer function from the y-axis control input to the
x position, Pxz(z) is the transfer function from the z-
axis control input to the x position, and so forth. Due
to coupling effects, P (z) is a full matrix. Pxy, Pyx, Pyz,
and Pzy are generally relatively small compared with the
other entries (Sebastian and Salapaka [2005], Tien et al.
[2005]). The cross-coupling between the x and z directions,
however, can be significant (Tien et al. [2005]).

The severity of the cross-coupling in AFMs depends upon
whether a tube actuator or a separate x-y scanner is
used. With a tube actuator, there is coupling due to the
structure with piezos on the outside for the x and y motion
and a piezo on the inside for the z motion (Abramovitch
et al. [2007]). When there is a separate x-y scanner,
the coupling from the lateral motion into the z axis
is less pronounced. Furthermore, modern external x-y
scanners are designed to specifically decouple the motion
of their fast and slow axes by having the x scanner (fast
direction) mounted within a frame that is moved in y
(slow direction) by the y scanner (Ando et al. [2001],
Schitter et al. [2006], Sebastian and Salapaka [2005]).

Our AFM uses a separate x-y scanner, so making an
assumption that the coupling effects are minimal is not
without merit, and as a result (and for the purposes
of the comparative nature of this paper) we focus on
a single-input single-output (SISO) arrangement of the
control system with a specific look at the x direction
of a scanner. Although the following discussion focuses
on the x direction of the AFM, the extension to the
y direction comes naturally. The connection to the z
direction, however, is not immediately obvious due to the
unknown surface being imaged. By using data from the
previous scan line via a 1-Scan Delay (shown in Fig. 2),
and assuming the sample topography does not change
dramatically from one scan line to the next, improved
z direction control can be achieved (Abramovitch et al.
[2007]). How the FFCLI architecture can be applied to
improve z direction control is an area of future work.

3. AFM FEEDBACK-ONLY CONTROL

In the case of feedback-only control, FP equals zero and
FCL in Fig. 2 is the identity. It should be clear that the two
control architectures reduce to the same structure when
using feedback-only control. Two major types of feedback-
only control applied to AFMs are Proportional-Integral-
Derivative (PID) control and H∞ control and they are
discussed in some detail in the following subsections.

3.1 Proportional-Integral-Derivative Control

Commercial AFMs are typically controlled with ba-
sic feedback-only Proportional (P), Proportional-Integral
(PI), Proportional-Integral-Derivative (PID), Proportional-
Double-Integral (PII), or Proportional-Double-Integral-
Derivative (PIID) compensators (El Rifai and Youcef-
Toumi [2003], Salapaka et al. [2002], Schitter et al. [2001],
Sebastian and Salapaka [2005], Stemmer et al. [2005]). A
SISO continuous-time compensator transfer function for a
PIID feedback controller is

C(s) = Kp +
Ki

s
+

Kii

s2
+ Kds.

For a P, PI, PII, or PID controller, one or more of the
Kd, Ki, or Kii gains are set to zero. PIID controllers
are typically specified in continuous time, s, and are
usually implemented in discrete time, z, typically using
an integrator equivalent (Åström and Hägglund [2005]).
However, analog implementations are used in some high
bandwidth experiments (Ando et al. [2001], Schitter et al.
[2006]). The Kp, Ki, Kii, and Kd gains must be tuned
carefully to achieve high-bandwidth and good regulation
of the cantilever deflection error in the z direction or
tracking performance in the x and y directions. Users of
commercial AFMs know all too well that the tuning of the
PIID gains is a tedious process, and several control systems
researchers have recently shown significant improvements
in the speed and quality of AFM images using more
advanced controllers discussed in the following subsection
and in Section 4.

3.2 H∞ Feedback Control

H∞ feedback control has been applied to AFMs in work
by Salapaka et al. [2002, 2005], Schitter et al. [2001], Se-
bastian and Salapaka [2005], and others. Just as with any
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other system, the H∞ feedback controller C is designed to
minimize the H∞ norm of

Tfb =

∥

∥

∥

∥

∥

∥

∥

WeS

WuCS

WT

∥

∥

∥

∥

∥

∥

∥

. (2)

In (2), S and T are the sensitivity and complimentary
sensitivity functions, respectively,

S = (1 + P̂C)−1, (3)

T = P̂C(1 + P̂C)−1. (4)

Here P̂ is the plant model used for control design, which
due to modeling errors is likely not exactly equal to
the actual plant P . We will use the “hat” notation (∧)
throughout this paper to indicate the model or portions of
the model. We, Wu, and W in (2) are weighting functions
that act on the error signal e, the plant input u, and
the output y of the closed-loop system, respectively. The
choice of the weights has a large effect on disturbance
rejection, robustness to modeling errors, and overall per-
formance (Skogestad and Postlethwaite [2005]). In general,
We has low-pass characteristics as it penalizes the sen-
sitivity function and is critical to low-frequency tracking
performance. Wu is often a constant to avoid saturating
the actuators, or in the presence of uncertainty near a reso-
nance it can be designed to weight that resonance to avoid
exciting the plant near this uncertainty. Since it acts on
the complimentary sensitivity function, W has high-pass
qualities to improve disturbance rejection and robustness
to high-frequency modeling errors (Schitter et al. [2003],
Sebastian and Salapaka [2005]).

4. PLANT-INJECTION ARCHITECTURE

Recent work in AFMs has shown increases in AFM perfor-
mance when feedback controllers (such as those discussed
in Section 3) are combined with a feedforward controller in
the plant-injection architecture (Croft and Devasia [1999],
Croft et al. [2001], Schitter et al. [2004a,b], Zou and Deva-
sia [2004]). In general, this architecture ensures stability
through the feedback controller C while the feedforward
controller FP increases tracking performance, disturbance
rejection, and robustness to model uncertainties. Model-
inverse and H∞ are two major types of feedforward con-
trol for AFMs that have appeared in the literature and
are highlighted in the following subsections. Rieber et al.
[2005] and Stemmer et al. [2005] have also applied ℓ1
optimal control to AFMs. Due to the fact that there are
no readily available software packages that enable ℓ1 con-
trollers to be solved conveniently, we focus this discussion
on model-inverse and H∞ controllers.

For our system, we simplify Fig. 2 into the SISO version
in Fig. 3. Specifically, Fig. 3 is representative of the block
diagram used for simulations, hence the inclusion of a
saturation block (which can be ignored for this portion of
the discussion, but will be addressed again in Section 6.5).

Similar to work in Rigney et al. [2006a,b, 2008], we
examine the transfer function from the desired input xd

to the output x of the FFPI system of Fig. 3. Ignoring the

x d
Σ

uxex
Σ

x

Saturation Block

F

FP

CL PC

Fig. 3. The SISO x-direction block diagram used for sim-
ulations. The ±10 volts saturation block is represen-
tative of limitations of our actual system.

saturation block, and assuming FCL is unity, the transfer
function is

X(z)

Xd(z)

∣

∣

∣

∣

FFPI

=
P (z)FP (z) + P (z)C(z)

1 + P (z)C(z)
. (5)

Here it should be clear that if the feedforward filter
FP (z) = 0, then (5) reduces to the common expression
for the dynamics of a feedback-only closed-loop system,

HCL(z) =
P (z)C(z)

1 + P (z)C(z)
. (6)

When FP (z) is equal to the inverse of P (z), then (5)
becomes the identity and we are able to track any desired
input perfectly. Of course, this assumes a perfect inverse of
P (z) exists and is practically implementable, and we will
discuss this further in Subsection 4.1.

For convenience we drop the argument z, and define the
plant dynamics P , the feedback controller C, and the
feedforward controller FP as a ratio of polynomials as in

P =
B

A
, C =

CN

CD

, and FP =
FPN

FPD

. (7)

Here, the subscripts N and D indicate numerator or
denominator polynomials. A and B represent polynomials
defining the plant poles and zeros, respectively. Using the
definitions in (7) we can further reduce (6) and (5) to

HCL =
BCN

ACD + BCN

and (8)

X(z)

Xd(z)

∣

∣

∣

∣

FFPI

=
BFPNCD + BCNFPD

FPD(ACD + BCN )
. (9)

The value of (9) will become clear when we review a model-
inverse control technique in Subsection 4.1 and discuss the
closed-loop-injection architecture in detail in Section 5.

4.1 FFPI: Feedforward Model-Inverse Control

Devasia and others have studied model-inverse methods
in the plant-injection architecture for AFMs (Croft and
Devasia [1999], Croft et al. [2001], Tien et al. [2005],
Wu and Zou [2006], Zou and Devasia [2004]). A SISO
simplification of their work reduces the MIMO C to a
PID or other feedback controller, and FP of Fig. 3 is
approximately equal to P̂−1. Ideally, FP would be exactly
equal to P̂−1 (or even better, P−1), but often the existence
of nonminimum-phase zeros in the plant force a stable
approximate inverse to be used in place of the exact
inverse. It is important to note that typically the plant and
model of piezo scanners have nonminimum-phase zeros due
to the flexible structure and non-collocated sensing and
actuation.
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Many control systems researchers, working in a myriad
of application areas, have developed and used stable ap-
proximate inversions in order to implement model-inverse
based control on nonminium-phase systems; this work has
been applied to both the plant-injection and closed-loop-
injection architectures. Some examples include Potsaid
and Wen [2004], Rigney et al. [2006a,b], Tomizuka [1987],
and Wen and Potsaid [2004]. Croft et al. [2001] have
shown that the model-inverse based plant-injection archi-
tecture is effective in AFMs at compensating for loss of
precision due to hysteresis during long range applications,
due to creep effects during positioning over extended pe-
riods of time, and due to induced vibrations during high-
speed positioning.

Various stable approximate model-inversion techniques ex-
ist, including Tomizuka’s popular zero-phase-error track-
ing controller (ZPETC) (Tomizuka [1987]). A cousin of the
ZPETC is the comparatively named zero-magnitude-error
tracking controller (ZMETC) that has appeared in Rigney
et al. [2008], Pao et al. [2007], Potsaid and Wen [2004],
Wen and Potsaid [2004], and Butterworth et al. [2008].
Yet another approximation method is to use a noncausal
series expansion (Gross and Tomizuka [1994], Gross et al.
[1994], Rigney et al. [2006b]). Using a zeroth-order series
expansion is effectively the same as choosing to ignore the
nonminimum-phase zeros (while accounting for the proper
DC gain); approximating the inverse of a system in this
way offers a more simplistic approach, but may not be
as accurate (Haack and Tomizuka [1991], Rigney et al.
[2008]). In contrast, some researchers have chosen to use
the exact unstable inverse and maintain stability of the
system by pre-loading initial conditions or using noncasual
plant inputs (Devasia et al. [1996], Hunt et al. [1996], Zou
and Devasia [2004]).

Ultimately, the proper choice of a stable approximate
model-inversion technique depends on the system on which
it will be applied and how the controller will be imple-
mented. Generally, ZPETC and ZMETC offer a simple and
usually effective method for model-inverse control (Rigney
et al. [2008]). Butterworth et al. [2008] compares ZMETC
and ZPETC for different nonminimum phase character-
istics in the plant model. When compared to ZPETC,
ZMETC provides better performance results when applied
to our model of the AFM x-y stage, and as such it will be
the focus of the discussion of the model-inversion technique
for the duration of this paper. Later in Subsection 6.4, we
will discuss the importance of magnitude tracking (rather
than phase) for obtaining high quality AFM images. As
a result, the use of the zero-magnitude-error tracking
controller is natural to our overall goals.

To design a ZMETC stable approximate model inverse of
a nonminimum-phase plant, write the model of the plant
dynamics as in (10), partitioning the polynomial B̂s con-
taining the stable (invertible) zeros from the polynomial

B̂u containing the unstable (noninvertible) zeros:

P̂ (z) =
B̂(z)

Â(z)
=

B̂s(z)B̂u(z)

Â(z)
. (10)

The polynomial Â(z) contains all the poles of the model

of the plant. B̂u has the form

B̂u(z) = bunzn + bu(n−1)z
n−1 + · · · + bu0 (11)

where n is the number of nonminimum-phase zeros. The
ZMETC technique then yields a stable approximation of
the inverse of the plant

P̃−1(z) =
Â(z)

B̂s(z)B̂∗
u(z)

, (12)

where the ∼ indicates an approximate inverse (as com-

pared to a ∧ indicating the model of the plant), and B̂∗

u(z)
is

B̂∗

u(z) = bu0z
n + bu1z

n−1 + · · · + bun. (13)

Note that the difference between (11) and (13) is the
“flipping” of the coefficients. It is this action which reflects
the unstable B̂u(z) about |z| = 1 into the stable B̂∗

u(z).

Setting FP equal to P̃−1(z) and FCL equal to unity or
a delay block (discussed further below) in Fig. 3 would
constitute a model-inverse based control using the plant-
injection architecture.

If the relative degree r of P (z) is greater than zero, the

resulting P̃−1(z) will be noncausal. Additional delay equal

to r will have to be incorporated into P̃−1(z) in order for
it to be implementable in a causal way:

FP = P̃−1(z) =
z−rÂ(z)

B̂s(z)B̂∗
u(z)

. (14)

If r > 0, then the feedforward block FCL should be defined
not as unity, but rather as a delay block equal to z−r.
Setting FCL = z−r changes the transfer function in (5) to

X(z)

Xd(z)

∣

∣

∣

∣

FFPI

=
P (z)FP (z) + z−rP (z)C(z)

1 + P (z)C(z)
. (15)

If (a) there exist no nonminimum-phase zeros in the plant,

(b) the model exactly matches the plant (P̂ (z) = P (z)),
and (c) r = 0, then the output of the system exactly tracks
the desired input xd and the feedback loop is not excited.
If the first two conditions (a) and (b) hold and r > 0, then
the output of the system exactly tracks the desired input
xd with a delay equal to r.

Returning to the discussion of FFPI, if we assume a
nonminimum-phase, perfectly known plant (P̂ (z) = P (z))
with relative degree r, we can apply the above discussion
on ZMETC and write (8) and (15) as

HCL =
BsBuCN

ACD + BsBuCN

and (16)

X(z)

Xd(z)

∣

∣

∣

∣

FFPI

=
BuACD + BsBuCNB∗

u

zrB∗
u(ACD + BsBuCN )

=
ACD + BsCNB∗

u

zrB∗
uBsCN

HCL. (17)

It should be clear that if all plant zeros are minimum
phase, then (17) reduces to a delay block indicating
perfectly delayed tracking.
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4.2 FFPI: Feedforward H∞ Control

H∞ control has been applied to AFMs in the plant-
injection architecture (Schitter et al. [2004a,b]). While
H∞ feedforward controllers are intended to be used in
conjunction with some form of feedback control to ensure
stability, the H∞ feedforward controller can be designed
independently of the feedback controller. For the plant-
injection architecture, the filter FP is designed such that
the H∞ norm of

TffP
=

∥

∥

∥

∥

∥

WuP
FP

WP − WP P̂FP

∥

∥

∥

∥

∥

(18)

is minimized. Again, WuP
and WP are weighting functions.

WuP
acts on the signal to the plant. WP weights the

tracking error signal represented by the difference between
the expected plant output and the reference input. Similar
to the feedback weights, the selection of these weights is
critical to the performance of the controller and its ability
to handle uncertainty in the model. Generally, WP has
low-pass qualities and is key to the low-frequency tracking
performance of the reference input. Similarly to Wu in
the feedback case, the weight WuP

can be designed to
limit actuator saturation and/or exciting an uncertain
resonance of the model (Schitter et al. [2004a,b]). Having
the ability to design for actuator saturation is a major
strength of H∞ feedforward controllers when compared to
ZMETC feedforward controllers which do not have such a
feature. We will see the effect of this in Subsection 6.5.
Although H∞ feedforward control is not necessarily a
model-inverse based technique, with careful selection of
the weighting functions the result of minimizing the H∞

norm of (18) can result in a filter that has properties that
are very indicative of an approximate model inverse.

5. CLOSED-LOOP-INJECTION ARCHITECTURE

Until very recently, the closed-loop-injection architecture
has not made an appearance in the AFM control litera-
ture. When compared to plant-injection, the closed-loop-
injection’s superior ability to perform under the pres-
ence of uncertainties in a disk drive application (Rigney
et al. [2006a]) provides motivation for application to AFM
control. The same feedforward techniques overviewed in
Section 4 are briefly discussed specifically for the closed-
loop-injection architecture in the following subsections.

In this architecture, we set FP in Fig. 3 equal to zero and
design FCL accordingly. Ignoring the saturation block, we
can condense a FFCLI version of Fig. 3 into a transfer
function from the desired input xd to the output x:

X(z)

Xd(z)

∣

∣

∣

∣

FFCLI

= HCLFCL. (19)

If we make the assumption that a stable inverse of HCL

exists, we can see that setting FCL equal to that stable
inverse would result in perfect tracking.

Further, the feedforward filter FCL functions ahead of
the loop that is stabilized by the feedback controller C.
In this arrangement, we expect the feedback controller
C to be continually excited. This is in contrast to the
plant-injection architecture where the feedback loop is

not activated unless modeling errors or deficiencies in the
approximate model inverse force the feedback controller to
be excited.

5.1 FFCLI: Feedforward Model-Inverse Control

The creation of a ZMETC model-inverse controller for
the closed-loop-injection architecture follows very closely
to the ZMETC procedure described in Subsection 4.1
for plant-injection architectures. The major difference is
the use of ZMETC to create a stable approximate model
inverse of the closed-loop dynamics (HCL(z)) and setting

FCL in Fig. 3 equal to that approximate inverse H̃−1
CL(z).

Following the technique described in Subsection 4.1, and
making the assumption that the feedback controller C is
stable, minimum phase, and exactly proper, we obtain an
approximate stable inverse of HCL(z):

FCL = H̃−1
CL =

z−rÂCL

B̂sCLB̂∗

uCL

,

=
z−r(ÂCD + B̂sB̂uCN )

(B̂sCN )(B̂∗
u)

(20)

where (16) defines ACL and BsCL. For minimum phase
C, B∗

uCL is equal to the same B∗

u from Subsection 4.1.
Because C is assumed to be exactly proper, the relative
degree r remains the same as before as well.

With C stable, minimum phase, and exactly proper, and
further assuming the nonminimum-phase plant is known
with certainty, we can use (16) and (20) to rewrite (19):

X(z)

Xd(z)

∣

∣

∣

∣

FFCLI

=
BsBuCN

ACD + BsBuCN

z−r(ACD + BsBuCN )

(BsCN )(B∗
u)

,

=
z−rBu

B∗
u

. (21)

This result shows one of the advantages of FFCLI over
FFPI: the FFCLI transfer function from xd to x reduces to
only the dynamics of the plant’s nonminimum phase zeros,
their approximate inverse, and possibly some delay. This is
in contrast to (17) of the plant-injection architecture which
is considerably more complex. Like the FFPI architecture,
we can see that when HCL(z) is minimum-phase and the

model P̂ (z) is known with certainty, (21) becomes unity
or a delay block. In this case, we can expect x to perfectly
track xd (perhaps with some delay).

5.2 FFCLI: Feedforward H∞ Control

The H∞ feedforward controller design for closed-loop-
injection follows closely to that for the plant-injection-
architecture. FCL is designed to minimize the H∞ norm
of

TffCL
=

∥

∥

∥

∥

∥

WuCL
FCL

WCL − WCLĤCLFCL

∥

∥

∥

∥

∥

. (22)

The weighting function WuCL
acts on the reference input

to the closed-loop system. WCL penalizes the difference
between the closed-loop output and the reference input.
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Fig. 4. Frequency response functions characterizing the
plant for motion in the x direction. The plant model
has been extracted based upon the measurement data
shown of an actual x-y stage.

As with all H∞ controllers, the choice of these weights is
critical to the performance of the controller. The general
design choice of WuCL

and WCL follows closely to the
design of WuP

and WP described in Subsection 4.2.

6. COMPARISON OF ARCHITECTURES

This section discusses a comparison of the plant-injection
and closed-loop-injection architectures. A model for the x
direction of our nPoint NPXY100A x-y piezoscanner stage
will be used for all control comparisons. Using frequency
response methods to match actual measured data from
our nPoint x-y stage (see Fig. 4), we obtained a 7th-order
discrete-time model

P̂xx(z) =
−0.0014(z − 0.0061)(z − 1.7824)

(z − 0.8884)(z − 0.8572 ± j0.4032)

×
(z − 1.1264 ± j0.4627)(z − 0.8762 ± j0.3766)

(z − 0.8717 ± j0.2742)(z − 0.9716 ± j0.2022)
. (23)

The nPoint stage has a signal conditioner that converts
the high-voltage piezo signals into a ±10 volt range to
represent the stage’s position. Both x and y directions of
the stage have a ±50µm range corresponding to the ±10
volts. This signal conditioner was considered part of the
stage when the system identification was performed, and
as a result P̂xx(z) in (23) and every controller described
in this paper are defined on the volt scale rather than the
µm scale. Translating between volts and microns is done
via the linear ratio of the two.

The model’s three nonminimum-phase zeros will challenge
the performance of all control designs and more specifically
limit the effectiveness of the model-inverse based methods.
The relative degree r = 1, and the sample rate for this
model and all associated controllers is 20.833 kHz.

6.1 Companion Simulations

In an effort to closely compare these two architectures,
we have selected four key simulation types for each ar-
chitecture. Each simulation under one architecture has
a corresponding companion simulation in the contrasting
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Fig. 5. The three variations of the true plant used for the
simulations: 1) perfectly known plant (solid blue), 2)
parametric structured uncertainty (dashed red), and
3) unstructured high-frequency uncertainty (dash-dot
magenta).

architecture. In the interest of comparison, the companion
simulations share not just the same classification of feed-
back control, but more importantly, they share the exact
same feedback controller C. Each feedforward controller
(FP or FCL) has been designed to perform specifically
for its architecture and therefore varies throughout the
simulations. Table 1 provides a summary of the simulations
with a focus on the relationships between certain pairs. We
will take a close look at a total of 8 simulations.

6.2 Plant Uncertainty

Each of the eight simulations were run for three different
variations of the plant P . In the first case, we assume the
plant is known perfectly, P̂ (z) = P (z). We also studied two
cases of plant uncertainty: parametric structured uncer-
tainty and unstructured high-frequency uncertainty. The
parametric structured uncertainty was designed to repre-
sent a low-frequency modeling error in which all of the
parameters in the numerator and denominator of (23) were
shifted by 10%. Further, the DC gain was adjusted to be
10% greater. The unstructured high-frequency uncertainty
represents a high frequency modeling error in the form of
an additional unmodelled resonance at 3kHz. As with the
parametric structured uncertainty, the DC gain was again
adjusted to be 10% greater than the plant model. Fig. 5
shows the frequency responses of all three “true” plants
considered.

Table 1. Simulations and their Relationships.
Sim. # Relationship FP FCL C

1
Companion Sims.

H∞ Unity
PID

2 Zero H∞

3
Companion Sims.

H∞ Unity
H∞4 Zero H∞

5
Companion Sims.

ZMETC z−r

PID
6 Zero ZMETC

7
Companion Sims.

ZMETC z−r

H∞8 Zero ZMETC
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Table 2. Feedback Controller Designs.
Control Type Transfer Function Zeros Poles

C: PID −0.05 + 955
s

+ 2.5 × 10−5s 1000 ± j6099 0

C: H∞

0.8154z6−2.923z5+3.208z4+0.4087z3−3.421z2+2.514z−0.6023
z6−3.66z5+4.539z4−1.134z3−2.155z2+1.864z−0.454

−1.000, 0.8884,

0.8717 ± j0.2742,

0.9764 ± j0.2062

−0.7586, 1.000,

0.8913 ± j0.2609,

0.8178 ± j0.1585

Table 3. Feedforward Controller Designs.
Sim. # Cntrl. Type Transfer Function Zeros Poles

1 & 3 FP :

0.8884, −0.9496,

0.9716 ± j0.2022,

0.9664 ± j0.2118,

0.8717 ± j0.2742

−0.9936, −0.4346,

0.7524 ± j0.1027,

0.8779 ± j0.2862,

0.9678 ± j0.2061

42.67z8−237.2z7+517.4z6−488.9z5+4.428z4+437.4z3···

z8−3.768z7+4.372z6+0.6148z5−5.265z4+3.769z3···

H∞

···−423.7z2+177z−28.97
···−0.2352z2−0.694z+0.2079

2 FCL:

−0.9967,

0.8700 ± j0.2724,

0.9664 ± j0.2118,

0.9676 ± j0.1994,

0.9504 ± j0.0140

−0.9959,

0.7023, −0.7538,

0.9683 ± j0.2012,

0.8666 ± j0.2697,

0.8821 ± j0.1613

173.4z9−1129z8+3006z7−3890z6+1623z5+2219z4···

z9−4.386z8+6.267z7−0.2441z6−8.392z5+7.979z4···

H∞

···−3857z3+2616z2−886.6z+124
···−0.667z3−3.049z2+1.835z−0.3416

4 FCL:

0.8491, −1.000,

0.9163 ± j0.0863,

0.9701 ± j0.2037,

0.8716 ± j0.2742

0.7917 ± j0.0601,

0.8587 ± j0.1893,

0.8764 ± j0.2819,

0.9744 ± j0.2061

0.6304z8−3.382z7+7.007z6−5.905z5−1.226z4+6.905z3···

z8−7.002z7+21.6z6−38.3z5+42.72z4−30.68z3···

H∞

···−6.039z2+2.382z−0.3719
···+13.85z2−3.591z+0.4097

5 & 7 FP :

0.8884,

0.9716 ± j0.2022,

0.8717 ± j0.2742,

0.8572 ± j0.4032

0,

0.0061, 0.5610,

0.8762 ± j0.3766,

0.7596 ± j0.3120

719.2z7−4523z6+1.239e4z5−1.914e4z4+1.802e4z3···

2.643z7−10.15z6+16.14z5−13.17z4+5.503z3···

ZMETC
···−1.034e4z2+3346z−471.5
···−0.9427z2+0.005554z

6 FCL:

1.617e − 5,

0.9504 ± j0.0132,

0.9676 ± j0.1995,

0.8700 ± j0.2723,

0.8570 ± j0.4031

0,

0.0061, 0.5610,

0.9520 ± j0.2928,

0.8762 ± j0.3766,

0.7596 ± j0.3120

522.4z9−3809z8+1.229e4z7−2.291e4z6+2.701e4z5···

z9−5.743z8+14.41z7−20.41z6+17.63z5···

ZMETC
···−2.062e4z4+9955z3−2779z2+343.4z−0.005554

···−9.263z4+2.746z3−0.3578z2+0.002085z

8 FCL:

−0.7587, 0.8491,

0.8560 ± j0.4045,

0.8716 ± j0.2742,

0.9701 ± j0.2037,

0.9163 ± j0.0863

−1.000, 0,

0.0061, 0.5610,

0.9764 ± j0.2062,

0.8762 ± j0.3766,

0.7596 ± j0.3120

333.7z10−2442z9+7724z8−1.344e4z7+1.306e4z6−5002z5···

z10−4.792z9+8.806z8−6.131z7−2.835z6+8.508z5···

ZMETC
···−3544z4+5939z3−3565z2+1071z−133.9
···−6.613z4+2.412z3−0.3572z2+0.002093z

6.3 The Controllers

Following the feedback and feedforward controller design
methods outlined in Sections 3, 4, and 5, we designed
2 feedback controllers and 6 feedforward controllers. All
controllers are summarized in Tables 2 and 3. In some
cases, the controller order was reduced via the removal
of near pole/zero cancellations. The value for the propor-
tional parameter of the PID feedback controller in Table 2
is negative due to a restriction in the nPoint software. The
same feedforward controller was used for both H∞ and
ZMETC feedforward plant-injection simulations (#1 & #3
and #5 & #7). This is because regardless of the feedback
controller C, the feedforward control objectives remain the
same. A brief description on the particular designs of the
H∞ weighting functions We, Wu, W , WuP

, WP , WuCL
,

and WCL is provided below.

H∞ Feedback Weight Designs: The H∞ feedback control
weighting functions We, Wu, and W were designed follow-
ing the guidelines described in Subsection 3.2. Specifically,
the feedback weights took the form of

We =
4z − 1.278

100(z − 1)
,

Wu =
1.3779(z − 0.9441)2

z2 − 1.953z + 0.9959
, and

W =
0.6z − 0.4858

0.1903z
.

Here, We and W have low and high-pass characteristics,
respectively. Meanwhile, Wu is designed to both limit
actuator saturation at low frequencies and to weight the
resonance of the plant.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8243



Table 4. Feedforward Weight Designs.
Sim. # Wi Wui

1 & 3 WP = 0.0667z−0.014
z−0.9947

WuP
=

9.82e−3(z−0.766)(z+1)

z2
−1.933z+0.9788

2 WCL = 0.05z+0.101
z−0.9998

WuCL
=

9.82e−3(z−0.766)(z+1)

z2
−1.933z+0.9788

4 WCL = 0.05z+0.101
z−0.9998

WuCL
= 0.1

H∞ Feedforward Weight Designs: Table 4 summa-
rizes the H∞ feedforward weighting functions (WuP

, WP ,
WuCL

, and WCL) used in our simulations. For both H∞

feedforward plant-injection simulations (#1 and #3), the
choice of the weights was exactly the same. Again, this is
because regardless of the feedback controller C, the control
objectives remain the same in this FFPI architecture and
the weights need not change as the feedback controller
changes. In simulations #1, #2, and #3, the weights WuP

and WuCL
were designed for robustness against potential

uncertainty near the resonance of the plant. WuP
for

simulations #1 and #3 was chosen to be the same as
WuCL

for simulation #2 as both controllers were working
to address the same possible uncertainty in the plant. WCL

in simulations #2 and #4 are also the same as the choice
provided good tracking results for both. In simulation
#4, only limiting actuator saturation was considered as
weighting the resonance provided no added performance
even under the presence of uncertainty.

6.4 Performance Metrics

When discussing the performance of the tracking of a
raster scan in AFMs, it is important to recall the overall
goal of AFMs: to create a quality image in a timely
manner. But this goal requires a definition of a “quality
image” when referring to an x-y raster scan. Focusing
on the x direction, an ideal controller would cause the
system output x(t) to track the desired raster pattern
xd(t) flawlessly. This suggests that the two performance
metrics in (24) and (25) might be informative in defining
the performance of a controller. Here we define two metrics
over one period T of the raster scan after time tss after
which all transients (from initial conditions for example)
have died out:

Je =

tss+T
∫

tss

(

xd(t) − x(t)
)2

dt (24)

Jm = max
t∈[tss,tss+T )

(

xd(t) − x(t)
)2

. (25)

While these metrics quantify tracking error to some extent,
a variation of them may be more effective for determining
the best controllers for imaging. This is because phase lag
in the raster scan used for AFM imaging is not nearly as
critical as consistently tracking the magnitude. Ultimately,
this means that perfectly delayed tracking is better than
imperfect timely tracking if we know the delay well. As a
result, we introduce two variations on the metrics in (24)
and (25). First, let us define the integer variable k∗ as
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Fig. 6. Example of simulation results using PID feedback-
only. The 100Hz input xd(t) is displayed in solid black,
xd(t−k∗Ts) used for the performance metrics Jeτ and
Jmτ is shown in dashed black, and the system output
x(t) is in solid purple.

k∗ = arg min
k

tss+T
∫

tss

(

xd(t − kTs) − x(t)
)2

dt (26)

where k is also an integer and is defined on [0, T
Ts

] where
Ts = 48µsec is the controller sample period. k∗ is defined
to be an integer as it represents actual implementation in
a digital controller. Specifically, k∗ reflects the phase lag
in the system or in other words, the discrete delay. We
can then use this information to define two new metrics
that disregard the phase lag in the system and emphasizes
magnitude tracking:

Jeτ =

tss+T
∫

tss

(

xd(t − k∗Ts) − x(t)
)2

dt (27)

Jmτ = max
t∈[tss,tss+T )

(

xd(t − k∗Ts) − x(t)
)2

(28)

We will use (27) and (28) extensively when comparing
the simulations of plant-injection and closed-loop-injection
architectures.

For further clarification, we provide Fig. 6 which is an
example simulation of a 100Hz raster scan input into a
PID feedback-only control loop. We have chosen a simple
PID feedback-only simulation as an example for its clear
delineation of each line. Here we see the actual 100Hz
raster scan input xd(t) in solid black, and the shifted 100Hz
input xd(t − k∗Ts) in dashed black. In this case, k∗ = 39
or k∗Ts = 1.9msec. From Fig. 6, it is clear that the PID
feedback-only controller lacks the bandwidth to be able to
track the 100Hz raster scan. Images created while using
this raster scan would be highly distorted at the edges.

6.5 Simulation Results

This section summarizes the results of each of the sim-
ulations listed in Table 1. All simulations were run on a
block diagram similar to Fig. 3 with a 100Hz raster scan
as the input on the SISO x direction model of our nPoint
x-y stage. The saturation block in Fig. 3 plays a critical
role in ensuring that the results are an accurate represen-
tation of a real-world implementation. Further, we include
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(d) Certain Plant
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(e) Parametric Struct. Uncert.
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Fig. 7. Results for simulations #1 & 2: PID feedback and H∞ feedforward. xd(t) is displayed in solid black and
xd(t − k∗Ts) used for the performance metrics Jeτ and Jmτ is shown in dashed black. FFPI results are displayed
in solid red in the top row while the corresponding FFCLI results are shown in solid blue in the bottom row.
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(d) Certain Plant
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Fig. 8. Results for simulations #3 & 4: H∞ feedback and H∞ feedforward. xd(t) is displayed in solid black and
xd(t − k∗Ts) used for the performance metrics Jeτ and Jmτ is shown in dashed black. FFPI results are displayed
in solid red in the top row while the corresponding FFCLI results are shown in solid blue in the bottom row.

it in our simulations because it helps us more closely
compare H∞ control designs with ZMETC designs. The
key difference being that when designing H∞ controllers,
adjustments can be made for saturation (see the discussion
on H∞ weighting functions in Subsection 6.3). In contrast,

designers of ZMETC controllers have no direct tools to
limit actuator saturation other than altering the filter
which would reduce tracking performance. As a result, the
saturation block critically affects the performance of the
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Fig. 9. Results for simulations #5 & 6: PID feedback and ZMETC feedforward. xd(t) is displayed in solid black and
xd(t − k∗Ts) used for the performance metrics Jeτ and Jmτ is shown in dashed black. FFPI results are displayed
in solid red in the top row while the corresponding FFCLI results are shown in solid blue in the bottom row.
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Fig. 10. Results for simulations #7 & 8: H∞ feedback and ZMETC feedforward. xd(t) is displayed in solid black and
xd(t − k∗Ts) used for the performance metrics Jeτ and Jmτ is shown in dashed black. FFPI results are displayed
in solid red in the top row while the corresponding FFCLI results are shown in solid blue in the bottom row.

ZMETC controllers. We will discuss this further below for
each applicable simulation.

We have provided plots of the simulation results (Figs. 7, 8,
9, and 10) and plots featuring the error between the shifted

100Hz input xd(t − k∗Ts) and the system output x(t)
(Figs. 11, 12, 13, and 14). Specifically, error is defined
as

error = xd(t − k∗Ts) − x(t), (29)
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which appears in the right-hand side of both (27) and (28).
The intention is to compare the performance of companion
simulations in one plot, so each contains an error plot for
a FFPI simulation and its companion FFCLI simulation.
The corresponding k∗ for each shifted input is displayed
in the legend box. Due to the shift associated with each
individual simulation, the error for simulation #2 at a
given time is not perfectly comparable to the error for
simulation #1 at that same given time. For this reason, the
reader should focus on comparing the general magnitude
of the error curves over time rather than the error at a
specific time.

In Figs. 7 and 11, three versions of each set of companion
simulations are displayed from left to right, each with
a varying degree of plant uncertainty (as discussed in
Subsection 6.2). The leftmost subfigures of Figs. 7 and 11
are for simulations with a perfectly known plant. The
middle and rightmost subfigures of Figs. 7 and 11 are
of simulations when there exists parametric structured
uncertainty and unstructured high-frequency uncertainty
in the plant. Figs. 8, 9, 10, 12, 13, and 14 present the rest
of the simulation results in a similar way for the other sets
of companion simulations.

Figs. 7 and 11 compare simulations #1 and #2 that
use PID feedback and H∞ feedforward control. It is
clear in Fig. 7 that in all cases, the closed-loop-injection
architecture tracks the 100Hz raster pattern better than
the plant-injection architecture. The large peaks in the
tracking error of the plant-injection technique of Fig. 11
correspond to the overshoot at the turn-around points of
the raster scan of the FFPI system in Fig. 7. An overshoot
of this magnitude will compromise the quality of imaging
for the plant-injection architecture. In contrast, the closed-
loop-injection tracking error experiences limited overshoot
and for this reason will provide a more consistent scan for
imaging. Even in the presence of uncertainty, the closed-
loop-injection system performs better. The parametric
uncertainty causes slight ringing in both architectures, but
it is less severe in closed-loop-injection.

Figs. 8 and 12 compare H∞ feedforward controllers when
using H∞ feedback control in the FFPI and FFCLI ar-
chitectures. Again, we see overshoot at the turn-around
points in the plant-injection architecture, which becomes
more extreme as we add plant uncertainty. The closed-
loop-injection architecture tracks the raster scan more
closely in all cases of this set of companion simulations.

Figs. 9 and 13 compare ZMETC feedforward control when
using a PID feedback controller. When the plant is per-
fectly known in Fig. 13(a), we again see peaks in the error
tracking indicative of overshoot at the turn-around points
in the FFPI architecture in Fig. 9(a). The FFPI’s errors in
tracking amplifies with the inclusion of parametric uncer-
tainty and severe ringing appears in the presence of high-
frequency uncertainty. Parametric uncertainty results in
some overshoot in the FFCLI plot (Fig. 13(b)), but it is
no more than that of the overshoot for the certain plant in
the FFPI architecture. In Figs. 9(c),and 9(f), we see that
both architectures struggle with the unstructured high-
frequency uncertainty as severe ringing appears in both. It
is clear that in both architectures, neither would produce

a decent image with these controllers in the presence of
such high-frequency uncertainty.

Looking closely at all three subfigures in Fig. 13, one
will notice the lack of repeatability of the error plots
over the three periods of interest. This is the result of
occasional actuator saturation from the high energy of the
ZMETC controllers (for both architectures). This effect
only appears every third period of a sustained raster scan;
due to our choice of axis scaling it appears in the first
period of our plots and can be seen in all simulations
that include ZMETC feedforward control (Figs. 9, 10, 13,
and 14). This phenomenon completely disappears when
the saturation block is removed from the simulations. For
our simulations, this effect makes it difficult to define the
k∗. In order to define the metrics, we chose to measure
them over the last period prior to the period exhibiting a
slight increase in tracking error due to saturation. Clearly
this will limit the quality of any AFM images obtained
with these feedforward controllers, and it suggests that
ZMETC may not be a wise choice for control of this plant
due to its actuator limits.

Figs. 10 and 14 compare the ZMETC feedforward control
and H∞ feedback controller of simulations #7 and #8.
One should note the presence of the previously discussed
ringing due to saturation limits in the first period displayed
in all subfigures of Fig. 10. Ignoring this ringing, we see
that the overshoot characteristic of the FFPI architecture
simulation plots continue, and the degradation of tracking
increases as plant uncertainty is included. In contrast, in
Fig. 10(d), the FFCLI architecture tracks the magnitude of
the scan well when the plant is perfectly known. Similar to
Fig. 13(c), we note that when including unstructured high-
frequency uncertainty, severe ringing appears for both
architectures. Again, utilizing these controllers, neither
architecture would produce a decent AFM image in the
presence of such high-frequency uncertainty.

One should note that in the top row of the simulation
results in Figs. 7, 8, 9, and 10, the FFPI architecture tends
to force the trajectory back toward the original desired
scan xd(t) rather than the shifted scan xd(t − k∗Ts). In
particular, the ZMETC FFPI simulations converge to a de-
layed scan xd(t−rTs) where z−r is the delay implemented
in the FCL block. In contrast, the delay associated with the
H∞ FFPI simulations is not as well defined. This action
is likely responsible for much of the extreme overshoot
in the plant-injection architecture, and is not present in
the FFCLI simulations. Further, this characteristic of the
FFPI architecture suggests that varying from the typical
choice of the identity or z−r for FCL may be beneficial. In
particular, additional simulations including discrete delay
near the order of k∗ in FCL for both the H∞ and ZMETC
FP controllers showed improved FFPI performance. How-
ever, the exact choice of the length of delay was determined
empirically in these additional simulations, and currently
there are no clear theoretical design paths for the choice
of this FCL delay time. Further, since FCL should not
necessarily be limited to only a delay, this suggests future
research in concurrently designing FP and FCL.

Fig. 15 displays the metrics Jeτ and Jmτ in separate
subfigures for each and every simulation. The blue symbols
(©, +, and 2: representing results of the FFCLI archi-
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Fig. 11. Tracking errors for companion simulations #1 & 2: PID feedback and H∞ feedforward.
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Fig. 12. Tracking errors for companion simulations #3 & 4: H∞ feedback and H∞ feedforward.
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Fig. 13. Tracking errors for companion simulations #5 & 6: PID feedback and ZMETC feedforward.
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Fig. 14. Tracking errors for companion simulations #7 & 8: H∞ feedback and ZMETC feedforward.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8248



    
0

0.01

0.02

0.03

0.04

J eτ

F: H
∞

C: H
∞

F: ZMETC
C: PID

F: ZMETC
C: H

∞

F: H
∞

C: PID

(a) Jeτ

    
0

5

10

15

J m
τ

F: H
∞

C: PID

F: ZMETC
C: H

∞

F: ZMETC
C: PID

F: H
∞

C: H
∞

(b) Jmτ

Fig. 15. Comparison of the performance metrics (Jeτ and
Jmτ ) between the FFPI and FFCLI architectures
for a 100Hz raster scan. The blue symbols represent
FFCLI results and the red symbols represent FFPI
results. Specifically, ©: FFCLI perfectly known plant,
×: FFPI perfectly known plant, +: FFCLI para-
metric uncertainty, ∗: FFPI parametric uncertainty,
2: FFCLI high-frequency uncertainty, 3: FFPI high-
frequency uncertainty.

tecture) consistently appear below the red symbols (×, ∗,
and 3: representing results of the FFPI architecture). At a
glance, this tells us that when considering the metrics Jeτ

and Jmτ , the closed-loop-injection outperforms the plant-
injection architecture in all simulations. In further testing
of parametric uncertainty, we varied the parameters by
±15% and the FFCLI architecture continued to outper-
form the FFPI architecture in each case.

7. CONCLUSIONS AND FUTURE WORK

Many researchers have applied advanced control tech-
niques in the form of the plant-injection architecture to
AFMs. Extending upon that, we have investigated the
closed-loop-injection architecture for AFM control. The
closed-loop-injection architecture has been successfully ap-
plied to other mechatronics devices and its application
to AFMs is natural. We have shown that even in the
presence of model uncertainties, the closed-loop-injection
architecture will lead to more precise tracking of a raster
scan than the plant-injection architecture.

In general, FFCLI has several advantages over the FFPI
architecture. Specifically in Subsection 5.1, we show that
when using model-inverse control, the dynamics of the
overall FFCLI SISO transfer function from the desired
output (reference xd) to the actual output (x) can often
reduce to a delay block and filter of order much lower
than that of the original plant. Further, when working
perfectly, the FFPI architecture will not excite the closed-
loop dynamics. But when FP is not a perfect inverse of
the true plant, the closed-loop dynamics can be excited in

such a way that limit the performance of the overall sys-
tem. Also, the physical implementation (in a digital-signal
processor, for example) of the plant-inverse architecture
for model inverse control can become complicated by the
programming of a possible delay block in the FCL position.
Finally, in many systems, system identification can only be
done (or is best done) in closed-loop which indicates the
closed-loop-injection architecture as a natural choice.

There is one key disadvantage to the FFCLI system.
Specifically, the FFCLI filter FCL can become a rather
high-order filter in order to capture all the necessary
inverse dynamics of the closed-loop system. This can be
a problem for implementation, not only due to the high
order, but also due to the numeric sensitivity that may
result with such a high order.

Advanced control of AFMs is a growing area and there is
much more work to be done and many areas to be explored
including:

• All of the above simulations will be implemented
in hardware to further our understanding of the
advantages and disadvantages of both the plant-
injection and closed-loop-injection architectures when
applied to all directions of the AFM.

• No truly MIMO algorithms have been developed and
applied for controlling AFMs. While cross-coupling
has been noted in AFMs, the effect of the cross-
coupling terms has not been explored extensively
in the AFM control literature. MIMO controllers
for the full plant model in (1) should be developed
and evaluated to determine the performance gains
achievable.

• For both combined feedforward/feedback control ap-
proaches shown in Fig. 2, a more thorough investiga-
tion of how best to jointly design the feedforward and
feedback compensators warrants further study.

In summary, the AFM is already recognized as an im-
portant tool for imaging nanoscale structures, and it is
becoming a driving technology in nanomanipulation and
nanoassembly. There are many areas for further investiga-
tion that can improve the control of AFMs significantly
to enable an even wider range of applications throughout
various disciplines.
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